ollama/llm/patches/0008-solar-pro.patch

403 lines
17 KiB
Diff
Raw Normal View History

2024-09-17 18:11:26 -07:00
From 8313ce5f43f11f3d84f352f97f3802792e90e18c Mon Sep 17 00:00:00 2001
From: Michael Yang <mxyng@pm.me>
Date: Mon, 16 Sep 2024 15:53:16 -0700
Subject: [PATCH] add solar-pro support
solar-pro introduces block skip connections where blocks are connected
to other, non-sequential blocks with a scale multiple
this change adds 4 new keys to store the skip connections and one new
tensor to store the scalar. the scalar is implemented a 1-dimensional
tensor with 2 elements dervied from the model's bskcn_tv configuration.
in general, the values are (bskcn_tv, 1 - bskcn_tv)
---
src/llama.cpp | 267 +++++++++++++++++++++++++++++++++++++++++++++++---
1 file changed, 254 insertions(+), 13 deletions(-)
diff --git a/src/llama.cpp b/src/llama.cpp
index f79bd782..b7771f53 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -213,6 +213,7 @@ enum llm_arch {
LLM_ARCH_NEMOTRON,
LLM_ARCH_EXAONE,
LLM_ARCH_RWKV6,
+ LLM_ARCH_SOLAR,
LLM_ARCH_UNKNOWN,
};
@@ -261,6 +262,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_NEMOTRON, "nemotron" },
{ LLM_ARCH_EXAONE, "exaone" },
{ LLM_ARCH_RWKV6, "rwkv6" },
+ { LLM_ARCH_SOLAR, "solar" },
{ LLM_ARCH_UNKNOWN, "(unknown)" },
};
@@ -314,6 +316,7 @@ enum llm_kv {
LLM_KV_ATTENTION_KV_LORA_RANK,
LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT,
LLM_KV_ATTENTION_SLIDING_WINDOW,
+ LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION,
LLM_KV_ROPE_DIMENSION_COUNT,
LLM_KV_ROPE_FREQ_BASE,
@@ -405,19 +408,20 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_TIME_MIX_EXTRA_DIM, "%s.time_mix_extra_dim" },
{ LLM_KV_TIME_DECAY_EXTRA_DIM, "%s.time_decay_extra_dim" },
- { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
- { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
- { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
- { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
- { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
- { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
- { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
- { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
- { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" },
- { LLM_KV_ATTENTION_Q_LORA_RANK, "%s.attention.q_lora_rank" },
- { LLM_KV_ATTENTION_KV_LORA_RANK, "%s.attention.kv_lora_rank" },
- { LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, "%s.attention.relative_buckets_count" },
- { LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" },
+ { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
+ { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
+ { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
+ { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
+ { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
+ { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
+ { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
+ { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
+ { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" },
+ { LLM_KV_ATTENTION_Q_LORA_RANK, "%s.attention.q_lora_rank" },
+ { LLM_KV_ATTENTION_KV_LORA_RANK, "%s.attention.kv_lora_rank" },
+ { LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, "%s.attention.relative_buckets_count" },
+ { LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" },
+ { LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION, "%s.attention.block_skip_connection.%d" },
{ LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
{ LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
@@ -589,6 +593,7 @@ enum llm_tensor {
LLM_TENSOR_ENC_FFN_DOWN,
LLM_TENSOR_ENC_FFN_UP,
LLM_TENSOR_ENC_OUTPUT_NORM,
+ LLM_TENSOR_BSKCN_TV,
};
static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
@@ -1408,6 +1413,24 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
{ LLM_TENSOR_CHANNEL_MIX_RECEPTANCE, "blk.%d.channel_mix_receptance" },
},
},
+ {
+ LLM_ARCH_SOLAR,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_OUTPUT, "output" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ { LLM_TENSOR_BSKCN_TV, "bskcn_tv" },
+ },
+ },
{
LLM_ARCH_UNKNOWN,
{
@@ -2237,6 +2260,7 @@ enum e_model {
MODEL_15B,
MODEL_16B,
MODEL_20B,
+ MODEL_22B,
MODEL_30B,
MODEL_34B,
MODEL_35B,
@@ -2284,6 +2308,8 @@ struct llama_hparams {
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_kv_arr;
std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
+ std::array<std::array<uint32_t, LLAMA_MAX_LAYERS>, 4> n_bskcn_arr;
+
uint32_t n_layer_dense_lead = 0;
uint32_t n_lora_q = 0;
uint32_t n_lora_kv = 0;
@@ -2349,6 +2375,7 @@ struct llama_hparams {
if (this->n_head_arr != other.n_head_arr) return true;
if (this->n_head_kv_arr != other.n_head_kv_arr) return true;
if (this->n_ff_arr != other.n_ff_arr) return true;
+ if (this->n_bskcn_arr != other.n_bskcn_arr) return true;
if (this->n_rel_attn_bkts != other.n_rel_attn_bkts) return true;
if (this->n_layer_dense_lead != other.n_layer_dense_lead) return true;
@@ -2455,6 +2482,14 @@ struct llama_hparams {
return ssm_d_state * ssm_d_inner;
}
}
+
+ bool n_bskcn(uint32_t n, uint32_t il = 0) const {
+ if (il < n_layer) {
+ return n_bskcn_arr[n][il] > 0;
+ }
+
+ GGML_ABORT("fatal error");
+ }
};
static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");
@@ -2635,6 +2670,8 @@ struct llama_layer {
struct ggml_tensor * ffn_gate_scale;
struct ggml_tensor * ffn_up_scale;
struct ggml_tensor * ffn_down_scale;
+
+ struct ggml_tensor * bskcn_tv;
};
// very similar to llama_batch,
@@ -5937,6 +5974,21 @@ static void llm_load_hparams(
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
+ case LLM_ARCH_SOLAR:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+
+ for (int i = 0; i < hparams.n_bskcn_arr.max_size(); ++i) {
+ auto & bskcn = hparams.n_bskcn_arr.at(i);
+ bskcn.fill(0);
+ ml.get_key_or_arr(::format(LLM_KV_NAMES.at(LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION), LLM_ARCH_NAMES.at(ml.llm_kv.arch), i), bskcn, hparams.n_layer, false);
+ }
+
+ switch (hparams.n_layer) {
+ case 64: model.type = e_model::MODEL_22B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ }
default: (void)0;
}
@@ -8420,6 +8472,38 @@ static bool llm_load_tensors(
}
} break;
+ case LLM_ARCH_SOLAR:
+ {
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+ // output
+ {
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
+ }
+
+ for (int i = 0; i < n_layer; ++i) {
+ ggml_context * ctx_layer = ctx_for_layer(i);
+ ggml_context * ctx_split = ctx_for_layer_split(i);
+
+ auto & layer = model.layers[i];
+
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+
+ layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head});
+ layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
+ layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd});
+
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+
+ layer.bskcn_tv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_BSKCN_TV, "weight"), {2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
+
+ layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
+ }
+ } break;
default:
throw std::runtime_error("unknown architecture");
}
@@ -15173,6 +15257,158 @@ struct llm_build_context {
return gf;
}
+
+ ggml_cgraph * build_solar() {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
+
+ // mutable variable, needed during the last layer of the computation to skip unused tokens
+ int32_t n_tokens = this->n_tokens;
+
+ const int64_t n_embd_head = hparams.n_embd_head_v;
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = build_inp_pos();
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+ struct ggml_tensor * bskcn_1;
+ struct ggml_tensor * bskcn_2;
+
+ for (int il = 0; il < n_layer; ++il) {
+ struct ggml_tensor * inpSA = inpL;
+
+ if (hparams.n_bskcn(0, il)) {
+ bskcn_1 = inpSA;
+ }
+
+ if (hparams.n_bskcn(1, il)) {
+ bskcn_2 = inpSA;
+ }
+
+ if (hparams.n_bskcn(2, il)) {
+ inpSA = ggml_add(
+ ctx0,
+ ggml_mul(ctx0, bskcn_1, ggml_view_1d(ctx0, model.layers[il].bskcn_tv, 1, 0)),
+ ggml_mul(ctx0, inpSA, ggml_view_1d(ctx0, model.layers[il].bskcn_tv, 1, ggml_element_size(model.layers[il].bskcn_tv))));
+ }
+
+ if (hparams.n_bskcn(3, il)) {
+ inpSA = ggml_add(
+ ctx0,
+ ggml_mul(ctx0, bskcn_2, ggml_view_1d(ctx0, model.layers[il].bskcn_tv, 1, 0)),
+ ggml_mul(ctx0, inpSA, ggml_view_1d(ctx0, model.layers[il].bskcn_tv, 1, ggml_element_size(model.layers[il].bskcn_tv))));
+ }
+
+ // norm
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "attn_norm", il);
+
+ // self-attention
+ {
+ // rope freq factors for llama3; may return nullptr for llama2 and other models
+ struct ggml_tensor * rope_factors = build_rope_factors(il);
+
+ // compute Q and K and RoPE them
+ struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
+ cb(Qcur, "Qcur", il);
+ if (model.layers[il].bq) {
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
+ cb(Qcur, "Qcur", il);
+ }
+
+ struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
+ cb(Kcur, "Kcur", il);
+ if (model.layers[il].bk) {
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
+ cb(Kcur, "Kcur", il);
+ }
+
+ struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
+ cb(Vcur, "Vcur", il);
+ if (model.layers[il].bv) {
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
+ cb(Vcur, "Vcur", il);
+ }
+
+ Qcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, rope_factors,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Qcur, "Qcur", il);
+
+ Kcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, rope_factors,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Kcur, "Kcur", il);
+
+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+ model.layers[il].wo, model.layers[il].bo,
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+ }
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ n_tokens = n_outputs;
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+ }
+
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+ cb(ffn_inp, "ffn_inp", il);
+
+ // feed-forward network
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
+ model.layers[il].ffn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "ffn_norm", il);
+
+ cur = llm_build_ffn(ctx0, lctx, cur,
+ model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
+ model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
+ model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
+ NULL,
+ LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+ cb(cur, "ffn_out", il);
+
+ cur = ggml_add(ctx0, cur, ffn_inp);
+ cb(cur, "ffn_out", il);
+
+ cur = lctx.cvec.apply_to(ctx0, cur, il);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = inpL;
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.output_norm, NULL,
+ LLM_NORM_RMS, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ // lm_head
+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+ cb(cur, "result_output", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+ }
};
static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
@@ -15423,6 +15659,10 @@ static struct ggml_cgraph * llama_build_graph(
{
result = llm.build_rwkv6();
} break;
+ case LLM_ARCH_SOLAR:
+ {
+ result = llm.build_solar();
+ } break;
default:
GGML_ABORT("fatal error");
}
@@ -18503,6 +18743,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
case LLM_ARCH_ARCTIC:
case LLM_ARCH_DEEPSEEK2:
case LLM_ARCH_CHATGLM:
+ case LLM_ARCH_SOLAR:
return LLAMA_ROPE_TYPE_NORM;
// the pairs of head values are offset by n_rot/2
--
2.46.0