2023-06-23 17:10:13 +00:00
|
|
|
import json
|
|
|
|
import os
|
|
|
|
from llama_cpp import Llama
|
|
|
|
from flask import Flask, Response, stream_with_context, request
|
2023-06-23 22:38:22 +00:00
|
|
|
from flask_cors import CORS
|
2023-06-23 17:10:13 +00:00
|
|
|
|
|
|
|
app = Flask(__name__)
|
|
|
|
CORS(app) # enable CORS for all routes
|
|
|
|
|
|
|
|
# llms tracks which models are loaded
|
|
|
|
llms = {}
|
|
|
|
|
|
|
|
|
2023-06-23 18:47:57 +00:00
|
|
|
@app.route("/load", methods=["POST"])
|
|
|
|
def load():
|
|
|
|
data = request.get_json()
|
|
|
|
model = data.get("model")
|
|
|
|
|
|
|
|
if not model:
|
|
|
|
return Response("Model is required", status=400)
|
|
|
|
if not os.path.exists(f"../models/{model}.bin"):
|
|
|
|
return {"error": "The model does not exist."}, 400
|
|
|
|
|
|
|
|
if model not in llms:
|
|
|
|
llms[model] = Llama(model_path=f"../models/{model}.bin")
|
|
|
|
|
|
|
|
return Response(status=204)
|
|
|
|
|
|
|
|
|
|
|
|
@app.route("/unload", methods=["POST"])
|
|
|
|
def unload():
|
|
|
|
data = request.get_json()
|
|
|
|
model = data.get("model")
|
|
|
|
|
|
|
|
if not model:
|
|
|
|
return Response("Model is required", status=400)
|
|
|
|
if not os.path.exists(f"../models/{model}.bin"):
|
|
|
|
return {"error": "The model does not exist."}, 400
|
|
|
|
|
|
|
|
llms.pop(model, None)
|
|
|
|
|
|
|
|
return Response(status=204)
|
|
|
|
|
|
|
|
|
2023-06-23 17:10:13 +00:00
|
|
|
@app.route("/generate", methods=["POST"])
|
|
|
|
def generate():
|
|
|
|
data = request.get_json()
|
|
|
|
model = data.get("model")
|
|
|
|
prompt = data.get("prompt")
|
|
|
|
|
|
|
|
if not model:
|
|
|
|
return Response("Model is required", status=400)
|
|
|
|
if not prompt:
|
|
|
|
return Response("Prompt is required", status=400)
|
2023-06-25 18:18:48 +00:00
|
|
|
if not os.path.exists(f"./models/{model}.bin"):
|
2023-06-23 18:47:57 +00:00
|
|
|
return {"error": "The model does not exist."}, 400
|
2023-06-23 17:10:13 +00:00
|
|
|
|
|
|
|
if model not in llms:
|
2023-06-23 18:47:57 +00:00
|
|
|
# auto load
|
2023-06-23 17:10:13 +00:00
|
|
|
llms[model] = Llama(model_path=f"../models/{model}.bin")
|
|
|
|
|
|
|
|
def stream_response():
|
|
|
|
stream = llms[model](
|
|
|
|
str(prompt), # TODO: optimize prompt based on model
|
|
|
|
max_tokens=4096,
|
|
|
|
stop=["Q:", "\n"],
|
|
|
|
echo=True,
|
|
|
|
stream=True,
|
|
|
|
)
|
|
|
|
for output in stream:
|
|
|
|
yield json.dumps(output)
|
|
|
|
|
|
|
|
return Response(
|
|
|
|
stream_with_context(stream_response()), mimetype="text/event-stream"
|
|
|
|
)
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
2023-06-25 04:30:02 +00:00
|
|
|
app.run(debug=True, threaded=True, port=5001)
|
2023-06-25 18:18:48 +00:00
|
|
|
app.run()
|