515 lines
22 KiB
C
515 lines
22 KiB
C
|
/**
|
||
|
* llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
|
||
|
*
|
||
|
* MIT License
|
||
|
*
|
||
|
* Copyright (c) 2023-2024 The ggml authors
|
||
|
*
|
||
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
* of this software and associated documentation files (the "Software"), to deal
|
||
|
* in the Software without restriction, including without limitation the rights
|
||
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
|
* copies of the Software, and to permit persons to whom the Software is
|
||
|
* furnished to do so, subject to the following conditions:
|
||
|
*
|
||
|
* The above copyright notice and this permission notice shall be included in all
|
||
|
* copies or substantial portions of the Software.
|
||
|
*
|
||
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||
|
* SOFTWARE.
|
||
|
*/
|
||
|
|
||
|
// Various helper functions and utilities
|
||
|
|
||
|
#pragma once
|
||
|
|
||
|
#include "llama.h"
|
||
|
|
||
|
#include "sampling.h"
|
||
|
|
||
|
#define LOG_NO_FILE_LINE_FUNCTION
|
||
|
#include "log.h"
|
||
|
|
||
|
#include <cmath>
|
||
|
#include <string>
|
||
|
#include <vector>
|
||
|
#include <random>
|
||
|
#include <thread>
|
||
|
#include <unordered_map>
|
||
|
#include <tuple>
|
||
|
|
||
|
#ifdef _WIN32
|
||
|
#define DIRECTORY_SEPARATOR '\\'
|
||
|
#else
|
||
|
#define DIRECTORY_SEPARATOR '/'
|
||
|
#endif // _WIN32
|
||
|
|
||
|
#define die(msg) do { fputs("error: " msg "\n", stderr); exit(1); } while (0)
|
||
|
#define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)
|
||
|
|
||
|
#define print_build_info() do { \
|
||
|
fprintf(stderr, "%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT); \
|
||
|
fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \
|
||
|
} while(0)
|
||
|
|
||
|
#define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
|
||
|
|
||
|
struct llama_lora_adapter_info {
|
||
|
std::string path;
|
||
|
float scale;
|
||
|
};
|
||
|
|
||
|
struct llama_lora_adapter_container : llama_lora_adapter_info {
|
||
|
struct llama_lora_adapter * adapter;
|
||
|
};
|
||
|
|
||
|
// build info
|
||
|
extern int LLAMA_BUILD_NUMBER;
|
||
|
extern char const * LLAMA_COMMIT;
|
||
|
extern char const * LLAMA_COMPILER;
|
||
|
extern char const * LLAMA_BUILD_TARGET;
|
||
|
|
||
|
struct llama_control_vector_load_info;
|
||
|
|
||
|
//
|
||
|
// CPU utils
|
||
|
//
|
||
|
|
||
|
int32_t cpu_get_num_physical_cores();
|
||
|
int32_t cpu_get_num_math();
|
||
|
|
||
|
//
|
||
|
// CLI argument parsing
|
||
|
//
|
||
|
|
||
|
// dimensionality reduction methods, used by cvector-generator
|
||
|
enum dimre_method {
|
||
|
DIMRE_METHOD_PCA,
|
||
|
DIMRE_METHOD_MEAN,
|
||
|
};
|
||
|
|
||
|
struct cpu_params {
|
||
|
int n_threads = -1;
|
||
|
bool cpumask[GGML_MAX_N_THREADS] = {false}; // CPU affinity mask.
|
||
|
bool mask_valid = false; // Default: any CPU
|
||
|
enum ggml_sched_priority priority = GGML_SCHED_PRIO_NORMAL; // Scheduling prio : (0 - normal, 1 - medium, 2 - high, 3 - realtime)
|
||
|
bool strict_cpu = false; // Use strict CPU placement
|
||
|
uint32_t poll = 50; // Polling (busywait) level (0 - no polling, 100 - mostly polling)
|
||
|
};
|
||
|
|
||
|
struct gpt_params {
|
||
|
uint32_t seed = LLAMA_DEFAULT_SEED; // RNG seed
|
||
|
|
||
|
int32_t n_predict = -1; // new tokens to predict
|
||
|
int32_t n_ctx = 0; // context size
|
||
|
int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
|
||
|
int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
|
||
|
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
||
|
int32_t n_draft = 5; // number of tokens to draft during speculative decoding
|
||
|
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
|
||
|
int32_t n_parallel = 1; // number of parallel sequences to decode
|
||
|
int32_t n_sequences = 1; // number of sequences to decode
|
||
|
float p_split = 0.1f; // speculative decoding split probability
|
||
|
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
|
||
|
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
|
||
|
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
|
||
|
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
|
||
|
int32_t grp_attn_n = 1; // group-attention factor
|
||
|
int32_t grp_attn_w = 512; // group-attention width
|
||
|
int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
|
||
|
float rope_freq_base = 0.0f; // RoPE base frequency
|
||
|
float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
|
||
|
float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
|
||
|
float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
|
||
|
float yarn_beta_fast = 32.0f; // YaRN low correction dim
|
||
|
float yarn_beta_slow = 1.0f; // YaRN high correction dim
|
||
|
int32_t yarn_orig_ctx = 0; // YaRN original context length
|
||
|
float defrag_thold = -1.0f; // KV cache defragmentation threshold
|
||
|
|
||
|
struct cpu_params cpuparams;
|
||
|
struct cpu_params cpuparams_batch;
|
||
|
struct cpu_params draft_cpuparams;
|
||
|
struct cpu_params draft_cpuparams_batch;
|
||
|
|
||
|
ggml_backend_sched_eval_callback cb_eval = nullptr;
|
||
|
void * cb_eval_user_data = nullptr;
|
||
|
|
||
|
ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
|
||
|
|
||
|
enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
|
||
|
enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
|
||
|
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
|
||
|
enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings
|
||
|
|
||
|
// // sampling parameters
|
||
|
struct llama_sampling_params sparams;
|
||
|
|
||
|
std::string model = ""; // model path
|
||
|
std::string model_draft = ""; // draft model for speculative decoding
|
||
|
std::string model_alias = "unknown"; // model alias
|
||
|
std::string model_url = ""; // model url to download
|
||
|
std::string hf_token = ""; // HF token
|
||
|
std::string hf_repo = ""; // HF repo
|
||
|
std::string hf_file = ""; // HF file
|
||
|
std::string prompt = "";
|
||
|
std::string prompt_file = ""; // store the external prompt file name
|
||
|
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
|
||
|
std::string input_prefix = ""; // string to prefix user inputs with
|
||
|
std::string input_suffix = ""; // string to suffix user inputs with
|
||
|
std::string logdir = ""; // directory in which to save YAML log files
|
||
|
std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding
|
||
|
std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding
|
||
|
std::string logits_file = ""; // file for saving *all* logits
|
||
|
std::string rpc_servers = ""; // comma separated list of RPC servers
|
||
|
|
||
|
std::vector<std::string> in_files; // all input files
|
||
|
std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
|
||
|
std::vector<llama_model_kv_override> kv_overrides;
|
||
|
|
||
|
bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_lora_adapter_apply)
|
||
|
std::vector<llama_lora_adapter_info> lora_adapters; // lora adapter path with user defined scale
|
||
|
|
||
|
std::vector<llama_control_vector_load_info> control_vectors; // control vector with user defined scale
|
||
|
|
||
|
int32_t verbosity = 0;
|
||
|
int32_t control_vector_layer_start = -1; // layer range for control vector
|
||
|
int32_t control_vector_layer_end = -1; // layer range for control vector
|
||
|
|
||
|
int32_t ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
|
||
|
int32_t ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
|
||
|
// (which is more convenient to use for plotting)
|
||
|
//
|
||
|
bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
|
||
|
size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
|
||
|
|
||
|
bool winogrande = false; // compute Winogrande score over random tasks from datafile supplied in prompt
|
||
|
size_t winogrande_tasks = 0; // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed
|
||
|
|
||
|
bool multiple_choice = false; // compute TruthfulQA score over random tasks from datafile supplied in prompt
|
||
|
size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed
|
||
|
|
||
|
bool kl_divergence = false; // compute KL divergence
|
||
|
|
||
|
bool usage = false; // print usage
|
||
|
bool use_color = false; // use color to distinguish generations and inputs
|
||
|
bool special = false; // enable special token output
|
||
|
bool interactive = false; // interactive mode
|
||
|
bool interactive_first = false; // wait for user input immediately
|
||
|
bool conversation = false; // conversation mode (does not print special tokens and suffix/prefix)
|
||
|
bool prompt_cache_all = false; // save user input and generations to prompt cache
|
||
|
bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
|
||
|
|
||
|
bool escape = true; // escape "\n", "\r", "\t", "\'", "\"", and "\\"
|
||
|
bool multiline_input = false; // reverse the usage of `\`
|
||
|
bool simple_io = false; // improves compatibility with subprocesses and limited consoles
|
||
|
bool cont_batching = true; // insert new sequences for decoding on-the-fly
|
||
|
bool flash_attn = false; // flash attention
|
||
|
|
||
|
bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
|
||
|
bool ignore_eos = false; // ignore generated EOS tokens
|
||
|
bool logits_all = false; // return logits for all tokens in the batch
|
||
|
bool use_mmap = true; // use mmap for faster loads
|
||
|
bool use_mlock = false; // use mlock to keep model in memory
|
||
|
bool verbose_prompt = false; // print prompt tokens before generation
|
||
|
bool display_prompt = true; // print prompt before generation
|
||
|
bool infill = false; // use infill mode
|
||
|
bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes
|
||
|
bool no_kv_offload = false; // disable KV offloading
|
||
|
bool warmup = true; // warmup run
|
||
|
bool check_tensors = false; // validate tensor data
|
||
|
|
||
|
std::string cache_type_k = "f16"; // KV cache data type for the K
|
||
|
std::string cache_type_v = "f16"; // KV cache data type for the V
|
||
|
|
||
|
// multimodal models (see examples/llava)
|
||
|
std::string mmproj = ""; // path to multimodal projector
|
||
|
std::vector<std::string> image; // path to image file(s)
|
||
|
|
||
|
// embedding
|
||
|
bool embedding = false; // get only sentence embedding
|
||
|
int32_t embd_normalize = 2; // normalisation for embendings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
|
||
|
std::string embd_out = ""; // empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix
|
||
|
std::string embd_sep = "\n"; // separator of embendings
|
||
|
|
||
|
// server params
|
||
|
int32_t port = 8080; // server listens on this network port
|
||
|
int32_t timeout_read = 600; // http read timeout in seconds
|
||
|
int32_t timeout_write = timeout_read; // http write timeout in seconds
|
||
|
int n_threads_http = -1; // number of threads to process HTTP requests (TODO: support threadpool)
|
||
|
|
||
|
std::string hostname = "127.0.0.1";
|
||
|
std::string public_path = "";
|
||
|
std::string chat_template = "";
|
||
|
std::string system_prompt = "";
|
||
|
bool enable_chat_template = true;
|
||
|
|
||
|
std::vector<std::string> api_keys;
|
||
|
|
||
|
std::string ssl_file_key = "";
|
||
|
std::string ssl_file_cert = "";
|
||
|
|
||
|
bool endpoint_slots = true;
|
||
|
bool endpoint_metrics = false;
|
||
|
|
||
|
bool log_json = false;
|
||
|
|
||
|
std::string slot_save_path;
|
||
|
|
||
|
float slot_prompt_similarity = 0.5f;
|
||
|
|
||
|
// batched-bench params
|
||
|
bool is_pp_shared = false;
|
||
|
|
||
|
std::vector<int32_t> n_pp;
|
||
|
std::vector<int32_t> n_tg;
|
||
|
std::vector<int32_t> n_pl;
|
||
|
|
||
|
// retrieval params
|
||
|
std::vector<std::string> context_files; // context files to embed
|
||
|
|
||
|
int32_t chunk_size = 64; // chunk size for context embedding
|
||
|
|
||
|
std::string chunk_separator = "\n"; // chunk separator for context embedding
|
||
|
|
||
|
// passkey params
|
||
|
int32_t n_junk = 250; // number of times to repeat the junk text
|
||
|
int32_t i_pos = -1; // position of the passkey in the junk text
|
||
|
|
||
|
// imatrix params
|
||
|
std::string out_file = "imatrix.dat"; // save the resulting imatrix to this file
|
||
|
|
||
|
int32_t n_out_freq = 10; // output the imatrix every n_out_freq iterations
|
||
|
int32_t n_save_freq = 0; // save the imatrix every n_save_freq iterations
|
||
|
int32_t i_chunk = 0; // start processing from this chunk
|
||
|
|
||
|
bool process_output = false; // collect data for the output tensor
|
||
|
bool compute_ppl = true; // whether to compute perplexity
|
||
|
|
||
|
// cvector-generator params
|
||
|
int n_pca_batch = 100;
|
||
|
int n_pca_iterations = 1000;
|
||
|
dimre_method cvector_dimre_method = DIMRE_METHOD_PCA;
|
||
|
std::string cvector_outfile = "control_vector.gguf";
|
||
|
std::string cvector_positive_file = "examples/cvector-generator/positive.txt";
|
||
|
std::string cvector_negative_file = "examples/cvector-generator/negative.txt";
|
||
|
|
||
|
bool spm_infill = false; // suffix/prefix/middle pattern for infill
|
||
|
|
||
|
std::string lora_outfile = "ggml-lora-merged-f16.gguf";
|
||
|
};
|
||
|
|
||
|
void gpt_params_parse_from_env(gpt_params & params);
|
||
|
void gpt_params_handle_model_default(gpt_params & params);
|
||
|
|
||
|
bool gpt_params_parse_ex (int argc, char ** argv, gpt_params & params);
|
||
|
bool gpt_params_parse (int argc, char ** argv, gpt_params & params);
|
||
|
bool gpt_params_find_arg (int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param);
|
||
|
void gpt_params_print_usage(int argc, char ** argv, const gpt_params & params);
|
||
|
|
||
|
std::string gpt_params_get_system_info(const gpt_params & params);
|
||
|
|
||
|
bool parse_cpu_range(const std::string& range, bool(&boolmask)[GGML_MAX_N_THREADS]);
|
||
|
bool parse_cpu_mask(const std::string& mask, bool(&boolmask)[GGML_MAX_N_THREADS]);
|
||
|
void postprocess_cpu_params(cpu_params& cpuparams, const cpu_params* role_model = nullptr);
|
||
|
bool set_process_priority(enum ggml_sched_priority prio);
|
||
|
|
||
|
//
|
||
|
// String utils
|
||
|
//
|
||
|
|
||
|
std::vector<std::string> string_split(std::string input, char separator);
|
||
|
|
||
|
std::string string_strip(const std::string & str);
|
||
|
std::string string_get_sortable_timestamp();
|
||
|
|
||
|
void string_replace_all(std::string & s, const std::string & search, const std::string & replace);
|
||
|
|
||
|
template<class T>
|
||
|
static std::vector<T> string_split(const std::string & str, char delim) {
|
||
|
std::vector<T> values;
|
||
|
std::istringstream str_stream(str);
|
||
|
std::string token;
|
||
|
while (std::getline(str_stream, token, delim)) {
|
||
|
T value;
|
||
|
std::istringstream token_stream(token);
|
||
|
token_stream >> value;
|
||
|
values.push_back(value);
|
||
|
}
|
||
|
return values;
|
||
|
}
|
||
|
|
||
|
bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
|
||
|
void string_process_escapes(std::string & input);
|
||
|
|
||
|
//
|
||
|
// Filesystem utils
|
||
|
//
|
||
|
|
||
|
bool fs_validate_filename(const std::string & filename);
|
||
|
bool fs_create_directory_with_parents(const std::string & path);
|
||
|
|
||
|
std::string fs_get_cache_directory();
|
||
|
std::string fs_get_cache_file(const std::string & filename);
|
||
|
|
||
|
//
|
||
|
// Model utils
|
||
|
//
|
||
|
|
||
|
struct llama_init_result {
|
||
|
struct llama_model * model = nullptr;
|
||
|
struct llama_context * context = nullptr;
|
||
|
std::vector<llama_lora_adapter_container> lora_adapters;
|
||
|
};
|
||
|
|
||
|
struct llama_init_result llama_init_from_gpt_params(gpt_params & params);
|
||
|
|
||
|
struct llama_model_params llama_model_params_from_gpt_params (const gpt_params & params);
|
||
|
struct llama_context_params llama_context_params_from_gpt_params (const gpt_params & params);
|
||
|
struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params);
|
||
|
|
||
|
struct llama_model * llama_load_model_from_url(const char * model_url, const char * path_model, const char * hf_token, const struct llama_model_params & params);
|
||
|
struct llama_model * llama_load_model_from_hf(const char * repo, const char * file, const char * path_model, const char * hf_token, const struct llama_model_params & params);
|
||
|
|
||
|
// clear LoRA adapters from context, then apply new list of adapters
|
||
|
void llama_lora_adapters_apply(struct llama_context * ctx, std::vector<llama_lora_adapter_container> & lora_adapters);
|
||
|
|
||
|
// Batch utils
|
||
|
|
||
|
void llama_batch_clear(struct llama_batch & batch);
|
||
|
|
||
|
void llama_batch_add(
|
||
|
struct llama_batch & batch,
|
||
|
llama_token id,
|
||
|
llama_pos pos,
|
||
|
const std::vector<llama_seq_id> & seq_ids,
|
||
|
bool logits);
|
||
|
|
||
|
//
|
||
|
// Vocab utils
|
||
|
//
|
||
|
|
||
|
// tokenizes a string into a vector of tokens
|
||
|
// should work similar to Python's `tokenizer.encode`
|
||
|
std::vector<llama_token> llama_tokenize(
|
||
|
const struct llama_context * ctx,
|
||
|
const std::string & text,
|
||
|
bool add_special,
|
||
|
bool parse_special = false);
|
||
|
|
||
|
std::vector<llama_token> llama_tokenize(
|
||
|
const struct llama_model * model,
|
||
|
const std::string & text,
|
||
|
bool add_special,
|
||
|
bool parse_special = false);
|
||
|
|
||
|
// tokenizes a token into a piece, optionally renders special/control tokens
|
||
|
// should work similar to Python's `tokenizer.id_to_piece`
|
||
|
std::string llama_token_to_piece(
|
||
|
const struct llama_context * ctx,
|
||
|
llama_token token,
|
||
|
bool special = true);
|
||
|
|
||
|
// detokenizes a vector of tokens into a string
|
||
|
// should work similar to Python's `tokenizer.decode`
|
||
|
// optionally renders special/control tokens
|
||
|
std::string llama_detokenize(
|
||
|
llama_context * ctx,
|
||
|
const std::vector<llama_token> & tokens,
|
||
|
bool special = true);
|
||
|
|
||
|
//
|
||
|
// Chat template utils
|
||
|
//
|
||
|
|
||
|
// same with llama_chat_message, but uses std::string
|
||
|
struct llama_chat_msg {
|
||
|
std::string role;
|
||
|
std::string content;
|
||
|
};
|
||
|
|
||
|
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
|
||
|
bool llama_chat_verify_template(const std::string & tmpl);
|
||
|
|
||
|
// CPP wrapper for llama_chat_apply_template
|
||
|
// If the built-in template is not supported, we default to chatml
|
||
|
// If the custom "tmpl" is not supported, we throw an error
|
||
|
std::string llama_chat_apply_template(const struct llama_model * model,
|
||
|
const std::string & tmpl,
|
||
|
const std::vector<llama_chat_msg> & chat,
|
||
|
bool add_ass);
|
||
|
|
||
|
// Format single message, while taking into account the position of that message in chat history
|
||
|
std::string llama_chat_format_single(const struct llama_model * model,
|
||
|
const std::string & tmpl,
|
||
|
const std::vector<llama_chat_msg> & past_msg,
|
||
|
const llama_chat_msg & new_msg,
|
||
|
bool add_ass);
|
||
|
|
||
|
// Returns an example of formatted chat
|
||
|
std::string llama_chat_format_example(const struct llama_model * model,
|
||
|
const std::string & tmpl);
|
||
|
|
||
|
//
|
||
|
// KV cache utils
|
||
|
//
|
||
|
|
||
|
// Dump the KV cache view with the number of sequences per cell.
|
||
|
void llama_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size = 80);
|
||
|
|
||
|
// Dump the KV cache view showing individual sequences in each cell (long output).
|
||
|
void llama_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
|
||
|
|
||
|
//
|
||
|
// Embedding utils
|
||
|
//
|
||
|
|
||
|
void llama_embd_normalize(const float * inp, float * out, int n, int embd_norm = 2);
|
||
|
|
||
|
float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n);
|
||
|
|
||
|
//
|
||
|
// Control vector utils
|
||
|
//
|
||
|
|
||
|
struct llama_control_vector_data {
|
||
|
int n_embd;
|
||
|
|
||
|
// stores data for layers [1, n_layer] where n_layer = data.size() / n_embd
|
||
|
std::vector<float> data;
|
||
|
};
|
||
|
|
||
|
struct llama_control_vector_load_info {
|
||
|
float strength;
|
||
|
|
||
|
std::string fname;
|
||
|
};
|
||
|
|
||
|
// Load control vectors, scale each by strength, and add them together.
|
||
|
// On error, returns {-1, empty}
|
||
|
llama_control_vector_data llama_control_vector_load(const std::vector<llama_control_vector_load_info> & load_infos);
|
||
|
|
||
|
//
|
||
|
// Split utils
|
||
|
//
|
||
|
|
||
|
static const char * const LLM_KV_SPLIT_NO = "split.no";
|
||
|
static const char * const LLM_KV_SPLIT_COUNT = "split.count";
|
||
|
static const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
|
||
|
|
||
|
//
|
||
|
// YAML utils
|
||
|
//
|
||
|
|
||
|
void yaml_dump_vector_float (FILE * stream, const char * prop_name, const std::vector<float> & data);
|
||
|
void yaml_dump_vector_int (FILE * stream, const char * prop_name, const std::vector<int> & data);
|
||
|
void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const char * data);
|
||
|
|
||
|
void yaml_dump_non_result_info(
|
||
|
FILE * stream, const gpt_params & params, const llama_context * lctx,
|
||
|
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);
|