224 lines
5.8 KiB
Python
224 lines
5.8 KiB
Python
|
import json
|
||
|
import os
|
||
|
import threading
|
||
|
import click
|
||
|
from transformers import AutoModel
|
||
|
from tqdm import tqdm
|
||
|
from pathlib import Path
|
||
|
from llama_cpp import Llama
|
||
|
from flask import Flask, Response, stream_with_context, request
|
||
|
from flask_cors import CORS
|
||
|
from template import template
|
||
|
|
||
|
app = Flask(__name__)
|
||
|
CORS(app) # enable CORS for all routes
|
||
|
|
||
|
# llms tracks which models are loaded
|
||
|
llms = {}
|
||
|
lock = threading.Lock()
|
||
|
|
||
|
|
||
|
def models_directory():
|
||
|
home_dir = Path.home()
|
||
|
models_dir = home_dir / ".ollama/models"
|
||
|
|
||
|
if not models_dir.exists():
|
||
|
models_dir.mkdir(parents=True)
|
||
|
|
||
|
return models_dir
|
||
|
|
||
|
|
||
|
def load(model=None, path=None):
|
||
|
"""
|
||
|
Load a model.
|
||
|
|
||
|
The model can be specified by providing either the path or the model name,
|
||
|
but not both. If both are provided, this function will raise a ValueError.
|
||
|
If the model does not exist or could not be loaded, this function returns an error.
|
||
|
|
||
|
Args:
|
||
|
model (str, optional): The name of the model to load.
|
||
|
path (str, optional): The path to the model file.
|
||
|
|
||
|
Returns:
|
||
|
dict or None: If the model cannot be loaded, a dictionary with an 'error' key is returned.
|
||
|
If the model is successfully loaded, None is returned.
|
||
|
"""
|
||
|
|
||
|
with lock:
|
||
|
if path is not None and model is not None:
|
||
|
raise ValueError(
|
||
|
"Both path and model are specified. Please provide only one of them."
|
||
|
)
|
||
|
elif path is not None:
|
||
|
name = os.path.basename(path)
|
||
|
load_from = path
|
||
|
elif model is not None:
|
||
|
name = model
|
||
|
dir = models_directory()
|
||
|
load_from = str(dir / f"{model}.bin")
|
||
|
else:
|
||
|
raise ValueError("Either path or model must be specified.")
|
||
|
|
||
|
if not os.path.exists(load_from):
|
||
|
return {"error": f"The model at {load_from} does not exist."}
|
||
|
|
||
|
if name not in llms:
|
||
|
# TODO: download model from a repository if it does not exist
|
||
|
llms[name] = Llama(model_path=load_from)
|
||
|
|
||
|
# TODO: this should start a persistent instance of ollama with the model loaded
|
||
|
return None
|
||
|
|
||
|
|
||
|
def unload(model):
|
||
|
"""
|
||
|
Unload a model.
|
||
|
|
||
|
Remove a model from the list of loaded models. If the model is not loaded, this is a no-op.
|
||
|
|
||
|
Args:
|
||
|
model (str): The name of the model to unload.
|
||
|
"""
|
||
|
llms.pop(model, None)
|
||
|
|
||
|
|
||
|
def generate(model, prompt):
|
||
|
# auto load
|
||
|
error = load(model)
|
||
|
print(error)
|
||
|
if error is not None:
|
||
|
return error
|
||
|
generated = llms[model](
|
||
|
str(prompt), # TODO: optimize prompt based on model
|
||
|
max_tokens=4096,
|
||
|
stop=["Q:", "\n"],
|
||
|
stream=True,
|
||
|
)
|
||
|
for output in generated:
|
||
|
yield json.dumps(output)
|
||
|
|
||
|
|
||
|
def models():
|
||
|
dir = models_directory()
|
||
|
all_files = os.listdir(dir)
|
||
|
bin_files = [
|
||
|
file.replace(".bin", "") for file in all_files if file.endswith(".bin")
|
||
|
]
|
||
|
return bin_files
|
||
|
|
||
|
|
||
|
@app.route("/load", methods=["POST"])
|
||
|
def load_route_handler():
|
||
|
data = request.get_json()
|
||
|
model = data.get("model")
|
||
|
if not model:
|
||
|
return Response("Model is required", status=400)
|
||
|
error = load(model)
|
||
|
if error is not None:
|
||
|
return error
|
||
|
return Response(status=204)
|
||
|
|
||
|
|
||
|
@app.route("/unload", methods=["POST"])
|
||
|
def unload_route_handler():
|
||
|
data = request.get_json()
|
||
|
model = data.get("model")
|
||
|
if not model:
|
||
|
return Response("Model is required", status=400)
|
||
|
unload(model)
|
||
|
return Response(status=204)
|
||
|
|
||
|
|
||
|
@app.route("/generate", methods=["POST"])
|
||
|
def generate_route_handler():
|
||
|
data = request.get_json()
|
||
|
model = data.get("model")
|
||
|
prompt = data.get("prompt")
|
||
|
if not model:
|
||
|
return Response("Model is required", status=400)
|
||
|
if not prompt:
|
||
|
return Response("Prompt is required", status=400)
|
||
|
if not os.path.exists(f"{model}"):
|
||
|
return {"error": "The model does not exist."}, 400
|
||
|
return Response(
|
||
|
stream_with_context(generate(model, prompt)), mimetype="text/event-stream"
|
||
|
)
|
||
|
|
||
|
|
||
|
@app.route("/models", methods=["GET"])
|
||
|
def models_route_handler():
|
||
|
bin_files = models()
|
||
|
return Response(json.dumps(bin_files), mimetype="application/json")
|
||
|
|
||
|
|
||
|
@click.group(invoke_without_command=True)
|
||
|
@click.pass_context
|
||
|
def cli(ctx):
|
||
|
# allows the script to respond to command line input when executed directly
|
||
|
if ctx.invoked_subcommand is None:
|
||
|
click.echo(ctx.get_help())
|
||
|
|
||
|
|
||
|
@cli.command()
|
||
|
@click.option("--port", default=5000, help="Port to run the server on")
|
||
|
@click.option("--debug", default=False, help="Enable debug mode")
|
||
|
def serve(port, debug):
|
||
|
print("Serving on http://localhost:{port}")
|
||
|
app.run(host="0.0.0.0", port=port, debug=debug)
|
||
|
|
||
|
|
||
|
@cli.command(name="load")
|
||
|
@click.argument("model")
|
||
|
@click.option("--file", default=False, help="Indicates that a file path is provided")
|
||
|
def load_cli(model, file):
|
||
|
if file:
|
||
|
error = load(path=model)
|
||
|
else:
|
||
|
error = load(model)
|
||
|
if error is not None:
|
||
|
print(error)
|
||
|
return
|
||
|
print("Model loaded")
|
||
|
|
||
|
|
||
|
@cli.command(name="generate")
|
||
|
@click.argument("model")
|
||
|
@click.option("--prompt", default="", help="The prompt for the model")
|
||
|
def generate_cli(model, prompt):
|
||
|
if prompt == "":
|
||
|
prompt = input("Prompt: ")
|
||
|
output = ""
|
||
|
prompt = template(model, prompt)
|
||
|
for generated in generate(model, prompt):
|
||
|
generated_json = json.loads(generated)
|
||
|
text = generated_json["choices"][0]["text"]
|
||
|
output += text
|
||
|
print(f"\r{output}", end="", flush=True)
|
||
|
|
||
|
|
||
|
def download_model(model_name):
|
||
|
dir = models_directory()
|
||
|
AutoModel.from_pretrained(model_name, cache_dir=dir)
|
||
|
|
||
|
|
||
|
@cli.command(name="models")
|
||
|
def models_cli():
|
||
|
print(models())
|
||
|
|
||
|
|
||
|
@cli.command(name="pull")
|
||
|
@click.argument("model")
|
||
|
def pull_cli(model):
|
||
|
print("not implemented")
|
||
|
|
||
|
|
||
|
@cli.command(name="import")
|
||
|
@click.argument("model")
|
||
|
def import_cli(model):
|
||
|
print("not implemented")
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
cli()
|