2023-07-18 12:45:38 -07:00
< div align = "center" >
< picture >
2023-07-20 08:55:20 -07:00
< source media = "(prefers-color-scheme: dark)" height = "200px" srcset = "https://github.com/jmorganca/ollama/assets/3325447/56ea1849-1284-4645-8970-956de6e51c3c" >
< img alt = "logo" height = "200px" src = "https://github.com/jmorganca/ollama/assets/3325447/0d0b44e2-8f4a-4e99-9b52-a5c1c741c8f7" >
2023-07-18 12:45:38 -07:00
< / picture >
< / div >
2023-07-05 15:37:33 -04:00
2023-06-27 12:08:52 -04:00
# Ollama
2023-06-22 12:45:31 -04:00
2023-07-19 12:31:48 -07:00
[![Discord ](https://dcbadge.vercel.app/api/server/ollama?style=flat&compact=true )](https://discord.gg/ollama)
2023-07-19 12:28:50 -07:00
2023-09-25 23:44:53 -07:00
Get up and running with large language models locally.
2023-07-20 08:33:28 -07:00
2023-09-25 23:44:53 -07:00
### macOS
2023-08-08 15:50:23 -07:00
2023-10-11 19:24:06 -04:00
[Download ](https://ollama.ai/download/Ollama-darwin.zip )
2023-07-18 13:31:25 -07:00
2023-10-15 02:23:03 -04:00
### Windows
Coming soon!
2023-09-25 23:44:53 -07:00
### Linux & WSL2
```
curl https://ollama.ai/install.sh | sh
```
[Manual install instructions ](https://github.com/jmorganca/ollama/blob/main/docs/linux.md )
2023-10-15 02:23:03 -04:00
### Docker
2023-09-25 23:44:53 -07:00
2023-10-15 02:33:25 -04:00
See the official [Docker image ](https://hub.docker.com/r/ollama/ollama ).
2023-07-18 13:31:25 -07:00
2023-07-19 12:28:50 -07:00
## Quickstart
2023-09-25 23:44:53 -07:00
To run and chat with [Llama 2 ](https://ollama.ai/library/llama2 ):
2023-07-19 12:28:50 -07:00
```
ollama run llama2
```
## Model library
2023-10-11 19:24:06 -04:00
Ollama supports a list of open-source models available on [ollama.ai/library ](https://ollama.ai/library 'ollama model library' )
2023-08-16 22:53:27 -04:00
2023-08-25 20:44:26 -07:00
Here are some example open-source models that can be downloaded:
2023-07-19 12:28:50 -07:00
2023-09-25 23:44:53 -07:00
| Model | Parameters | Size | Download |
| ------------------ | ---------- | ----- | ------------------------------ |
2023-09-28 09:06:03 -07:00
| Mistral | 7B | 4.1GB | `ollama run mistral` |
2023-09-25 23:44:53 -07:00
| Llama 2 | 7B | 3.8GB | `ollama run llama2` |
| Code Llama | 7B | 3.8GB | `ollama run codellama` |
| Llama 2 Uncensored | 7B | 3.8GB | `ollama run llama2-uncensored` |
| Llama 2 13B | 13B | 7.3GB | `ollama run llama2:13b` |
| Llama 2 70B | 70B | 39GB | `ollama run llama2:70b` |
| Orca Mini | 3B | 1.9GB | `ollama run orca-mini` |
| Vicuna | 7B | 3.8GB | `ollama run vicuna` |
2023-07-19 12:28:50 -07:00
2023-07-20 12:21:29 -07:00
> Note: You should have at least 8 GB of RAM to run the 3B models, 16 GB to run the 7B models, and 32 GB to run the 13B models.
2023-09-25 23:44:53 -07:00
## Customize your own model
2023-06-27 17:13:07 -04:00
2023-10-15 02:23:03 -04:00
### Import from GGUF
2023-09-01 10:54:31 -04:00
2023-10-15 02:23:03 -04:00
Ollama supports importing GGUF models in the Modelfile:
2023-09-01 10:54:31 -04:00
2023-10-15 02:23:03 -04:00
1. Create a file named `Modelfile` , with a `FROM` instruction with the local filepath to the model you want to import.
2023-09-01 10:54:31 -04:00
2023-09-25 23:44:53 -07:00
```
FROM ./vicuna-33b.Q4_0.gguf
```
2023-06-30 12:39:25 -04:00
2023-10-11 19:24:06 -04:00
2. Create the model in Ollama
2023-06-22 12:45:31 -04:00
2023-09-25 23:44:53 -07:00
```
2023-10-15 02:23:03 -04:00
ollama create example -f Modelfile
2023-09-25 23:44:53 -07:00
```
2023-08-10 23:22:28 +08:00
2023-10-11 19:24:06 -04:00
3. Run the model
2023-09-01 13:44:14 -07:00
2023-09-25 23:44:53 -07:00
```
2023-10-15 02:23:03 -04:00
ollama run example
2023-09-25 23:44:53 -07:00
```
2023-09-01 13:44:14 -07:00
2023-10-15 02:23:03 -04:00
### Import from PyTorch or Safetensors
See the [guide ](docs/import.md ) on importing models for more information.
2023-09-25 23:44:53 -07:00
### Customize a prompt
2023-09-01 13:44:14 -07:00
2023-09-25 23:44:53 -07:00
Models from the Ollama library can be customized with a prompt. The example
2023-07-19 12:28:50 -07:00
```
2023-07-20 02:21:51 -07:00
ollama pull llama2
2023-07-19 12:28:50 -07:00
```
2023-08-08 15:41:48 -07:00
2023-07-18 13:22:33 -07:00
Create a `Modelfile` :
2023-07-05 15:37:33 -04:00
2023-06-30 12:31:00 -04:00
```
2023-07-20 02:21:51 -07:00
FROM llama2
2023-07-20 08:17:09 -07:00
# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1
# set the system prompt
2023-07-20 02:21:51 -07:00
SYSTEM """
2023-07-18 13:32:06 -07:00
You are Mario from Super Mario Bros. Answer as Mario, the assistant, only.
2023-07-18 13:22:33 -07:00
"""
2023-06-29 18:25:02 -04:00
```
2023-07-07 16:14:58 -04:00
2023-07-18 13:22:33 -07:00
Next, create and run the model:
2023-07-07 16:14:58 -04:00
```
2023-07-18 13:22:33 -07:00
ollama create mario -f ./Modelfile
ollama run mario
>>> hi
Hello! It's your friend Mario.
2023-07-07 16:14:58 -04:00
```
2023-10-11 19:24:06 -04:00
For more examples, see the [examples ](examples ) directory. For more information on working with a Modelfile, see the [Modelfile ](docs/modelfile.md ) documentation.
2023-09-25 23:44:53 -07:00
## CLI Reference
### Create a model
`ollama create` is used to create a model from a Modelfile.
2023-07-19 12:28:50 -07:00
2023-09-25 23:44:53 -07:00
### Pull a model
2023-07-06 16:21:01 -04:00
2023-07-19 12:28:50 -07:00
```
2023-09-25 23:44:53 -07:00
ollama pull llama2
2023-07-19 12:28:50 -07:00
```
2023-06-28 09:57:36 -04:00
2023-09-25 23:44:53 -07:00
> This command can also be used to update a local model. Only the diff will be pulled.
### Remove a model
2023-07-20 12:21:29 -07:00
```
2023-09-01 10:54:31 -04:00
ollama rm llama2
2023-07-20 12:21:29 -07:00
```
2023-09-25 23:44:53 -07:00
### Copy a model
```
ollama cp llama2 my-llama2
```
### Multiline input
For multiline input, you can wrap text with `"""` :
```
>>> """Hello,
... world!
... """
I'm a basic program that prints the famous "Hello, world!" message to the console.
```
### Pass in prompt as arguments
```
$ ollama run llama2 "summarize this file:" "$(cat README.md)"
Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.
```
### List models on your computer
2023-07-20 12:21:29 -07:00
2023-09-25 23:44:53 -07:00
```
ollama list
```
2023-07-20 12:21:29 -07:00
2023-09-25 23:44:53 -07:00
### Start Ollama
2023-07-20 12:21:29 -07:00
2023-09-25 23:44:53 -07:00
`ollama serve` is used when you want to start ollama without running the desktop application.
2023-07-20 12:21:29 -07:00
2023-07-03 16:32:48 -04:00
## Building
2023-09-07 12:43:26 +02:00
Install `cmake` and `go` :
2023-08-25 11:44:25 -07:00
2023-07-03 16:32:48 -04:00
```
2023-08-30 17:54:02 -04:00
brew install cmake
2023-09-07 12:43:26 +02:00
brew install go
2023-08-30 17:54:02 -04:00
```
Then generate dependencies and build:
```
go generate ./...
2023-07-11 09:50:02 -07:00
go build .
2023-07-03 16:32:48 -04:00
```
2023-08-30 17:54:02 -04:00
Next, start the server:
2023-06-27 13:46:46 -04:00
2023-07-05 15:37:33 -04:00
```
2023-08-30 17:54:02 -04:00
./ollama serve
2023-07-05 15:37:33 -04:00
```
2023-09-01 10:54:31 -04:00
Finally, in a separate shell, run a model:
2023-07-05 15:37:33 -04:00
```
2023-07-18 13:22:33 -07:00
./ollama run llama2
2023-07-05 15:37:33 -04:00
```
2023-07-21 00:47:17 -07:00
## REST API
2023-10-11 19:24:06 -04:00
> See the [API documentation](docs/api.md) for all endpoints.
2023-07-21 00:47:17 -07:00
2023-08-08 15:48:47 -07:00
Ollama has an API for running and managing models. For example to generate text from a model:
2023-07-21 00:47:17 -07:00
```
2023-08-08 15:48:47 -07:00
curl -X POST http://localhost:11434/api/generate -d '{
"model": "llama2",
"prompt":"Why is the sky blue?"
}'
2023-07-23 18:01:05 -04:00
```
2023-07-31 13:59:39 -07:00
2023-09-25 23:44:53 -07:00
## Community Integrations
- [LangChain ](https://python.langchain.com/docs/integrations/llms/ollama ) and [LangChain.js ](https://js.langchain.com/docs/modules/model_io/models/llms/integrations/ollama ) with [example ](https://js.langchain.com/docs/use_cases/question_answering/local_retrieval_qa )
- [LlamaIndex ](https://gpt-index.readthedocs.io/en/stable/examples/llm/ollama.html )
- [Raycast extension ](https://github.com/MassimilianoPasquini97/raycast_ollama )
- [Discollama ](https://github.com/mxyng/discollama ) (Discord bot inside the Ollama discord channel)
- [Continue ](https://github.com/continuedev/continue )
- [Obsidian Ollama plugin ](https://github.com/hinterdupfinger/obsidian-ollama )
- [Dagger Chatbot ](https://github.com/samalba/dagger-chatbot )
- [LiteLLM ](https://github.com/BerriAI/litellm )
- [Discord AI Bot ](https://github.com/mekb-turtle/discord-ai-bot )
2023-10-02 09:04:31 -07:00
- [Chatbot UI ](https://github.com/ivanfioravanti/chatbot-ollama )
2023-09-25 23:44:53 -07:00
- [HTML UI ](https://github.com/rtcfirefly/ollama-ui )
- [Typescript UI ](https://github.com/ollama-interface/Ollama-Gui?tab=readme-ov-file )
- [Dumbar ](https://github.com/JerrySievert/Dumbar )
- [Emacs client ](https://github.com/zweifisch/ollama )