170 lines
3.7 KiB
Go
170 lines
3.7 KiB
Go
|
package convert
|
||
|
|
||
|
import (
|
||
|
"cmp"
|
||
|
"strings"
|
||
|
|
||
|
"github.com/pdevine/tensor"
|
||
|
"github.com/pdevine/tensor/native"
|
||
|
|
||
|
"github.com/ollama/ollama/llm"
|
||
|
)
|
||
|
|
||
|
type llamaAdapter struct {
|
||
|
AdapterParameters
|
||
|
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||
|
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||
|
}
|
||
|
|
||
|
var _ AdapterConverter = (*llamaAdapter)(nil)
|
||
|
|
||
|
func (p *llamaAdapter) KV(baseKV llm.KV) llm.KV {
|
||
|
kv := p.AdapterParameters.KV()
|
||
|
kv["general.architecture"] = "llama"
|
||
|
kv["llama.attention.head_count"] = baseKV["llama.attention.head_count"]
|
||
|
kv["llama.attention.head_count_kv"] = baseKV["llama.attention.head_count_kv"]
|
||
|
|
||
|
p.NumAttentionHeads = baseKV["llama.attention.head_count"].(uint32)
|
||
|
|
||
|
return kv
|
||
|
}
|
||
|
|
||
|
func (p *llamaAdapter) Tensors(ts []Tensor) []llm.Tensor {
|
||
|
var out []llm.Tensor
|
||
|
for _, t := range ts {
|
||
|
shape := t.Shape()
|
||
|
if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
|
||
|
(strings.HasSuffix(t.Name(), "weight.lora_b") && shape[0] < shape[1]) {
|
||
|
shape[0], shape[1] = shape[1], shape[0]
|
||
|
t.SetRepacker(p.repackAndTranspose)
|
||
|
} else {
|
||
|
t.SetRepacker(p.repack)
|
||
|
}
|
||
|
|
||
|
out = append(out, llm.Tensor{
|
||
|
Name: t.Name(),
|
||
|
Kind: t.Kind(),
|
||
|
Shape: shape,
|
||
|
WriterTo: t,
|
||
|
})
|
||
|
}
|
||
|
|
||
|
return out
|
||
|
}
|
||
|
|
||
|
func (p *llamaAdapter) Replacements() []string {
|
||
|
return []string{
|
||
|
"base_model.model.", "",
|
||
|
"model.layers", "blk",
|
||
|
"self_attn.q_proj", "attn_q",
|
||
|
"self_attn.k_proj", "attn_k",
|
||
|
"self_attn.v_proj", "attn_v",
|
||
|
"self_attn.o_proj", "attn_output",
|
||
|
"mlp.gate_proj", "ffn_gate",
|
||
|
"mlp.down_proj", "ffn_down",
|
||
|
"mlp.up_proj", "ffn_up",
|
||
|
"lora_A.weight", "weight.lora_a",
|
||
|
"lora_B.weight", "weight.lora_b",
|
||
|
"lora_a", "weight.lora_a",
|
||
|
"lora_b", "weight.lora_b",
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (p *llamaAdapter) repack(name string, data []float32, shape []uint64) ([]float32, error) {
|
||
|
dims := []int{int(shape[1]), int(shape[0])}
|
||
|
|
||
|
var heads uint32
|
||
|
if strings.HasSuffix(name, "attn_q.weight.lora_a") {
|
||
|
heads = p.NumAttentionHeads
|
||
|
} else if strings.HasSuffix(name, "attn_k.weight.lora_a") {
|
||
|
heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
|
||
|
} else {
|
||
|
return data, nil
|
||
|
}
|
||
|
|
||
|
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
|
||
|
|
||
|
if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
|
||
|
if err := n.T(0, 2, 1, 3); err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
|
||
|
if err := n.Reshape(dims...); err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
|
||
|
if err := n.Transpose(); err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
|
||
|
ts, err := native.SelectF32(n, 1)
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
|
||
|
var f32s []float32
|
||
|
for _, t := range ts {
|
||
|
f32s = append(f32s, t...)
|
||
|
}
|
||
|
|
||
|
return f32s, nil
|
||
|
}
|
||
|
|
||
|
func (p *llamaAdapter) repackAndTranspose(name string, data []float32, shape []uint64) ([]float32, error) {
|
||
|
dims := []int{int(shape[1]), int(shape[0])}
|
||
|
|
||
|
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
|
||
|
|
||
|
var heads uint32
|
||
|
if strings.HasSuffix(name, "attn_q.weight.lora_a") {
|
||
|
heads = p.NumAttentionHeads
|
||
|
} else if strings.HasSuffix(name, "attn_k.weight.lora_a") {
|
||
|
heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
|
||
|
}
|
||
|
|
||
|
if heads > 0 {
|
||
|
if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
|
||
|
if err := n.T(0, 2, 1, 3); err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
|
||
|
if err := n.Reshape(dims...); err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
|
||
|
if err := n.Transpose(); err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if err := n.T(1, 0); err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
|
||
|
if err := n.Reshape(dims...); err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
|
||
|
if err := n.Transpose(); err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
|
||
|
ts, err := native.SelectF32(n, 1)
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
|
||
|
var f32s []float32
|
||
|
for _, t := range ts {
|
||
|
f32s = append(f32s, t...)
|
||
|
}
|
||
|
|
||
|
return f32s, nil
|
||
|
}
|