2023-08-11 07:18:13 +00:00
|
|
|
|
#!/usr/bin/env python3
|
|
|
|
|
import os
|
|
|
|
|
import glob
|
|
|
|
|
from typing import List
|
|
|
|
|
from multiprocessing import Pool
|
|
|
|
|
from tqdm import tqdm
|
|
|
|
|
|
|
|
|
|
from langchain.document_loaders import (
|
|
|
|
|
CSVLoader,
|
|
|
|
|
EverNoteLoader,
|
|
|
|
|
PyMuPDFLoader,
|
|
|
|
|
TextLoader,
|
|
|
|
|
UnstructuredEmailLoader,
|
|
|
|
|
UnstructuredEPubLoader,
|
|
|
|
|
UnstructuredHTMLLoader,
|
|
|
|
|
UnstructuredMarkdownLoader,
|
|
|
|
|
UnstructuredODTLoader,
|
|
|
|
|
UnstructuredPowerPointLoader,
|
|
|
|
|
UnstructuredWordDocumentLoader,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
|
|
|
from langchain.vectorstores import Chroma
|
|
|
|
|
from langchain.embeddings import HuggingFaceEmbeddings
|
|
|
|
|
from langchain.docstore.document import Document
|
|
|
|
|
from constants import CHROMA_SETTINGS
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Load environment variables
|
|
|
|
|
persist_directory = os.environ.get('PERSIST_DIRECTORY', 'db')
|
|
|
|
|
source_directory = os.environ.get('SOURCE_DIRECTORY', 'source_documents')
|
|
|
|
|
embeddings_model_name = os.environ.get('EMBEDDINGS_MODEL_NAME', 'all-MiniLM-L6-v2')
|
|
|
|
|
chunk_size = 500
|
|
|
|
|
chunk_overlap = 50
|
|
|
|
|
|
|
|
|
|
# Custom document loaders
|
|
|
|
|
class MyElmLoader(UnstructuredEmailLoader):
|
|
|
|
|
"""Wrapper to fallback to text/plain when default does not work"""
|
|
|
|
|
|
|
|
|
|
def load(self) -> List[Document]:
|
|
|
|
|
"""Wrapper adding fallback for elm without html"""
|
|
|
|
|
try:
|
|
|
|
|
try:
|
|
|
|
|
doc = UnstructuredEmailLoader.load(self)
|
|
|
|
|
except ValueError as e:
|
|
|
|
|
if 'text/html content not found in email' in str(e):
|
|
|
|
|
# Try plain text
|
|
|
|
|
self.unstructured_kwargs["content_source"]="text/plain"
|
|
|
|
|
doc = UnstructuredEmailLoader.load(self)
|
|
|
|
|
else:
|
|
|
|
|
raise
|
|
|
|
|
except Exception as e:
|
|
|
|
|
# Add file_path to exception message
|
|
|
|
|
raise type(e)(f"{self.file_path}: {e}") from e
|
|
|
|
|
|
|
|
|
|
return doc
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Map file extensions to document loaders and their arguments
|
|
|
|
|
LOADER_MAPPING = {
|
|
|
|
|
".csv": (CSVLoader, {}),
|
|
|
|
|
# ".docx": (Docx2txtLoader, {}),
|
|
|
|
|
".doc": (UnstructuredWordDocumentLoader, {}),
|
|
|
|
|
".docx": (UnstructuredWordDocumentLoader, {}),
|
|
|
|
|
".enex": (EverNoteLoader, {}),
|
|
|
|
|
".eml": (MyElmLoader, {}),
|
|
|
|
|
".epub": (UnstructuredEPubLoader, {}),
|
|
|
|
|
".html": (UnstructuredHTMLLoader, {}),
|
|
|
|
|
".md": (UnstructuredMarkdownLoader, {}),
|
|
|
|
|
".odt": (UnstructuredODTLoader, {}),
|
|
|
|
|
".pdf": (PyMuPDFLoader, {}),
|
|
|
|
|
".ppt": (UnstructuredPowerPointLoader, {}),
|
|
|
|
|
".pptx": (UnstructuredPowerPointLoader, {}),
|
|
|
|
|
".txt": (TextLoader, {"encoding": "utf8"}),
|
|
|
|
|
# Add more mappings for other file extensions and loaders as needed
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def load_single_document(file_path: str) -> List[Document]:
|
2024-06-09 17:41:07 +00:00
|
|
|
|
if os.path.getsize(file_path) != 0:
|
|
|
|
|
filename, ext = os.path.splitext(file_path)
|
|
|
|
|
if ext in LOADER_MAPPING:
|
|
|
|
|
loader_class, loader_args = LOADER_MAPPING[ext]
|
|
|
|
|
try:
|
|
|
|
|
loader = loader_class(file_path, **loader_args)
|
|
|
|
|
if loader:
|
|
|
|
|
return loader.load()
|
|
|
|
|
except:
|
|
|
|
|
print(f"Corrupted file {file_path}. Ignoring it.")
|
|
|
|
|
else:
|
|
|
|
|
print(f"Unsupported file {file_path}. Ignoring it.")
|
|
|
|
|
else:
|
|
|
|
|
print(f"Empty file {file_path}. Ignoring it.")
|
2023-08-11 07:18:13 +00:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def load_documents(source_dir: str, ignored_files: List[str] = []) -> List[Document]:
|
|
|
|
|
"""
|
|
|
|
|
Loads all documents from the source documents directory, ignoring specified files
|
|
|
|
|
"""
|
|
|
|
|
all_files = []
|
|
|
|
|
for ext in LOADER_MAPPING:
|
|
|
|
|
all_files.extend(
|
|
|
|
|
glob.glob(os.path.join(source_dir, f"**/*{ext}"), recursive=True)
|
|
|
|
|
)
|
|
|
|
|
filtered_files = [file_path for file_path in all_files if file_path not in ignored_files]
|
|
|
|
|
|
|
|
|
|
with Pool(processes=os.cpu_count()) as pool:
|
|
|
|
|
results = []
|
|
|
|
|
with tqdm(total=len(filtered_files), desc='Loading new documents', ncols=80) as pbar:
|
|
|
|
|
for i, docs in enumerate(pool.imap_unordered(load_single_document, filtered_files)):
|
2024-06-09 17:41:07 +00:00
|
|
|
|
if docs:
|
|
|
|
|
results.extend(docs)
|
2023-08-11 07:18:13 +00:00
|
|
|
|
pbar.update()
|
|
|
|
|
|
|
|
|
|
return results
|
|
|
|
|
|
|
|
|
|
def process_documents(ignored_files: List[str] = []) -> List[Document]:
|
|
|
|
|
"""
|
|
|
|
|
Load documents and split in chunks
|
|
|
|
|
"""
|
|
|
|
|
print(f"Loading documents from {source_directory}")
|
|
|
|
|
documents = load_documents(source_directory, ignored_files)
|
|
|
|
|
if not documents:
|
|
|
|
|
print("No new documents to load")
|
|
|
|
|
exit(0)
|
|
|
|
|
print(f"Loaded {len(documents)} new documents from {source_directory}")
|
|
|
|
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
|
|
|
|
texts = text_splitter.split_documents(documents)
|
|
|
|
|
print(f"Split into {len(texts)} chunks of text (max. {chunk_size} tokens each)")
|
|
|
|
|
return texts
|
|
|
|
|
|
|
|
|
|
def does_vectorstore_exist(persist_directory: str) -> bool:
|
|
|
|
|
"""
|
|
|
|
|
Checks if vectorstore exists
|
|
|
|
|
"""
|
|
|
|
|
if os.path.exists(os.path.join(persist_directory, 'index')):
|
|
|
|
|
if os.path.exists(os.path.join(persist_directory, 'chroma-collections.parquet')) and os.path.exists(os.path.join(persist_directory, 'chroma-embeddings.parquet')):
|
|
|
|
|
list_index_files = glob.glob(os.path.join(persist_directory, 'index/*.bin'))
|
|
|
|
|
list_index_files += glob.glob(os.path.join(persist_directory, 'index/*.pkl'))
|
|
|
|
|
# At least 3 documents are needed in a working vectorstore
|
|
|
|
|
if len(list_index_files) > 3:
|
|
|
|
|
return True
|
|
|
|
|
return False
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
|
# Create embeddings
|
|
|
|
|
embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name)
|
|
|
|
|
|
|
|
|
|
if does_vectorstore_exist(persist_directory):
|
|
|
|
|
# Update and store locally vectorstore
|
|
|
|
|
print(f"Appending to existing vectorstore at {persist_directory}")
|
|
|
|
|
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings, client_settings=CHROMA_SETTINGS)
|
|
|
|
|
collection = db.get()
|
|
|
|
|
texts = process_documents([metadata['source'] for metadata in collection['metadatas']])
|
|
|
|
|
print(f"Creating embeddings. May take some minutes...")
|
|
|
|
|
db.add_documents(texts)
|
|
|
|
|
else:
|
|
|
|
|
# Create and store locally vectorstore
|
|
|
|
|
print("Creating new vectorstore")
|
|
|
|
|
texts = process_documents()
|
|
|
|
|
print(f"Creating embeddings. May take some minutes...")
|
2023-10-30 17:56:25 +00:00
|
|
|
|
db = Chroma.from_documents(texts, embeddings, persist_directory=persist_directory)
|
2023-08-11 07:18:13 +00:00
|
|
|
|
db.persist()
|
|
|
|
|
db = None
|
|
|
|
|
|
|
|
|
|
print(f"Ingestion complete! You can now run privateGPT.py to query your documents")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
main()
|