Re-introduce the `llama` package (#5034)
* Re-introduce the llama package
This PR brings back the llama package, making it possible to call llama.cpp and
ggml APIs from Go directly via CGo. This has a few advantages:
- C APIs can be called directly from Go without needing to use the previous
"server" REST API
- On macOS and for CPU builds on Linux and Windows, Ollama can be built without
a go generate ./... step, making it easy to get up and running to hack on
parts of Ollama that don't require fast inference
- Faster build times for AVX,AVX2,CUDA and ROCM (a full build of all runners
takes <5 min on a fast CPU)
- No git submodule making it easier to clone and build from source
This is a big PR, but much of it is vendor code except for:
- llama.go CGo bindings
- example/: a simple example of running inference
- runner/: a subprocess server designed to replace the llm/ext_server package
- Makefile an as minimal as possible Makefile to build the runner package for
different targets (cpu, avx, avx2, cuda, rocm)
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
* cache: Clear old KV cache entries when evicting a slot
When forking a cache entry, if no empty slots are available we
evict the least recently used one and copy over the KV entries
from the closest match. However, this copy does not overwrite
existing values but only adds new ones. Therefore, we need to
clear the old slot first.
This change fixes two issues:
- The KV cache fills up and runs out of space even though we think
we are managing it correctly
- Performance gets worse over time as we use new cache entries that
are not hot in the processor caches
* doc: explain golang objc linker warning (#6830)
* llama: gather transitive dependencies for rocm for dist packaging (#6848)
* Refine go server makefiles to be more DRY (#6924)
This breaks up the monolithic Makefile for the Go based runners into a
set of utility files as well as recursive Makefiles for the runners.
Files starting with the name "Makefile" are buildable, while files that
end with ".make" are utilities to include in other Makefiles. This
reduces the amount of nearly identical targets and helps set a pattern
for future community contributions for new GPU runner architectures.
When we are ready to switch over to the Go runners, these files should
move to the top of the repo, and we should add targets for the main CLI,
as well as a helper "install" (put all the built binaries on the local
system in a runnable state) and "dist" target (generate the various
tar/zip files for distribution) for local developer use.
* llama: don't create extraneous directories (#6988)
* llama: Exercise the new build in CI (#6989)
Wire up some basic sanity testing in CI for the Go runner. GPU runners are not covered yet.
* llama: Refine developer docs for Go server (#6842)
This enhances the documentation for development focusing on the new Go
server. After we complete the transition further doc refinements
can remove the "transition" discussion.
* runner.go: Allocate batches for all sequences during init
We should tell the model that we could have full batches for all
sequences. We already do this when we allocate the batches but it was
missed during initialization.
* llama.go: Don't return nil from Tokenize on zero length input
Potentially receiving nil in a non-error condition is surprising to
most callers - it's better to return an empty slice.
* runner.go: Remove stop tokens from cache
If the last token is EOG then we don't return this and it isn't
present in the cache (because it was never submitted to Decode).
This works well for extending the cache entry with a new sequence.
However, for multi-token stop sequences, we won't return any of the
tokens but all but the last one will be in the cache. This means
when the conversation continues the cache will contain tokens that
don't overlap with the new prompt.
This works (we will pick up the portion where there is overlap) but
it causes unnecessary cache thrashing because we will fork the original
cache entry as it is not a perfect match.
By trimming the cache to the tokens that we actually return this
issue can be avoided.
* runner.go: Simplify flushing of pending tokens
* runner.go: Update TODOs
* runner.go: Don't panic when processing sequences
If there is an error processing a sequence, we should return a
clean HTTP error back to Ollama rather than panicing. This will
make us more resilient to transient failures.
Panics can still occur during startup as there is no way to serve
requests if that fails.
Co-authored-by: jmorganca <jmorganca@gmail.com>
* runner.go: More accurately capture timings
Currently prompt processing time doesn't capture the that it takes
to tokenize the input, only decoding time. We should capture the
full process to more accurately reflect reality. This is especially
true once we start processing images where the initial processing
can take significant time. This is also more consistent with the
existing C++ runner.
* runner.go: Support for vision models
In addition to bringing feature parity with the C++ runner, this also
incorporates several improvements:
- Cache prompting works with images, avoiding the need to re-decode
embeddings for every message in a conversation
- Parallelism is supported, avoiding the need to restrict to one
sequence at a time. (Though for now Ollama will not schedule
them while we might need to fall back to the old runner.)
Co-authored-by: jmorganca <jmorganca@gmail.com>
* runner.go: Move Unicode checking code and add tests
* runner.go: Export external cache members
Runner and cache are in the same package so the change doesn't
affect anything but it is more internally consistent.
* runner.go: Image embedding cache
Generating embeddings from images can take significant time (on
my machine between 100ms and 8s depending on the model). Although
we already cache the result of decoding these images, the embeddings
need to be regenerated every time. This is not necessary if we get
the same image over and over again, for example, during a conversation.
This currently uses a very small cache with a very simple algorithm
but it is easy to improve as is warranted.
* llama: catch up on patches
Carry forward solar-pro and cli-unicode patches
* runner.go: Don't re-allocate memory for every batch
We can reuse memory allocated from batch to batch since batch
size is fixed. This both saves the cost of reallocation as well
keeps the cache lines hot.
This results in a roughly 1% performance improvement for token
generation with Nvidia GPUs on Linux.
* runner.go: Default to classic input cache policy
The input cache as part of the go runner implemented a cache
policy that aims to maximize hit rate in both single and multi-
user scenarios. When there is a cache hit, the response is
very fast.
However, performance is actually slower when there is an input
cache miss due to worse GPU VRAM locality. This means that
performance is generally better overall for multi-user scenarios
(better input cache hit rate, locality was relatively poor already).
But worse for single users (input cache hit rate is about the same,
locality is now worse).
This defaults the policy back to the old one to avoid a regression
but keeps the new one available through an environment variable
OLLAMA_MULTIUSER_CACHE. This is left undocumented as the goal is
to improve this in the future to get the best of both worlds
without user configuration.
For inputs that result in cache misses, on Nvidia/Linux this
change improves performance by 31% for prompt processing and
13% for token generation.
* runner.go: Increase size of response channel
Generally the CPU can easily keep up with handling reponses that
are generated but there's no reason not to let generation continue
and handle things in larger batches if needed.
* llama: Add CI to verify all vendored changes have patches (#7066)
Make sure we don't accidentally merge changes in the vendored code
that aren't also reflected in the patches.
* llama: adjust clip patch for mingw utf-16 (#7065)
* llama: adjust clip patch for mingw utf-16
* llama: ensure static linking of runtime libs
Avoid runtime dependencies on non-standard libraries
* runner.go: Enable llamafile (all platforms) and BLAS (Mac OS)
These are two features that are shown on llama.cpp's system info
that are currently different between the two runners. On my test
systems the performance difference is very small to negligible
but it is probably still good to equalize the features.
* llm: Don't add BOS/EOS for tokenize requests
This is consistent with what server.cpp currently does. It affects
things like token processing counts for embedding requests.
* runner.go: Don't cache prompts for embeddings
Our integration with server.cpp implicitly disables prompt caching
because it is not part of the JSON object being parsed, this makes
the Go runner behavior similarly.
Prompt caching has been seen to affect the results of text completions
on certain hardware. The results are not wrong either way but they
are non-deterministic. However, embeddings seem to be affected even
on hardware that does not show this behavior for completions. For
now, it is best to maintain consistency with the existing behavior.
* runner.go: Adjust debug log levels
Add system info printed at startup and quiet down noisier logging.
* llama: fix compiler flag differences (#7082)
Adjust the flags for the new Go server to more closely match the
generate flow
* llama: refine developer docs (#7121)
* llama: doc and example clean up (#7122)
* llama: doc and example clean up
* llama: Move new dockerfile into llama dir
Temporary home until we fully transition to the Go server
* llama: runner doc cleanup
* llama.go: Add description for Tokenize error case
---------
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
Co-authored-by: Daniel Hiltgen <dhiltgen@users.noreply.github.com>
2024-10-08 11:53:54 -04:00
/**
2024-10-17 12:59:52 -06:00
* llama . cpp - commit 3f 1 ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
Re-introduce the `llama` package (#5034)
* Re-introduce the llama package
This PR brings back the llama package, making it possible to call llama.cpp and
ggml APIs from Go directly via CGo. This has a few advantages:
- C APIs can be called directly from Go without needing to use the previous
"server" REST API
- On macOS and for CPU builds on Linux and Windows, Ollama can be built without
a go generate ./... step, making it easy to get up and running to hack on
parts of Ollama that don't require fast inference
- Faster build times for AVX,AVX2,CUDA and ROCM (a full build of all runners
takes <5 min on a fast CPU)
- No git submodule making it easier to clone and build from source
This is a big PR, but much of it is vendor code except for:
- llama.go CGo bindings
- example/: a simple example of running inference
- runner/: a subprocess server designed to replace the llm/ext_server package
- Makefile an as minimal as possible Makefile to build the runner package for
different targets (cpu, avx, avx2, cuda, rocm)
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
* cache: Clear old KV cache entries when evicting a slot
When forking a cache entry, if no empty slots are available we
evict the least recently used one and copy over the KV entries
from the closest match. However, this copy does not overwrite
existing values but only adds new ones. Therefore, we need to
clear the old slot first.
This change fixes two issues:
- The KV cache fills up and runs out of space even though we think
we are managing it correctly
- Performance gets worse over time as we use new cache entries that
are not hot in the processor caches
* doc: explain golang objc linker warning (#6830)
* llama: gather transitive dependencies for rocm for dist packaging (#6848)
* Refine go server makefiles to be more DRY (#6924)
This breaks up the monolithic Makefile for the Go based runners into a
set of utility files as well as recursive Makefiles for the runners.
Files starting with the name "Makefile" are buildable, while files that
end with ".make" are utilities to include in other Makefiles. This
reduces the amount of nearly identical targets and helps set a pattern
for future community contributions for new GPU runner architectures.
When we are ready to switch over to the Go runners, these files should
move to the top of the repo, and we should add targets for the main CLI,
as well as a helper "install" (put all the built binaries on the local
system in a runnable state) and "dist" target (generate the various
tar/zip files for distribution) for local developer use.
* llama: don't create extraneous directories (#6988)
* llama: Exercise the new build in CI (#6989)
Wire up some basic sanity testing in CI for the Go runner. GPU runners are not covered yet.
* llama: Refine developer docs for Go server (#6842)
This enhances the documentation for development focusing on the new Go
server. After we complete the transition further doc refinements
can remove the "transition" discussion.
* runner.go: Allocate batches for all sequences during init
We should tell the model that we could have full batches for all
sequences. We already do this when we allocate the batches but it was
missed during initialization.
* llama.go: Don't return nil from Tokenize on zero length input
Potentially receiving nil in a non-error condition is surprising to
most callers - it's better to return an empty slice.
* runner.go: Remove stop tokens from cache
If the last token is EOG then we don't return this and it isn't
present in the cache (because it was never submitted to Decode).
This works well for extending the cache entry with a new sequence.
However, for multi-token stop sequences, we won't return any of the
tokens but all but the last one will be in the cache. This means
when the conversation continues the cache will contain tokens that
don't overlap with the new prompt.
This works (we will pick up the portion where there is overlap) but
it causes unnecessary cache thrashing because we will fork the original
cache entry as it is not a perfect match.
By trimming the cache to the tokens that we actually return this
issue can be avoided.
* runner.go: Simplify flushing of pending tokens
* runner.go: Update TODOs
* runner.go: Don't panic when processing sequences
If there is an error processing a sequence, we should return a
clean HTTP error back to Ollama rather than panicing. This will
make us more resilient to transient failures.
Panics can still occur during startup as there is no way to serve
requests if that fails.
Co-authored-by: jmorganca <jmorganca@gmail.com>
* runner.go: More accurately capture timings
Currently prompt processing time doesn't capture the that it takes
to tokenize the input, only decoding time. We should capture the
full process to more accurately reflect reality. This is especially
true once we start processing images where the initial processing
can take significant time. This is also more consistent with the
existing C++ runner.
* runner.go: Support for vision models
In addition to bringing feature parity with the C++ runner, this also
incorporates several improvements:
- Cache prompting works with images, avoiding the need to re-decode
embeddings for every message in a conversation
- Parallelism is supported, avoiding the need to restrict to one
sequence at a time. (Though for now Ollama will not schedule
them while we might need to fall back to the old runner.)
Co-authored-by: jmorganca <jmorganca@gmail.com>
* runner.go: Move Unicode checking code and add tests
* runner.go: Export external cache members
Runner and cache are in the same package so the change doesn't
affect anything but it is more internally consistent.
* runner.go: Image embedding cache
Generating embeddings from images can take significant time (on
my machine between 100ms and 8s depending on the model). Although
we already cache the result of decoding these images, the embeddings
need to be regenerated every time. This is not necessary if we get
the same image over and over again, for example, during a conversation.
This currently uses a very small cache with a very simple algorithm
but it is easy to improve as is warranted.
* llama: catch up on patches
Carry forward solar-pro and cli-unicode patches
* runner.go: Don't re-allocate memory for every batch
We can reuse memory allocated from batch to batch since batch
size is fixed. This both saves the cost of reallocation as well
keeps the cache lines hot.
This results in a roughly 1% performance improvement for token
generation with Nvidia GPUs on Linux.
* runner.go: Default to classic input cache policy
The input cache as part of the go runner implemented a cache
policy that aims to maximize hit rate in both single and multi-
user scenarios. When there is a cache hit, the response is
very fast.
However, performance is actually slower when there is an input
cache miss due to worse GPU VRAM locality. This means that
performance is generally better overall for multi-user scenarios
(better input cache hit rate, locality was relatively poor already).
But worse for single users (input cache hit rate is about the same,
locality is now worse).
This defaults the policy back to the old one to avoid a regression
but keeps the new one available through an environment variable
OLLAMA_MULTIUSER_CACHE. This is left undocumented as the goal is
to improve this in the future to get the best of both worlds
without user configuration.
For inputs that result in cache misses, on Nvidia/Linux this
change improves performance by 31% for prompt processing and
13% for token generation.
* runner.go: Increase size of response channel
Generally the CPU can easily keep up with handling reponses that
are generated but there's no reason not to let generation continue
and handle things in larger batches if needed.
* llama: Add CI to verify all vendored changes have patches (#7066)
Make sure we don't accidentally merge changes in the vendored code
that aren't also reflected in the patches.
* llama: adjust clip patch for mingw utf-16 (#7065)
* llama: adjust clip patch for mingw utf-16
* llama: ensure static linking of runtime libs
Avoid runtime dependencies on non-standard libraries
* runner.go: Enable llamafile (all platforms) and BLAS (Mac OS)
These are two features that are shown on llama.cpp's system info
that are currently different between the two runners. On my test
systems the performance difference is very small to negligible
but it is probably still good to equalize the features.
* llm: Don't add BOS/EOS for tokenize requests
This is consistent with what server.cpp currently does. It affects
things like token processing counts for embedding requests.
* runner.go: Don't cache prompts for embeddings
Our integration with server.cpp implicitly disables prompt caching
because it is not part of the JSON object being parsed, this makes
the Go runner behavior similarly.
Prompt caching has been seen to affect the results of text completions
on certain hardware. The results are not wrong either way but they
are non-deterministic. However, embeddings seem to be affected even
on hardware that does not show this behavior for completions. For
now, it is best to maintain consistency with the existing behavior.
* runner.go: Adjust debug log levels
Add system info printed at startup and quiet down noisier logging.
* llama: fix compiler flag differences (#7082)
Adjust the flags for the new Go server to more closely match the
generate flow
* llama: refine developer docs (#7121)
* llama: doc and example clean up (#7122)
* llama: doc and example clean up
* llama: Move new dockerfile into llama dir
Temporary home until we fully transition to the Go server
* llama: runner doc cleanup
* llama.go: Add description for Tokenize error case
---------
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
Co-authored-by: Daniel Hiltgen <dhiltgen@users.noreply.github.com>
2024-10-08 11:53:54 -04:00
*
* MIT License
*
* Copyright ( c ) 2023 - 2024 The ggml authors
*
* Permission is hereby granted , free of charge , to any person obtaining a copy
* of this software and associated documentation files ( the " Software " ) , to deal
* in the Software without restriction , including without limitation the rights
* to use , copy , modify , merge , publish , distribute , sublicense , and / or sell
* copies of the Software , and to permit persons to whom the Software is
* furnished to do so , subject to the following conditions :
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software .
*
* THE SOFTWARE IS PROVIDED " AS IS " , WITHOUT WARRANTY OF ANY KIND , EXPRESS OR
* IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY ,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT . IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM , DAMAGES OR OTHER
* LIABILITY , WHETHER IN AN ACTION OF CONTRACT , TORT OR OTHERWISE , ARISING FROM ,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE .
*/
// Various helper functions and utilities
# pragma once
# include "llama.h"
# include <string>
# include <vector>
2024-10-17 12:59:52 -06:00
# include <sstream>
Re-introduce the `llama` package (#5034)
* Re-introduce the llama package
This PR brings back the llama package, making it possible to call llama.cpp and
ggml APIs from Go directly via CGo. This has a few advantages:
- C APIs can be called directly from Go without needing to use the previous
"server" REST API
- On macOS and for CPU builds on Linux and Windows, Ollama can be built without
a go generate ./... step, making it easy to get up and running to hack on
parts of Ollama that don't require fast inference
- Faster build times for AVX,AVX2,CUDA and ROCM (a full build of all runners
takes <5 min on a fast CPU)
- No git submodule making it easier to clone and build from source
This is a big PR, but much of it is vendor code except for:
- llama.go CGo bindings
- example/: a simple example of running inference
- runner/: a subprocess server designed to replace the llm/ext_server package
- Makefile an as minimal as possible Makefile to build the runner package for
different targets (cpu, avx, avx2, cuda, rocm)
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
* cache: Clear old KV cache entries when evicting a slot
When forking a cache entry, if no empty slots are available we
evict the least recently used one and copy over the KV entries
from the closest match. However, this copy does not overwrite
existing values but only adds new ones. Therefore, we need to
clear the old slot first.
This change fixes two issues:
- The KV cache fills up and runs out of space even though we think
we are managing it correctly
- Performance gets worse over time as we use new cache entries that
are not hot in the processor caches
* doc: explain golang objc linker warning (#6830)
* llama: gather transitive dependencies for rocm for dist packaging (#6848)
* Refine go server makefiles to be more DRY (#6924)
This breaks up the monolithic Makefile for the Go based runners into a
set of utility files as well as recursive Makefiles for the runners.
Files starting with the name "Makefile" are buildable, while files that
end with ".make" are utilities to include in other Makefiles. This
reduces the amount of nearly identical targets and helps set a pattern
for future community contributions for new GPU runner architectures.
When we are ready to switch over to the Go runners, these files should
move to the top of the repo, and we should add targets for the main CLI,
as well as a helper "install" (put all the built binaries on the local
system in a runnable state) and "dist" target (generate the various
tar/zip files for distribution) for local developer use.
* llama: don't create extraneous directories (#6988)
* llama: Exercise the new build in CI (#6989)
Wire up some basic sanity testing in CI for the Go runner. GPU runners are not covered yet.
* llama: Refine developer docs for Go server (#6842)
This enhances the documentation for development focusing on the new Go
server. After we complete the transition further doc refinements
can remove the "transition" discussion.
* runner.go: Allocate batches for all sequences during init
We should tell the model that we could have full batches for all
sequences. We already do this when we allocate the batches but it was
missed during initialization.
* llama.go: Don't return nil from Tokenize on zero length input
Potentially receiving nil in a non-error condition is surprising to
most callers - it's better to return an empty slice.
* runner.go: Remove stop tokens from cache
If the last token is EOG then we don't return this and it isn't
present in the cache (because it was never submitted to Decode).
This works well for extending the cache entry with a new sequence.
However, for multi-token stop sequences, we won't return any of the
tokens but all but the last one will be in the cache. This means
when the conversation continues the cache will contain tokens that
don't overlap with the new prompt.
This works (we will pick up the portion where there is overlap) but
it causes unnecessary cache thrashing because we will fork the original
cache entry as it is not a perfect match.
By trimming the cache to the tokens that we actually return this
issue can be avoided.
* runner.go: Simplify flushing of pending tokens
* runner.go: Update TODOs
* runner.go: Don't panic when processing sequences
If there is an error processing a sequence, we should return a
clean HTTP error back to Ollama rather than panicing. This will
make us more resilient to transient failures.
Panics can still occur during startup as there is no way to serve
requests if that fails.
Co-authored-by: jmorganca <jmorganca@gmail.com>
* runner.go: More accurately capture timings
Currently prompt processing time doesn't capture the that it takes
to tokenize the input, only decoding time. We should capture the
full process to more accurately reflect reality. This is especially
true once we start processing images where the initial processing
can take significant time. This is also more consistent with the
existing C++ runner.
* runner.go: Support for vision models
In addition to bringing feature parity with the C++ runner, this also
incorporates several improvements:
- Cache prompting works with images, avoiding the need to re-decode
embeddings for every message in a conversation
- Parallelism is supported, avoiding the need to restrict to one
sequence at a time. (Though for now Ollama will not schedule
them while we might need to fall back to the old runner.)
Co-authored-by: jmorganca <jmorganca@gmail.com>
* runner.go: Move Unicode checking code and add tests
* runner.go: Export external cache members
Runner and cache are in the same package so the change doesn't
affect anything but it is more internally consistent.
* runner.go: Image embedding cache
Generating embeddings from images can take significant time (on
my machine between 100ms and 8s depending on the model). Although
we already cache the result of decoding these images, the embeddings
need to be regenerated every time. This is not necessary if we get
the same image over and over again, for example, during a conversation.
This currently uses a very small cache with a very simple algorithm
but it is easy to improve as is warranted.
* llama: catch up on patches
Carry forward solar-pro and cli-unicode patches
* runner.go: Don't re-allocate memory for every batch
We can reuse memory allocated from batch to batch since batch
size is fixed. This both saves the cost of reallocation as well
keeps the cache lines hot.
This results in a roughly 1% performance improvement for token
generation with Nvidia GPUs on Linux.
* runner.go: Default to classic input cache policy
The input cache as part of the go runner implemented a cache
policy that aims to maximize hit rate in both single and multi-
user scenarios. When there is a cache hit, the response is
very fast.
However, performance is actually slower when there is an input
cache miss due to worse GPU VRAM locality. This means that
performance is generally better overall for multi-user scenarios
(better input cache hit rate, locality was relatively poor already).
But worse for single users (input cache hit rate is about the same,
locality is now worse).
This defaults the policy back to the old one to avoid a regression
but keeps the new one available through an environment variable
OLLAMA_MULTIUSER_CACHE. This is left undocumented as the goal is
to improve this in the future to get the best of both worlds
without user configuration.
For inputs that result in cache misses, on Nvidia/Linux this
change improves performance by 31% for prompt processing and
13% for token generation.
* runner.go: Increase size of response channel
Generally the CPU can easily keep up with handling reponses that
are generated but there's no reason not to let generation continue
and handle things in larger batches if needed.
* llama: Add CI to verify all vendored changes have patches (#7066)
Make sure we don't accidentally merge changes in the vendored code
that aren't also reflected in the patches.
* llama: adjust clip patch for mingw utf-16 (#7065)
* llama: adjust clip patch for mingw utf-16
* llama: ensure static linking of runtime libs
Avoid runtime dependencies on non-standard libraries
* runner.go: Enable llamafile (all platforms) and BLAS (Mac OS)
These are two features that are shown on llama.cpp's system info
that are currently different between the two runners. On my test
systems the performance difference is very small to negligible
but it is probably still good to equalize the features.
* llm: Don't add BOS/EOS for tokenize requests
This is consistent with what server.cpp currently does. It affects
things like token processing counts for embedding requests.
* runner.go: Don't cache prompts for embeddings
Our integration with server.cpp implicitly disables prompt caching
because it is not part of the JSON object being parsed, this makes
the Go runner behavior similarly.
Prompt caching has been seen to affect the results of text completions
on certain hardware. The results are not wrong either way but they
are non-deterministic. However, embeddings seem to be affected even
on hardware that does not show this behavior for completions. For
now, it is best to maintain consistency with the existing behavior.
* runner.go: Adjust debug log levels
Add system info printed at startup and quiet down noisier logging.
* llama: fix compiler flag differences (#7082)
Adjust the flags for the new Go server to more closely match the
generate flow
* llama: refine developer docs (#7121)
* llama: doc and example clean up (#7122)
* llama: doc and example clean up
* llama: Move new dockerfile into llama dir
Temporary home until we fully transition to the Go server
* llama: runner doc cleanup
* llama.go: Add description for Tokenize error case
---------
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
Co-authored-by: Daniel Hiltgen <dhiltgen@users.noreply.github.com>
2024-10-08 11:53:54 -04:00
# ifdef _WIN32
# define DIRECTORY_SEPARATOR '\\'
# else
# define DIRECTORY_SEPARATOR ' / '
# endif // _WIN32
# define die(msg) do { fputs("error: " msg "\n", stderr); exit(1); } while (0)
# define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)
# define print_build_info() do { \
fprintf ( stderr , " %s: build = %d (%s) \n " , __func__ , LLAMA_BUILD_NUMBER , LLAMA_COMMIT ) ; \
fprintf ( stderr , " %s: built with %s for %s \n " , __func__ , LLAMA_COMPILER , LLAMA_BUILD_TARGET ) ; \
} while ( 0 )
# define DEFAULT_MODEL_PATH "models / 7B / ggml-model-f16.gguf"
struct llama_lora_adapter_info {
std : : string path ;
float scale ;
} ;
struct llama_lora_adapter_container : llama_lora_adapter_info {
struct llama_lora_adapter * adapter ;
} ;
// build info
extern int LLAMA_BUILD_NUMBER ;
extern char const * LLAMA_COMMIT ;
extern char const * LLAMA_COMPILER ;
extern char const * LLAMA_BUILD_TARGET ;
struct llama_control_vector_load_info ;
//
// CPU utils
//
2024-10-17 12:59:52 -06:00
struct cpu_params {
int n_threads = - 1 ;
bool cpumask [ GGML_MAX_N_THREADS ] = { false } ; // CPU affinity mask.
bool mask_valid = false ; // Default: any CPU
enum ggml_sched_priority priority = GGML_SCHED_PRIO_NORMAL ; // Scheduling prio : (0 - normal, 1 - medium, 2 - high, 3 - realtime)
bool strict_cpu = false ; // Use strict CPU placement
uint32_t poll = 50 ; // Polling (busywait) level (0 - no polling, 100 - mostly polling)
} ;
Re-introduce the `llama` package (#5034)
* Re-introduce the llama package
This PR brings back the llama package, making it possible to call llama.cpp and
ggml APIs from Go directly via CGo. This has a few advantages:
- C APIs can be called directly from Go without needing to use the previous
"server" REST API
- On macOS and for CPU builds on Linux and Windows, Ollama can be built without
a go generate ./... step, making it easy to get up and running to hack on
parts of Ollama that don't require fast inference
- Faster build times for AVX,AVX2,CUDA and ROCM (a full build of all runners
takes <5 min on a fast CPU)
- No git submodule making it easier to clone and build from source
This is a big PR, but much of it is vendor code except for:
- llama.go CGo bindings
- example/: a simple example of running inference
- runner/: a subprocess server designed to replace the llm/ext_server package
- Makefile an as minimal as possible Makefile to build the runner package for
different targets (cpu, avx, avx2, cuda, rocm)
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
* cache: Clear old KV cache entries when evicting a slot
When forking a cache entry, if no empty slots are available we
evict the least recently used one and copy over the KV entries
from the closest match. However, this copy does not overwrite
existing values but only adds new ones. Therefore, we need to
clear the old slot first.
This change fixes two issues:
- The KV cache fills up and runs out of space even though we think
we are managing it correctly
- Performance gets worse over time as we use new cache entries that
are not hot in the processor caches
* doc: explain golang objc linker warning (#6830)
* llama: gather transitive dependencies for rocm for dist packaging (#6848)
* Refine go server makefiles to be more DRY (#6924)
This breaks up the monolithic Makefile for the Go based runners into a
set of utility files as well as recursive Makefiles for the runners.
Files starting with the name "Makefile" are buildable, while files that
end with ".make" are utilities to include in other Makefiles. This
reduces the amount of nearly identical targets and helps set a pattern
for future community contributions for new GPU runner architectures.
When we are ready to switch over to the Go runners, these files should
move to the top of the repo, and we should add targets for the main CLI,
as well as a helper "install" (put all the built binaries on the local
system in a runnable state) and "dist" target (generate the various
tar/zip files for distribution) for local developer use.
* llama: don't create extraneous directories (#6988)
* llama: Exercise the new build in CI (#6989)
Wire up some basic sanity testing in CI for the Go runner. GPU runners are not covered yet.
* llama: Refine developer docs for Go server (#6842)
This enhances the documentation for development focusing on the new Go
server. After we complete the transition further doc refinements
can remove the "transition" discussion.
* runner.go: Allocate batches for all sequences during init
We should tell the model that we could have full batches for all
sequences. We already do this when we allocate the batches but it was
missed during initialization.
* llama.go: Don't return nil from Tokenize on zero length input
Potentially receiving nil in a non-error condition is surprising to
most callers - it's better to return an empty slice.
* runner.go: Remove stop tokens from cache
If the last token is EOG then we don't return this and it isn't
present in the cache (because it was never submitted to Decode).
This works well for extending the cache entry with a new sequence.
However, for multi-token stop sequences, we won't return any of the
tokens but all but the last one will be in the cache. This means
when the conversation continues the cache will contain tokens that
don't overlap with the new prompt.
This works (we will pick up the portion where there is overlap) but
it causes unnecessary cache thrashing because we will fork the original
cache entry as it is not a perfect match.
By trimming the cache to the tokens that we actually return this
issue can be avoided.
* runner.go: Simplify flushing of pending tokens
* runner.go: Update TODOs
* runner.go: Don't panic when processing sequences
If there is an error processing a sequence, we should return a
clean HTTP error back to Ollama rather than panicing. This will
make us more resilient to transient failures.
Panics can still occur during startup as there is no way to serve
requests if that fails.
Co-authored-by: jmorganca <jmorganca@gmail.com>
* runner.go: More accurately capture timings
Currently prompt processing time doesn't capture the that it takes
to tokenize the input, only decoding time. We should capture the
full process to more accurately reflect reality. This is especially
true once we start processing images where the initial processing
can take significant time. This is also more consistent with the
existing C++ runner.
* runner.go: Support for vision models
In addition to bringing feature parity with the C++ runner, this also
incorporates several improvements:
- Cache prompting works with images, avoiding the need to re-decode
embeddings for every message in a conversation
- Parallelism is supported, avoiding the need to restrict to one
sequence at a time. (Though for now Ollama will not schedule
them while we might need to fall back to the old runner.)
Co-authored-by: jmorganca <jmorganca@gmail.com>
* runner.go: Move Unicode checking code and add tests
* runner.go: Export external cache members
Runner and cache are in the same package so the change doesn't
affect anything but it is more internally consistent.
* runner.go: Image embedding cache
Generating embeddings from images can take significant time (on
my machine between 100ms and 8s depending on the model). Although
we already cache the result of decoding these images, the embeddings
need to be regenerated every time. This is not necessary if we get
the same image over and over again, for example, during a conversation.
This currently uses a very small cache with a very simple algorithm
but it is easy to improve as is warranted.
* llama: catch up on patches
Carry forward solar-pro and cli-unicode patches
* runner.go: Don't re-allocate memory for every batch
We can reuse memory allocated from batch to batch since batch
size is fixed. This both saves the cost of reallocation as well
keeps the cache lines hot.
This results in a roughly 1% performance improvement for token
generation with Nvidia GPUs on Linux.
* runner.go: Default to classic input cache policy
The input cache as part of the go runner implemented a cache
policy that aims to maximize hit rate in both single and multi-
user scenarios. When there is a cache hit, the response is
very fast.
However, performance is actually slower when there is an input
cache miss due to worse GPU VRAM locality. This means that
performance is generally better overall for multi-user scenarios
(better input cache hit rate, locality was relatively poor already).
But worse for single users (input cache hit rate is about the same,
locality is now worse).
This defaults the policy back to the old one to avoid a regression
but keeps the new one available through an environment variable
OLLAMA_MULTIUSER_CACHE. This is left undocumented as the goal is
to improve this in the future to get the best of both worlds
without user configuration.
For inputs that result in cache misses, on Nvidia/Linux this
change improves performance by 31% for prompt processing and
13% for token generation.
* runner.go: Increase size of response channel
Generally the CPU can easily keep up with handling reponses that
are generated but there's no reason not to let generation continue
and handle things in larger batches if needed.
* llama: Add CI to verify all vendored changes have patches (#7066)
Make sure we don't accidentally merge changes in the vendored code
that aren't also reflected in the patches.
* llama: adjust clip patch for mingw utf-16 (#7065)
* llama: adjust clip patch for mingw utf-16
* llama: ensure static linking of runtime libs
Avoid runtime dependencies on non-standard libraries
* runner.go: Enable llamafile (all platforms) and BLAS (Mac OS)
These are two features that are shown on llama.cpp's system info
that are currently different between the two runners. On my test
systems the performance difference is very small to negligible
but it is probably still good to equalize the features.
* llm: Don't add BOS/EOS for tokenize requests
This is consistent with what server.cpp currently does. It affects
things like token processing counts for embedding requests.
* runner.go: Don't cache prompts for embeddings
Our integration with server.cpp implicitly disables prompt caching
because it is not part of the JSON object being parsed, this makes
the Go runner behavior similarly.
Prompt caching has been seen to affect the results of text completions
on certain hardware. The results are not wrong either way but they
are non-deterministic. However, embeddings seem to be affected even
on hardware that does not show this behavior for completions. For
now, it is best to maintain consistency with the existing behavior.
* runner.go: Adjust debug log levels
Add system info printed at startup and quiet down noisier logging.
* llama: fix compiler flag differences (#7082)
Adjust the flags for the new Go server to more closely match the
generate flow
* llama: refine developer docs (#7121)
* llama: doc and example clean up (#7122)
* llama: doc and example clean up
* llama: Move new dockerfile into llama dir
Temporary home until we fully transition to the Go server
* llama: runner doc cleanup
* llama.go: Add description for Tokenize error case
---------
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
Co-authored-by: Daniel Hiltgen <dhiltgen@users.noreply.github.com>
2024-10-08 11:53:54 -04:00
int32_t cpu_get_num_physical_cores ( ) ;
int32_t cpu_get_num_math ( ) ;
//
2024-10-17 12:59:52 -06:00
// Common params
Re-introduce the `llama` package (#5034)
* Re-introduce the llama package
This PR brings back the llama package, making it possible to call llama.cpp and
ggml APIs from Go directly via CGo. This has a few advantages:
- C APIs can be called directly from Go without needing to use the previous
"server" REST API
- On macOS and for CPU builds on Linux and Windows, Ollama can be built without
a go generate ./... step, making it easy to get up and running to hack on
parts of Ollama that don't require fast inference
- Faster build times for AVX,AVX2,CUDA and ROCM (a full build of all runners
takes <5 min on a fast CPU)
- No git submodule making it easier to clone and build from source
This is a big PR, but much of it is vendor code except for:
- llama.go CGo bindings
- example/: a simple example of running inference
- runner/: a subprocess server designed to replace the llm/ext_server package
- Makefile an as minimal as possible Makefile to build the runner package for
different targets (cpu, avx, avx2, cuda, rocm)
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
* cache: Clear old KV cache entries when evicting a slot
When forking a cache entry, if no empty slots are available we
evict the least recently used one and copy over the KV entries
from the closest match. However, this copy does not overwrite
existing values but only adds new ones. Therefore, we need to
clear the old slot first.
This change fixes two issues:
- The KV cache fills up and runs out of space even though we think
we are managing it correctly
- Performance gets worse over time as we use new cache entries that
are not hot in the processor caches
* doc: explain golang objc linker warning (#6830)
* llama: gather transitive dependencies for rocm for dist packaging (#6848)
* Refine go server makefiles to be more DRY (#6924)
This breaks up the monolithic Makefile for the Go based runners into a
set of utility files as well as recursive Makefiles for the runners.
Files starting with the name "Makefile" are buildable, while files that
end with ".make" are utilities to include in other Makefiles. This
reduces the amount of nearly identical targets and helps set a pattern
for future community contributions for new GPU runner architectures.
When we are ready to switch over to the Go runners, these files should
move to the top of the repo, and we should add targets for the main CLI,
as well as a helper "install" (put all the built binaries on the local
system in a runnable state) and "dist" target (generate the various
tar/zip files for distribution) for local developer use.
* llama: don't create extraneous directories (#6988)
* llama: Exercise the new build in CI (#6989)
Wire up some basic sanity testing in CI for the Go runner. GPU runners are not covered yet.
* llama: Refine developer docs for Go server (#6842)
This enhances the documentation for development focusing on the new Go
server. After we complete the transition further doc refinements
can remove the "transition" discussion.
* runner.go: Allocate batches for all sequences during init
We should tell the model that we could have full batches for all
sequences. We already do this when we allocate the batches but it was
missed during initialization.
* llama.go: Don't return nil from Tokenize on zero length input
Potentially receiving nil in a non-error condition is surprising to
most callers - it's better to return an empty slice.
* runner.go: Remove stop tokens from cache
If the last token is EOG then we don't return this and it isn't
present in the cache (because it was never submitted to Decode).
This works well for extending the cache entry with a new sequence.
However, for multi-token stop sequences, we won't return any of the
tokens but all but the last one will be in the cache. This means
when the conversation continues the cache will contain tokens that
don't overlap with the new prompt.
This works (we will pick up the portion where there is overlap) but
it causes unnecessary cache thrashing because we will fork the original
cache entry as it is not a perfect match.
By trimming the cache to the tokens that we actually return this
issue can be avoided.
* runner.go: Simplify flushing of pending tokens
* runner.go: Update TODOs
* runner.go: Don't panic when processing sequences
If there is an error processing a sequence, we should return a
clean HTTP error back to Ollama rather than panicing. This will
make us more resilient to transient failures.
Panics can still occur during startup as there is no way to serve
requests if that fails.
Co-authored-by: jmorganca <jmorganca@gmail.com>
* runner.go: More accurately capture timings
Currently prompt processing time doesn't capture the that it takes
to tokenize the input, only decoding time. We should capture the
full process to more accurately reflect reality. This is especially
true once we start processing images where the initial processing
can take significant time. This is also more consistent with the
existing C++ runner.
* runner.go: Support for vision models
In addition to bringing feature parity with the C++ runner, this also
incorporates several improvements:
- Cache prompting works with images, avoiding the need to re-decode
embeddings for every message in a conversation
- Parallelism is supported, avoiding the need to restrict to one
sequence at a time. (Though for now Ollama will not schedule
them while we might need to fall back to the old runner.)
Co-authored-by: jmorganca <jmorganca@gmail.com>
* runner.go: Move Unicode checking code and add tests
* runner.go: Export external cache members
Runner and cache are in the same package so the change doesn't
affect anything but it is more internally consistent.
* runner.go: Image embedding cache
Generating embeddings from images can take significant time (on
my machine between 100ms and 8s depending on the model). Although
we already cache the result of decoding these images, the embeddings
need to be regenerated every time. This is not necessary if we get
the same image over and over again, for example, during a conversation.
This currently uses a very small cache with a very simple algorithm
but it is easy to improve as is warranted.
* llama: catch up on patches
Carry forward solar-pro and cli-unicode patches
* runner.go: Don't re-allocate memory for every batch
We can reuse memory allocated from batch to batch since batch
size is fixed. This both saves the cost of reallocation as well
keeps the cache lines hot.
This results in a roughly 1% performance improvement for token
generation with Nvidia GPUs on Linux.
* runner.go: Default to classic input cache policy
The input cache as part of the go runner implemented a cache
policy that aims to maximize hit rate in both single and multi-
user scenarios. When there is a cache hit, the response is
very fast.
However, performance is actually slower when there is an input
cache miss due to worse GPU VRAM locality. This means that
performance is generally better overall for multi-user scenarios
(better input cache hit rate, locality was relatively poor already).
But worse for single users (input cache hit rate is about the same,
locality is now worse).
This defaults the policy back to the old one to avoid a regression
but keeps the new one available through an environment variable
OLLAMA_MULTIUSER_CACHE. This is left undocumented as the goal is
to improve this in the future to get the best of both worlds
without user configuration.
For inputs that result in cache misses, on Nvidia/Linux this
change improves performance by 31% for prompt processing and
13% for token generation.
* runner.go: Increase size of response channel
Generally the CPU can easily keep up with handling reponses that
are generated but there's no reason not to let generation continue
and handle things in larger batches if needed.
* llama: Add CI to verify all vendored changes have patches (#7066)
Make sure we don't accidentally merge changes in the vendored code
that aren't also reflected in the patches.
* llama: adjust clip patch for mingw utf-16 (#7065)
* llama: adjust clip patch for mingw utf-16
* llama: ensure static linking of runtime libs
Avoid runtime dependencies on non-standard libraries
* runner.go: Enable llamafile (all platforms) and BLAS (Mac OS)
These are two features that are shown on llama.cpp's system info
that are currently different between the two runners. On my test
systems the performance difference is very small to negligible
but it is probably still good to equalize the features.
* llm: Don't add BOS/EOS for tokenize requests
This is consistent with what server.cpp currently does. It affects
things like token processing counts for embedding requests.
* runner.go: Don't cache prompts for embeddings
Our integration with server.cpp implicitly disables prompt caching
because it is not part of the JSON object being parsed, this makes
the Go runner behavior similarly.
Prompt caching has been seen to affect the results of text completions
on certain hardware. The results are not wrong either way but they
are non-deterministic. However, embeddings seem to be affected even
on hardware that does not show this behavior for completions. For
now, it is best to maintain consistency with the existing behavior.
* runner.go: Adjust debug log levels
Add system info printed at startup and quiet down noisier logging.
* llama: fix compiler flag differences (#7082)
Adjust the flags for the new Go server to more closely match the
generate flow
* llama: refine developer docs (#7121)
* llama: doc and example clean up (#7122)
* llama: doc and example clean up
* llama: Move new dockerfile into llama dir
Temporary home until we fully transition to the Go server
* llama: runner doc cleanup
* llama.go: Add description for Tokenize error case
---------
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
Co-authored-by: Daniel Hiltgen <dhiltgen@users.noreply.github.com>
2024-10-08 11:53:54 -04:00
//
2024-10-17 12:59:52 -06:00
enum llama_example {
LLAMA_EXAMPLE_COMMON ,
LLAMA_EXAMPLE_SPECULATIVE ,
LLAMA_EXAMPLE_MAIN ,
LLAMA_EXAMPLE_INFILL ,
LLAMA_EXAMPLE_EMBEDDING ,
LLAMA_EXAMPLE_PERPLEXITY ,
LLAMA_EXAMPLE_RETRIEVAL ,
LLAMA_EXAMPLE_PASSKEY ,
LLAMA_EXAMPLE_IMATRIX ,
LLAMA_EXAMPLE_BENCH ,
LLAMA_EXAMPLE_SERVER ,
LLAMA_EXAMPLE_CVECTOR_GENERATOR ,
LLAMA_EXAMPLE_EXPORT_LORA ,
LLAMA_EXAMPLE_LLAVA ,
LLAMA_EXAMPLE_LOOKUP ,
LLAMA_EXAMPLE_PARALLEL ,
LLAMA_EXAMPLE_COUNT ,
} ;
enum gpt_sampler_type {
GPT_SAMPLER_TYPE_NONE = 0 ,
GPT_SAMPLER_TYPE_TOP_K = 1 ,
GPT_SAMPLER_TYPE_TOP_P = 2 ,
GPT_SAMPLER_TYPE_MIN_P = 3 ,
GPT_SAMPLER_TYPE_TFS_Z = 4 ,
GPT_SAMPLER_TYPE_TYPICAL_P = 5 ,
GPT_SAMPLER_TYPE_TEMPERATURE = 6 ,
} ;
Re-introduce the `llama` package (#5034)
* Re-introduce the llama package
This PR brings back the llama package, making it possible to call llama.cpp and
ggml APIs from Go directly via CGo. This has a few advantages:
- C APIs can be called directly from Go without needing to use the previous
"server" REST API
- On macOS and for CPU builds on Linux and Windows, Ollama can be built without
a go generate ./... step, making it easy to get up and running to hack on
parts of Ollama that don't require fast inference
- Faster build times for AVX,AVX2,CUDA and ROCM (a full build of all runners
takes <5 min on a fast CPU)
- No git submodule making it easier to clone and build from source
This is a big PR, but much of it is vendor code except for:
- llama.go CGo bindings
- example/: a simple example of running inference
- runner/: a subprocess server designed to replace the llm/ext_server package
- Makefile an as minimal as possible Makefile to build the runner package for
different targets (cpu, avx, avx2, cuda, rocm)
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
* cache: Clear old KV cache entries when evicting a slot
When forking a cache entry, if no empty slots are available we
evict the least recently used one and copy over the KV entries
from the closest match. However, this copy does not overwrite
existing values but only adds new ones. Therefore, we need to
clear the old slot first.
This change fixes two issues:
- The KV cache fills up and runs out of space even though we think
we are managing it correctly
- Performance gets worse over time as we use new cache entries that
are not hot in the processor caches
* doc: explain golang objc linker warning (#6830)
* llama: gather transitive dependencies for rocm for dist packaging (#6848)
* Refine go server makefiles to be more DRY (#6924)
This breaks up the monolithic Makefile for the Go based runners into a
set of utility files as well as recursive Makefiles for the runners.
Files starting with the name "Makefile" are buildable, while files that
end with ".make" are utilities to include in other Makefiles. This
reduces the amount of nearly identical targets and helps set a pattern
for future community contributions for new GPU runner architectures.
When we are ready to switch over to the Go runners, these files should
move to the top of the repo, and we should add targets for the main CLI,
as well as a helper "install" (put all the built binaries on the local
system in a runnable state) and "dist" target (generate the various
tar/zip files for distribution) for local developer use.
* llama: don't create extraneous directories (#6988)
* llama: Exercise the new build in CI (#6989)
Wire up some basic sanity testing in CI for the Go runner. GPU runners are not covered yet.
* llama: Refine developer docs for Go server (#6842)
This enhances the documentation for development focusing on the new Go
server. After we complete the transition further doc refinements
can remove the "transition" discussion.
* runner.go: Allocate batches for all sequences during init
We should tell the model that we could have full batches for all
sequences. We already do this when we allocate the batches but it was
missed during initialization.
* llama.go: Don't return nil from Tokenize on zero length input
Potentially receiving nil in a non-error condition is surprising to
most callers - it's better to return an empty slice.
* runner.go: Remove stop tokens from cache
If the last token is EOG then we don't return this and it isn't
present in the cache (because it was never submitted to Decode).
This works well for extending the cache entry with a new sequence.
However, for multi-token stop sequences, we won't return any of the
tokens but all but the last one will be in the cache. This means
when the conversation continues the cache will contain tokens that
don't overlap with the new prompt.
This works (we will pick up the portion where there is overlap) but
it causes unnecessary cache thrashing because we will fork the original
cache entry as it is not a perfect match.
By trimming the cache to the tokens that we actually return this
issue can be avoided.
* runner.go: Simplify flushing of pending tokens
* runner.go: Update TODOs
* runner.go: Don't panic when processing sequences
If there is an error processing a sequence, we should return a
clean HTTP error back to Ollama rather than panicing. This will
make us more resilient to transient failures.
Panics can still occur during startup as there is no way to serve
requests if that fails.
Co-authored-by: jmorganca <jmorganca@gmail.com>
* runner.go: More accurately capture timings
Currently prompt processing time doesn't capture the that it takes
to tokenize the input, only decoding time. We should capture the
full process to more accurately reflect reality. This is especially
true once we start processing images where the initial processing
can take significant time. This is also more consistent with the
existing C++ runner.
* runner.go: Support for vision models
In addition to bringing feature parity with the C++ runner, this also
incorporates several improvements:
- Cache prompting works with images, avoiding the need to re-decode
embeddings for every message in a conversation
- Parallelism is supported, avoiding the need to restrict to one
sequence at a time. (Though for now Ollama will not schedule
them while we might need to fall back to the old runner.)
Co-authored-by: jmorganca <jmorganca@gmail.com>
* runner.go: Move Unicode checking code and add tests
* runner.go: Export external cache members
Runner and cache are in the same package so the change doesn't
affect anything but it is more internally consistent.
* runner.go: Image embedding cache
Generating embeddings from images can take significant time (on
my machine between 100ms and 8s depending on the model). Although
we already cache the result of decoding these images, the embeddings
need to be regenerated every time. This is not necessary if we get
the same image over and over again, for example, during a conversation.
This currently uses a very small cache with a very simple algorithm
but it is easy to improve as is warranted.
* llama: catch up on patches
Carry forward solar-pro and cli-unicode patches
* runner.go: Don't re-allocate memory for every batch
We can reuse memory allocated from batch to batch since batch
size is fixed. This both saves the cost of reallocation as well
keeps the cache lines hot.
This results in a roughly 1% performance improvement for token
generation with Nvidia GPUs on Linux.
* runner.go: Default to classic input cache policy
The input cache as part of the go runner implemented a cache
policy that aims to maximize hit rate in both single and multi-
user scenarios. When there is a cache hit, the response is
very fast.
However, performance is actually slower when there is an input
cache miss due to worse GPU VRAM locality. This means that
performance is generally better overall for multi-user scenarios
(better input cache hit rate, locality was relatively poor already).
But worse for single users (input cache hit rate is about the same,
locality is now worse).
This defaults the policy back to the old one to avoid a regression
but keeps the new one available through an environment variable
OLLAMA_MULTIUSER_CACHE. This is left undocumented as the goal is
to improve this in the future to get the best of both worlds
without user configuration.
For inputs that result in cache misses, on Nvidia/Linux this
change improves performance by 31% for prompt processing and
13% for token generation.
* runner.go: Increase size of response channel
Generally the CPU can easily keep up with handling reponses that
are generated but there's no reason not to let generation continue
and handle things in larger batches if needed.
* llama: Add CI to verify all vendored changes have patches (#7066)
Make sure we don't accidentally merge changes in the vendored code
that aren't also reflected in the patches.
* llama: adjust clip patch for mingw utf-16 (#7065)
* llama: adjust clip patch for mingw utf-16
* llama: ensure static linking of runtime libs
Avoid runtime dependencies on non-standard libraries
* runner.go: Enable llamafile (all platforms) and BLAS (Mac OS)
These are two features that are shown on llama.cpp's system info
that are currently different between the two runners. On my test
systems the performance difference is very small to negligible
but it is probably still good to equalize the features.
* llm: Don't add BOS/EOS for tokenize requests
This is consistent with what server.cpp currently does. It affects
things like token processing counts for embedding requests.
* runner.go: Don't cache prompts for embeddings
Our integration with server.cpp implicitly disables prompt caching
because it is not part of the JSON object being parsed, this makes
the Go runner behavior similarly.
Prompt caching has been seen to affect the results of text completions
on certain hardware. The results are not wrong either way but they
are non-deterministic. However, embeddings seem to be affected even
on hardware that does not show this behavior for completions. For
now, it is best to maintain consistency with the existing behavior.
* runner.go: Adjust debug log levels
Add system info printed at startup and quiet down noisier logging.
* llama: fix compiler flag differences (#7082)
Adjust the flags for the new Go server to more closely match the
generate flow
* llama: refine developer docs (#7121)
* llama: doc and example clean up (#7122)
* llama: doc and example clean up
* llama: Move new dockerfile into llama dir
Temporary home until we fully transition to the Go server
* llama: runner doc cleanup
* llama.go: Add description for Tokenize error case
---------
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
Co-authored-by: Daniel Hiltgen <dhiltgen@users.noreply.github.com>
2024-10-08 11:53:54 -04:00
// dimensionality reduction methods, used by cvector-generator
enum dimre_method {
DIMRE_METHOD_PCA ,
DIMRE_METHOD_MEAN ,
} ;
2024-10-17 12:59:52 -06:00
// sampler parameters
struct gpt_sampler_params {
uint32_t seed = LLAMA_DEFAULT_SEED ; // the seed used to initialize llama_sampler
int32_t n_prev = 64 ; // number of previous tokens to remember
int32_t n_probs = 0 ; // if greater than 0, output the probabilities of top n_probs tokens.
int32_t min_keep = 0 ; // 0 = disabled, otherwise samplers should return at least min_keep tokens
int32_t top_k = 40 ; // <= 0 to use vocab size
float top_p = 0.95f ; // 1.0 = disabled
float min_p = 0.05f ; // 0.0 = disabled
float tfs_z = 1.00f ; // 1.0 = disabled
float typ_p = 1.00f ; // typical_p, 1.0 = disabled
float temp = 0.80f ; // <= 0.0 to sample greedily, 0.0 to not output probabilities
float dynatemp_range = 0.00f ; // 0.0 = disabled
float dynatemp_exponent = 1.00f ; // controls how entropy maps to temperature in dynamic temperature sampler
int32_t penalty_last_n = 64 ; // last n tokens to penalize (0 = disable penalty, -1 = context size)
float penalty_repeat = 1.00f ; // 1.0 = disabled
float penalty_freq = 0.00f ; // 0.0 = disabled
float penalty_present = 0.00f ; // 0.0 = disabled
int32_t mirostat = 0 ; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
float mirostat_tau = 5.00f ; // target entropy
float mirostat_eta = 0.10f ; // learning rate
bool penalize_nl = false ; // consider newlines as a repeatable token
bool ignore_eos = false ;
bool no_perf = false ; // disable performance metrics
std : : vector < enum gpt_sampler_type > samplers = {
GPT_SAMPLER_TYPE_TOP_K ,
GPT_SAMPLER_TYPE_TFS_Z ,
GPT_SAMPLER_TYPE_TYPICAL_P ,
GPT_SAMPLER_TYPE_TOP_P ,
GPT_SAMPLER_TYPE_MIN_P ,
GPT_SAMPLER_TYPE_TEMPERATURE
} ;
std : : string grammar ; // optional BNF-like grammar to constrain sampling
std : : vector < llama_logit_bias > logit_bias ; // logit biases to apply
// print the parameters into a string
std : : string print ( ) const ;
Re-introduce the `llama` package (#5034)
* Re-introduce the llama package
This PR brings back the llama package, making it possible to call llama.cpp and
ggml APIs from Go directly via CGo. This has a few advantages:
- C APIs can be called directly from Go without needing to use the previous
"server" REST API
- On macOS and for CPU builds on Linux and Windows, Ollama can be built without
a go generate ./... step, making it easy to get up and running to hack on
parts of Ollama that don't require fast inference
- Faster build times for AVX,AVX2,CUDA and ROCM (a full build of all runners
takes <5 min on a fast CPU)
- No git submodule making it easier to clone and build from source
This is a big PR, but much of it is vendor code except for:
- llama.go CGo bindings
- example/: a simple example of running inference
- runner/: a subprocess server designed to replace the llm/ext_server package
- Makefile an as minimal as possible Makefile to build the runner package for
different targets (cpu, avx, avx2, cuda, rocm)
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
* cache: Clear old KV cache entries when evicting a slot
When forking a cache entry, if no empty slots are available we
evict the least recently used one and copy over the KV entries
from the closest match. However, this copy does not overwrite
existing values but only adds new ones. Therefore, we need to
clear the old slot first.
This change fixes two issues:
- The KV cache fills up and runs out of space even though we think
we are managing it correctly
- Performance gets worse over time as we use new cache entries that
are not hot in the processor caches
* doc: explain golang objc linker warning (#6830)
* llama: gather transitive dependencies for rocm for dist packaging (#6848)
* Refine go server makefiles to be more DRY (#6924)
This breaks up the monolithic Makefile for the Go based runners into a
set of utility files as well as recursive Makefiles for the runners.
Files starting with the name "Makefile" are buildable, while files that
end with ".make" are utilities to include in other Makefiles. This
reduces the amount of nearly identical targets and helps set a pattern
for future community contributions for new GPU runner architectures.
When we are ready to switch over to the Go runners, these files should
move to the top of the repo, and we should add targets for the main CLI,
as well as a helper "install" (put all the built binaries on the local
system in a runnable state) and "dist" target (generate the various
tar/zip files for distribution) for local developer use.
* llama: don't create extraneous directories (#6988)
* llama: Exercise the new build in CI (#6989)
Wire up some basic sanity testing in CI for the Go runner. GPU runners are not covered yet.
* llama: Refine developer docs for Go server (#6842)
This enhances the documentation for development focusing on the new Go
server. After we complete the transition further doc refinements
can remove the "transition" discussion.
* runner.go: Allocate batches for all sequences during init
We should tell the model that we could have full batches for all
sequences. We already do this when we allocate the batches but it was
missed during initialization.
* llama.go: Don't return nil from Tokenize on zero length input
Potentially receiving nil in a non-error condition is surprising to
most callers - it's better to return an empty slice.
* runner.go: Remove stop tokens from cache
If the last token is EOG then we don't return this and it isn't
present in the cache (because it was never submitted to Decode).
This works well for extending the cache entry with a new sequence.
However, for multi-token stop sequences, we won't return any of the
tokens but all but the last one will be in the cache. This means
when the conversation continues the cache will contain tokens that
don't overlap with the new prompt.
This works (we will pick up the portion where there is overlap) but
it causes unnecessary cache thrashing because we will fork the original
cache entry as it is not a perfect match.
By trimming the cache to the tokens that we actually return this
issue can be avoided.
* runner.go: Simplify flushing of pending tokens
* runner.go: Update TODOs
* runner.go: Don't panic when processing sequences
If there is an error processing a sequence, we should return a
clean HTTP error back to Ollama rather than panicing. This will
make us more resilient to transient failures.
Panics can still occur during startup as there is no way to serve
requests if that fails.
Co-authored-by: jmorganca <jmorganca@gmail.com>
* runner.go: More accurately capture timings
Currently prompt processing time doesn't capture the that it takes
to tokenize the input, only decoding time. We should capture the
full process to more accurately reflect reality. This is especially
true once we start processing images where the initial processing
can take significant time. This is also more consistent with the
existing C++ runner.
* runner.go: Support for vision models
In addition to bringing feature parity with the C++ runner, this also
incorporates several improvements:
- Cache prompting works with images, avoiding the need to re-decode
embeddings for every message in a conversation
- Parallelism is supported, avoiding the need to restrict to one
sequence at a time. (Though for now Ollama will not schedule
them while we might need to fall back to the old runner.)
Co-authored-by: jmorganca <jmorganca@gmail.com>
* runner.go: Move Unicode checking code and add tests
* runner.go: Export external cache members
Runner and cache are in the same package so the change doesn't
affect anything but it is more internally consistent.
* runner.go: Image embedding cache
Generating embeddings from images can take significant time (on
my machine between 100ms and 8s depending on the model). Although
we already cache the result of decoding these images, the embeddings
need to be regenerated every time. This is not necessary if we get
the same image over and over again, for example, during a conversation.
This currently uses a very small cache with a very simple algorithm
but it is easy to improve as is warranted.
* llama: catch up on patches
Carry forward solar-pro and cli-unicode patches
* runner.go: Don't re-allocate memory for every batch
We can reuse memory allocated from batch to batch since batch
size is fixed. This both saves the cost of reallocation as well
keeps the cache lines hot.
This results in a roughly 1% performance improvement for token
generation with Nvidia GPUs on Linux.
* runner.go: Default to classic input cache policy
The input cache as part of the go runner implemented a cache
policy that aims to maximize hit rate in both single and multi-
user scenarios. When there is a cache hit, the response is
very fast.
However, performance is actually slower when there is an input
cache miss due to worse GPU VRAM locality. This means that
performance is generally better overall for multi-user scenarios
(better input cache hit rate, locality was relatively poor already).
But worse for single users (input cache hit rate is about the same,
locality is now worse).
This defaults the policy back to the old one to avoid a regression
but keeps the new one available through an environment variable
OLLAMA_MULTIUSER_CACHE. This is left undocumented as the goal is
to improve this in the future to get the best of both worlds
without user configuration.
For inputs that result in cache misses, on Nvidia/Linux this
change improves performance by 31% for prompt processing and
13% for token generation.
* runner.go: Increase size of response channel
Generally the CPU can easily keep up with handling reponses that
are generated but there's no reason not to let generation continue
and handle things in larger batches if needed.
* llama: Add CI to verify all vendored changes have patches (#7066)
Make sure we don't accidentally merge changes in the vendored code
that aren't also reflected in the patches.
* llama: adjust clip patch for mingw utf-16 (#7065)
* llama: adjust clip patch for mingw utf-16
* llama: ensure static linking of runtime libs
Avoid runtime dependencies on non-standard libraries
* runner.go: Enable llamafile (all platforms) and BLAS (Mac OS)
These are two features that are shown on llama.cpp's system info
that are currently different between the two runners. On my test
systems the performance difference is very small to negligible
but it is probably still good to equalize the features.
* llm: Don't add BOS/EOS for tokenize requests
This is consistent with what server.cpp currently does. It affects
things like token processing counts for embedding requests.
* runner.go: Don't cache prompts for embeddings
Our integration with server.cpp implicitly disables prompt caching
because it is not part of the JSON object being parsed, this makes
the Go runner behavior similarly.
Prompt caching has been seen to affect the results of text completions
on certain hardware. The results are not wrong either way but they
are non-deterministic. However, embeddings seem to be affected even
on hardware that does not show this behavior for completions. For
now, it is best to maintain consistency with the existing behavior.
* runner.go: Adjust debug log levels
Add system info printed at startup and quiet down noisier logging.
* llama: fix compiler flag differences (#7082)
Adjust the flags for the new Go server to more closely match the
generate flow
* llama: refine developer docs (#7121)
* llama: doc and example clean up (#7122)
* llama: doc and example clean up
* llama: Move new dockerfile into llama dir
Temporary home until we fully transition to the Go server
* llama: runner doc cleanup
* llama.go: Add description for Tokenize error case
---------
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
Co-authored-by: Daniel Hiltgen <dhiltgen@users.noreply.github.com>
2024-10-08 11:53:54 -04:00
} ;
struct gpt_params {
int32_t n_predict = - 1 ; // new tokens to predict
int32_t n_ctx = 0 ; // context size
int32_t n_batch = 2048 ; // logical batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_ubatch = 512 ; // physical batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_keep = 0 ; // number of tokens to keep from initial prompt
int32_t n_draft = 5 ; // number of tokens to draft during speculative decoding
int32_t n_chunks = - 1 ; // max number of chunks to process (-1 = unlimited)
int32_t n_parallel = 1 ; // number of parallel sequences to decode
int32_t n_sequences = 1 ; // number of sequences to decode
float p_split = 0.1f ; // speculative decoding split probability
int32_t n_gpu_layers = - 1 ; // number of layers to store in VRAM (-1 - use default)
int32_t n_gpu_layers_draft = - 1 ; // number of layers to store in VRAM for the draft model (-1 - use default)
int32_t main_gpu = 0 ; // the GPU that is used for scratch and small tensors
float tensor_split [ 128 ] = { 0 } ; // how split tensors should be distributed across GPUs
int32_t grp_attn_n = 1 ; // group-attention factor
int32_t grp_attn_w = 512 ; // group-attention width
int32_t n_print = - 1 ; // print token count every n tokens (-1 = disabled)
float rope_freq_base = 0.0f ; // RoPE base frequency
float rope_freq_scale = 0.0f ; // RoPE frequency scaling factor
float yarn_ext_factor = - 1.0f ; // YaRN extrapolation mix factor
float yarn_attn_factor = 1.0f ; // YaRN magnitude scaling factor
float yarn_beta_fast = 32.0f ; // YaRN low correction dim
float yarn_beta_slow = 1.0f ; // YaRN high correction dim
int32_t yarn_orig_ctx = 0 ; // YaRN original context length
float defrag_thold = - 1.0f ; // KV cache defragmentation threshold
struct cpu_params cpuparams ;
struct cpu_params cpuparams_batch ;
struct cpu_params draft_cpuparams ;
struct cpu_params draft_cpuparams_batch ;
ggml_backend_sched_eval_callback cb_eval = nullptr ;
void * cb_eval_user_data = nullptr ;
ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED ;
enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER ; // how to split the model across GPUs
enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED ;
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED ; // pooling type for embeddings
enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED ; // attention type for embeddings
2024-10-17 12:59:52 -06:00
struct gpt_sampler_params sparams ;
std : : string model = " " ; // model path // NOLINT
std : : string model_draft = " " ; // draft model for speculative decoding // NOLINT
std : : string model_alias = " unknown " ; // model alias // NOLINT
std : : string model_url = " " ; // model url to download // NOLINT
std : : string hf_token = " " ; // HF token // NOLINT
std : : string hf_repo = " " ; // HF repo // NOLINT
std : : string hf_file = " " ; // HF file // NOLINT
std : : string prompt = " " ; // NOLINT
std : : string prompt_file = " " ; // store the external prompt file name // NOLINT
std : : string path_prompt_cache = " " ; // path to file for saving/loading prompt eval state // NOLINT
std : : string input_prefix = " " ; // string to prefix user inputs with // NOLINT
std : : string input_suffix = " " ; // string to suffix user inputs with // NOLINT
std : : string logdir = " " ; // directory in which to save YAML log files // NOLINT
std : : string lookup_cache_static = " " ; // path of static ngram cache file for lookup decoding // NOLINT
std : : string lookup_cache_dynamic = " " ; // path of dynamic ngram cache file for lookup decoding // NOLINT
std : : string logits_file = " " ; // file for saving *all* logits // NOLINT
std : : string rpc_servers = " " ; // comma separated list of RPC servers // NOLINT
Re-introduce the `llama` package (#5034)
* Re-introduce the llama package
This PR brings back the llama package, making it possible to call llama.cpp and
ggml APIs from Go directly via CGo. This has a few advantages:
- C APIs can be called directly from Go without needing to use the previous
"server" REST API
- On macOS and for CPU builds on Linux and Windows, Ollama can be built without
a go generate ./... step, making it easy to get up and running to hack on
parts of Ollama that don't require fast inference
- Faster build times for AVX,AVX2,CUDA and ROCM (a full build of all runners
takes <5 min on a fast CPU)
- No git submodule making it easier to clone and build from source
This is a big PR, but much of it is vendor code except for:
- llama.go CGo bindings
- example/: a simple example of running inference
- runner/: a subprocess server designed to replace the llm/ext_server package
- Makefile an as minimal as possible Makefile to build the runner package for
different targets (cpu, avx, avx2, cuda, rocm)
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
* cache: Clear old KV cache entries when evicting a slot
When forking a cache entry, if no empty slots are available we
evict the least recently used one and copy over the KV entries
from the closest match. However, this copy does not overwrite
existing values but only adds new ones. Therefore, we need to
clear the old slot first.
This change fixes two issues:
- The KV cache fills up and runs out of space even though we think
we are managing it correctly
- Performance gets worse over time as we use new cache entries that
are not hot in the processor caches
* doc: explain golang objc linker warning (#6830)
* llama: gather transitive dependencies for rocm for dist packaging (#6848)
* Refine go server makefiles to be more DRY (#6924)
This breaks up the monolithic Makefile for the Go based runners into a
set of utility files as well as recursive Makefiles for the runners.
Files starting with the name "Makefile" are buildable, while files that
end with ".make" are utilities to include in other Makefiles. This
reduces the amount of nearly identical targets and helps set a pattern
for future community contributions for new GPU runner architectures.
When we are ready to switch over to the Go runners, these files should
move to the top of the repo, and we should add targets for the main CLI,
as well as a helper "install" (put all the built binaries on the local
system in a runnable state) and "dist" target (generate the various
tar/zip files for distribution) for local developer use.
* llama: don't create extraneous directories (#6988)
* llama: Exercise the new build in CI (#6989)
Wire up some basic sanity testing in CI for the Go runner. GPU runners are not covered yet.
* llama: Refine developer docs for Go server (#6842)
This enhances the documentation for development focusing on the new Go
server. After we complete the transition further doc refinements
can remove the "transition" discussion.
* runner.go: Allocate batches for all sequences during init
We should tell the model that we could have full batches for all
sequences. We already do this when we allocate the batches but it was
missed during initialization.
* llama.go: Don't return nil from Tokenize on zero length input
Potentially receiving nil in a non-error condition is surprising to
most callers - it's better to return an empty slice.
* runner.go: Remove stop tokens from cache
If the last token is EOG then we don't return this and it isn't
present in the cache (because it was never submitted to Decode).
This works well for extending the cache entry with a new sequence.
However, for multi-token stop sequences, we won't return any of the
tokens but all but the last one will be in the cache. This means
when the conversation continues the cache will contain tokens that
don't overlap with the new prompt.
This works (we will pick up the portion where there is overlap) but
it causes unnecessary cache thrashing because we will fork the original
cache entry as it is not a perfect match.
By trimming the cache to the tokens that we actually return this
issue can be avoided.
* runner.go: Simplify flushing of pending tokens
* runner.go: Update TODOs
* runner.go: Don't panic when processing sequences
If there is an error processing a sequence, we should return a
clean HTTP error back to Ollama rather than panicing. This will
make us more resilient to transient failures.
Panics can still occur during startup as there is no way to serve
requests if that fails.
Co-authored-by: jmorganca <jmorganca@gmail.com>
* runner.go: More accurately capture timings
Currently prompt processing time doesn't capture the that it takes
to tokenize the input, only decoding time. We should capture the
full process to more accurately reflect reality. This is especially
true once we start processing images where the initial processing
can take significant time. This is also more consistent with the
existing C++ runner.
* runner.go: Support for vision models
In addition to bringing feature parity with the C++ runner, this also
incorporates several improvements:
- Cache prompting works with images, avoiding the need to re-decode
embeddings for every message in a conversation
- Parallelism is supported, avoiding the need to restrict to one
sequence at a time. (Though for now Ollama will not schedule
them while we might need to fall back to the old runner.)
Co-authored-by: jmorganca <jmorganca@gmail.com>
* runner.go: Move Unicode checking code and add tests
* runner.go: Export external cache members
Runner and cache are in the same package so the change doesn't
affect anything but it is more internally consistent.
* runner.go: Image embedding cache
Generating embeddings from images can take significant time (on
my machine between 100ms and 8s depending on the model). Although
we already cache the result of decoding these images, the embeddings
need to be regenerated every time. This is not necessary if we get
the same image over and over again, for example, during a conversation.
This currently uses a very small cache with a very simple algorithm
but it is easy to improve as is warranted.
* llama: catch up on patches
Carry forward solar-pro and cli-unicode patches
* runner.go: Don't re-allocate memory for every batch
We can reuse memory allocated from batch to batch since batch
size is fixed. This both saves the cost of reallocation as well
keeps the cache lines hot.
This results in a roughly 1% performance improvement for token
generation with Nvidia GPUs on Linux.
* runner.go: Default to classic input cache policy
The input cache as part of the go runner implemented a cache
policy that aims to maximize hit rate in both single and multi-
user scenarios. When there is a cache hit, the response is
very fast.
However, performance is actually slower when there is an input
cache miss due to worse GPU VRAM locality. This means that
performance is generally better overall for multi-user scenarios
(better input cache hit rate, locality was relatively poor already).
But worse for single users (input cache hit rate is about the same,
locality is now worse).
This defaults the policy back to the old one to avoid a regression
but keeps the new one available through an environment variable
OLLAMA_MULTIUSER_CACHE. This is left undocumented as the goal is
to improve this in the future to get the best of both worlds
without user configuration.
For inputs that result in cache misses, on Nvidia/Linux this
change improves performance by 31% for prompt processing and
13% for token generation.
* runner.go: Increase size of response channel
Generally the CPU can easily keep up with handling reponses that
are generated but there's no reason not to let generation continue
and handle things in larger batches if needed.
* llama: Add CI to verify all vendored changes have patches (#7066)
Make sure we don't accidentally merge changes in the vendored code
that aren't also reflected in the patches.
* llama: adjust clip patch for mingw utf-16 (#7065)
* llama: adjust clip patch for mingw utf-16
* llama: ensure static linking of runtime libs
Avoid runtime dependencies on non-standard libraries
* runner.go: Enable llamafile (all platforms) and BLAS (Mac OS)
These are two features that are shown on llama.cpp's system info
that are currently different between the two runners. On my test
systems the performance difference is very small to negligible
but it is probably still good to equalize the features.
* llm: Don't add BOS/EOS for tokenize requests
This is consistent with what server.cpp currently does. It affects
things like token processing counts for embedding requests.
* runner.go: Don't cache prompts for embeddings
Our integration with server.cpp implicitly disables prompt caching
because it is not part of the JSON object being parsed, this makes
the Go runner behavior similarly.
Prompt caching has been seen to affect the results of text completions
on certain hardware. The results are not wrong either way but they
are non-deterministic. However, embeddings seem to be affected even
on hardware that does not show this behavior for completions. For
now, it is best to maintain consistency with the existing behavior.
* runner.go: Adjust debug log levels
Add system info printed at startup and quiet down noisier logging.
* llama: fix compiler flag differences (#7082)
Adjust the flags for the new Go server to more closely match the
generate flow
* llama: refine developer docs (#7121)
* llama: doc and example clean up (#7122)
* llama: doc and example clean up
* llama: Move new dockerfile into llama dir
Temporary home until we fully transition to the Go server
* llama: runner doc cleanup
* llama.go: Add description for Tokenize error case
---------
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
Co-authored-by: Daniel Hiltgen <dhiltgen@users.noreply.github.com>
2024-10-08 11:53:54 -04:00
std : : vector < std : : string > in_files ; // all input files
std : : vector < std : : string > antiprompt ; // strings upon which more user input is prompted (a.k.a. reverse prompts)
std : : vector < llama_model_kv_override > kv_overrides ;
bool lora_init_without_apply = false ; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_lora_adapter_apply)
std : : vector < llama_lora_adapter_info > lora_adapters ; // lora adapter path with user defined scale
std : : vector < llama_control_vector_load_info > control_vectors ; // control vector with user defined scale
int32_t verbosity = 0 ;
int32_t control_vector_layer_start = - 1 ; // layer range for control vector
int32_t control_vector_layer_end = - 1 ; // layer range for control vector
int32_t ppl_stride = 0 ; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
int32_t ppl_output_type = 0 ; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
// (which is more convenient to use for plotting)
//
bool hellaswag = false ; // compute HellaSwag score over random tasks from datafile supplied in prompt
size_t hellaswag_tasks = 400 ; // number of tasks to use when computing the HellaSwag score
bool winogrande = false ; // compute Winogrande score over random tasks from datafile supplied in prompt
size_t winogrande_tasks = 0 ; // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed
bool multiple_choice = false ; // compute TruthfulQA score over random tasks from datafile supplied in prompt
size_t multiple_choice_tasks = 0 ; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed
bool kl_divergence = false ; // compute KL divergence
bool usage = false ; // print usage
bool use_color = false ; // use color to distinguish generations and inputs
bool special = false ; // enable special token output
bool interactive = false ; // interactive mode
bool interactive_first = false ; // wait for user input immediately
bool conversation = false ; // conversation mode (does not print special tokens and suffix/prefix)
bool prompt_cache_all = false ; // save user input and generations to prompt cache
bool prompt_cache_ro = false ; // open the prompt cache read-only and do not update it
bool escape = true ; // escape "\n", "\r", "\t", "\'", "\"", and "\\"
bool multiline_input = false ; // reverse the usage of `\`
bool simple_io = false ; // improves compatibility with subprocesses and limited consoles
bool cont_batching = true ; // insert new sequences for decoding on-the-fly
bool flash_attn = false ; // flash attention
2024-10-17 12:59:52 -06:00
bool no_perf = false ; // disable performance metrics
bool ctx_shift = true ; // context shift on inifinite text generation
Re-introduce the `llama` package (#5034)
* Re-introduce the llama package
This PR brings back the llama package, making it possible to call llama.cpp and
ggml APIs from Go directly via CGo. This has a few advantages:
- C APIs can be called directly from Go without needing to use the previous
"server" REST API
- On macOS and for CPU builds on Linux and Windows, Ollama can be built without
a go generate ./... step, making it easy to get up and running to hack on
parts of Ollama that don't require fast inference
- Faster build times for AVX,AVX2,CUDA and ROCM (a full build of all runners
takes <5 min on a fast CPU)
- No git submodule making it easier to clone and build from source
This is a big PR, but much of it is vendor code except for:
- llama.go CGo bindings
- example/: a simple example of running inference
- runner/: a subprocess server designed to replace the llm/ext_server package
- Makefile an as minimal as possible Makefile to build the runner package for
different targets (cpu, avx, avx2, cuda, rocm)
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
* cache: Clear old KV cache entries when evicting a slot
When forking a cache entry, if no empty slots are available we
evict the least recently used one and copy over the KV entries
from the closest match. However, this copy does not overwrite
existing values but only adds new ones. Therefore, we need to
clear the old slot first.
This change fixes two issues:
- The KV cache fills up and runs out of space even though we think
we are managing it correctly
- Performance gets worse over time as we use new cache entries that
are not hot in the processor caches
* doc: explain golang objc linker warning (#6830)
* llama: gather transitive dependencies for rocm for dist packaging (#6848)
* Refine go server makefiles to be more DRY (#6924)
This breaks up the monolithic Makefile for the Go based runners into a
set of utility files as well as recursive Makefiles for the runners.
Files starting with the name "Makefile" are buildable, while files that
end with ".make" are utilities to include in other Makefiles. This
reduces the amount of nearly identical targets and helps set a pattern
for future community contributions for new GPU runner architectures.
When we are ready to switch over to the Go runners, these files should
move to the top of the repo, and we should add targets for the main CLI,
as well as a helper "install" (put all the built binaries on the local
system in a runnable state) and "dist" target (generate the various
tar/zip files for distribution) for local developer use.
* llama: don't create extraneous directories (#6988)
* llama: Exercise the new build in CI (#6989)
Wire up some basic sanity testing in CI for the Go runner. GPU runners are not covered yet.
* llama: Refine developer docs for Go server (#6842)
This enhances the documentation for development focusing on the new Go
server. After we complete the transition further doc refinements
can remove the "transition" discussion.
* runner.go: Allocate batches for all sequences during init
We should tell the model that we could have full batches for all
sequences. We already do this when we allocate the batches but it was
missed during initialization.
* llama.go: Don't return nil from Tokenize on zero length input
Potentially receiving nil in a non-error condition is surprising to
most callers - it's better to return an empty slice.
* runner.go: Remove stop tokens from cache
If the last token is EOG then we don't return this and it isn't
present in the cache (because it was never submitted to Decode).
This works well for extending the cache entry with a new sequence.
However, for multi-token stop sequences, we won't return any of the
tokens but all but the last one will be in the cache. This means
when the conversation continues the cache will contain tokens that
don't overlap with the new prompt.
This works (we will pick up the portion where there is overlap) but
it causes unnecessary cache thrashing because we will fork the original
cache entry as it is not a perfect match.
By trimming the cache to the tokens that we actually return this
issue can be avoided.
* runner.go: Simplify flushing of pending tokens
* runner.go: Update TODOs
* runner.go: Don't panic when processing sequences
If there is an error processing a sequence, we should return a
clean HTTP error back to Ollama rather than panicing. This will
make us more resilient to transient failures.
Panics can still occur during startup as there is no way to serve
requests if that fails.
Co-authored-by: jmorganca <jmorganca@gmail.com>
* runner.go: More accurately capture timings
Currently prompt processing time doesn't capture the that it takes
to tokenize the input, only decoding time. We should capture the
full process to more accurately reflect reality. This is especially
true once we start processing images where the initial processing
can take significant time. This is also more consistent with the
existing C++ runner.
* runner.go: Support for vision models
In addition to bringing feature parity with the C++ runner, this also
incorporates several improvements:
- Cache prompting works with images, avoiding the need to re-decode
embeddings for every message in a conversation
- Parallelism is supported, avoiding the need to restrict to one
sequence at a time. (Though for now Ollama will not schedule
them while we might need to fall back to the old runner.)
Co-authored-by: jmorganca <jmorganca@gmail.com>
* runner.go: Move Unicode checking code and add tests
* runner.go: Export external cache members
Runner and cache are in the same package so the change doesn't
affect anything but it is more internally consistent.
* runner.go: Image embedding cache
Generating embeddings from images can take significant time (on
my machine between 100ms and 8s depending on the model). Although
we already cache the result of decoding these images, the embeddings
need to be regenerated every time. This is not necessary if we get
the same image over and over again, for example, during a conversation.
This currently uses a very small cache with a very simple algorithm
but it is easy to improve as is warranted.
* llama: catch up on patches
Carry forward solar-pro and cli-unicode patches
* runner.go: Don't re-allocate memory for every batch
We can reuse memory allocated from batch to batch since batch
size is fixed. This both saves the cost of reallocation as well
keeps the cache lines hot.
This results in a roughly 1% performance improvement for token
generation with Nvidia GPUs on Linux.
* runner.go: Default to classic input cache policy
The input cache as part of the go runner implemented a cache
policy that aims to maximize hit rate in both single and multi-
user scenarios. When there is a cache hit, the response is
very fast.
However, performance is actually slower when there is an input
cache miss due to worse GPU VRAM locality. This means that
performance is generally better overall for multi-user scenarios
(better input cache hit rate, locality was relatively poor already).
But worse for single users (input cache hit rate is about the same,
locality is now worse).
This defaults the policy back to the old one to avoid a regression
but keeps the new one available through an environment variable
OLLAMA_MULTIUSER_CACHE. This is left undocumented as the goal is
to improve this in the future to get the best of both worlds
without user configuration.
For inputs that result in cache misses, on Nvidia/Linux this
change improves performance by 31% for prompt processing and
13% for token generation.
* runner.go: Increase size of response channel
Generally the CPU can easily keep up with handling reponses that
are generated but there's no reason not to let generation continue
and handle things in larger batches if needed.
* llama: Add CI to verify all vendored changes have patches (#7066)
Make sure we don't accidentally merge changes in the vendored code
that aren't also reflected in the patches.
* llama: adjust clip patch for mingw utf-16 (#7065)
* llama: adjust clip patch for mingw utf-16
* llama: ensure static linking of runtime libs
Avoid runtime dependencies on non-standard libraries
* runner.go: Enable llamafile (all platforms) and BLAS (Mac OS)
These are two features that are shown on llama.cpp's system info
that are currently different between the two runners. On my test
systems the performance difference is very small to negligible
but it is probably still good to equalize the features.
* llm: Don't add BOS/EOS for tokenize requests
This is consistent with what server.cpp currently does. It affects
things like token processing counts for embedding requests.
* runner.go: Don't cache prompts for embeddings
Our integration with server.cpp implicitly disables prompt caching
because it is not part of the JSON object being parsed, this makes
the Go runner behavior similarly.
Prompt caching has been seen to affect the results of text completions
on certain hardware. The results are not wrong either way but they
are non-deterministic. However, embeddings seem to be affected even
on hardware that does not show this behavior for completions. For
now, it is best to maintain consistency with the existing behavior.
* runner.go: Adjust debug log levels
Add system info printed at startup and quiet down noisier logging.
* llama: fix compiler flag differences (#7082)
Adjust the flags for the new Go server to more closely match the
generate flow
* llama: refine developer docs (#7121)
* llama: doc and example clean up (#7122)
* llama: doc and example clean up
* llama: Move new dockerfile into llama dir
Temporary home until we fully transition to the Go server
* llama: runner doc cleanup
* llama.go: Add description for Tokenize error case
---------
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
Co-authored-by: Daniel Hiltgen <dhiltgen@users.noreply.github.com>
2024-10-08 11:53:54 -04:00
bool input_prefix_bos = false ; // prefix BOS to user inputs, preceding input_prefix
bool logits_all = false ; // return logits for all tokens in the batch
bool use_mmap = true ; // use mmap for faster loads
bool use_mlock = false ; // use mlock to keep model in memory
bool verbose_prompt = false ; // print prompt tokens before generation
bool display_prompt = true ; // print prompt before generation
bool dump_kv_cache = false ; // dump the KV cache contents for debugging purposes
bool no_kv_offload = false ; // disable KV offloading
bool warmup = true ; // warmup run
bool check_tensors = false ; // validate tensor data
std : : string cache_type_k = " f16 " ; // KV cache data type for the K
std : : string cache_type_v = " f16 " ; // KV cache data type for the V
// multimodal models (see examples/llava)
2024-10-17 12:59:52 -06:00
std : : string mmproj = " " ; // path to multimodal projector // NOLINT
Re-introduce the `llama` package (#5034)
* Re-introduce the llama package
This PR brings back the llama package, making it possible to call llama.cpp and
ggml APIs from Go directly via CGo. This has a few advantages:
- C APIs can be called directly from Go without needing to use the previous
"server" REST API
- On macOS and for CPU builds on Linux and Windows, Ollama can be built without
a go generate ./... step, making it easy to get up and running to hack on
parts of Ollama that don't require fast inference
- Faster build times for AVX,AVX2,CUDA and ROCM (a full build of all runners
takes <5 min on a fast CPU)
- No git submodule making it easier to clone and build from source
This is a big PR, but much of it is vendor code except for:
- llama.go CGo bindings
- example/: a simple example of running inference
- runner/: a subprocess server designed to replace the llm/ext_server package
- Makefile an as minimal as possible Makefile to build the runner package for
different targets (cpu, avx, avx2, cuda, rocm)
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
* cache: Clear old KV cache entries when evicting a slot
When forking a cache entry, if no empty slots are available we
evict the least recently used one and copy over the KV entries
from the closest match. However, this copy does not overwrite
existing values but only adds new ones. Therefore, we need to
clear the old slot first.
This change fixes two issues:
- The KV cache fills up and runs out of space even though we think
we are managing it correctly
- Performance gets worse over time as we use new cache entries that
are not hot in the processor caches
* doc: explain golang objc linker warning (#6830)
* llama: gather transitive dependencies for rocm for dist packaging (#6848)
* Refine go server makefiles to be more DRY (#6924)
This breaks up the monolithic Makefile for the Go based runners into a
set of utility files as well as recursive Makefiles for the runners.
Files starting with the name "Makefile" are buildable, while files that
end with ".make" are utilities to include in other Makefiles. This
reduces the amount of nearly identical targets and helps set a pattern
for future community contributions for new GPU runner architectures.
When we are ready to switch over to the Go runners, these files should
move to the top of the repo, and we should add targets for the main CLI,
as well as a helper "install" (put all the built binaries on the local
system in a runnable state) and "dist" target (generate the various
tar/zip files for distribution) for local developer use.
* llama: don't create extraneous directories (#6988)
* llama: Exercise the new build in CI (#6989)
Wire up some basic sanity testing in CI for the Go runner. GPU runners are not covered yet.
* llama: Refine developer docs for Go server (#6842)
This enhances the documentation for development focusing on the new Go
server. After we complete the transition further doc refinements
can remove the "transition" discussion.
* runner.go: Allocate batches for all sequences during init
We should tell the model that we could have full batches for all
sequences. We already do this when we allocate the batches but it was
missed during initialization.
* llama.go: Don't return nil from Tokenize on zero length input
Potentially receiving nil in a non-error condition is surprising to
most callers - it's better to return an empty slice.
* runner.go: Remove stop tokens from cache
If the last token is EOG then we don't return this and it isn't
present in the cache (because it was never submitted to Decode).
This works well for extending the cache entry with a new sequence.
However, for multi-token stop sequences, we won't return any of the
tokens but all but the last one will be in the cache. This means
when the conversation continues the cache will contain tokens that
don't overlap with the new prompt.
This works (we will pick up the portion where there is overlap) but
it causes unnecessary cache thrashing because we will fork the original
cache entry as it is not a perfect match.
By trimming the cache to the tokens that we actually return this
issue can be avoided.
* runner.go: Simplify flushing of pending tokens
* runner.go: Update TODOs
* runner.go: Don't panic when processing sequences
If there is an error processing a sequence, we should return a
clean HTTP error back to Ollama rather than panicing. This will
make us more resilient to transient failures.
Panics can still occur during startup as there is no way to serve
requests if that fails.
Co-authored-by: jmorganca <jmorganca@gmail.com>
* runner.go: More accurately capture timings
Currently prompt processing time doesn't capture the that it takes
to tokenize the input, only decoding time. We should capture the
full process to more accurately reflect reality. This is especially
true once we start processing images where the initial processing
can take significant time. This is also more consistent with the
existing C++ runner.
* runner.go: Support for vision models
In addition to bringing feature parity with the C++ runner, this also
incorporates several improvements:
- Cache prompting works with images, avoiding the need to re-decode
embeddings for every message in a conversation
- Parallelism is supported, avoiding the need to restrict to one
sequence at a time. (Though for now Ollama will not schedule
them while we might need to fall back to the old runner.)
Co-authored-by: jmorganca <jmorganca@gmail.com>
* runner.go: Move Unicode checking code and add tests
* runner.go: Export external cache members
Runner and cache are in the same package so the change doesn't
affect anything but it is more internally consistent.
* runner.go: Image embedding cache
Generating embeddings from images can take significant time (on
my machine between 100ms and 8s depending on the model). Although
we already cache the result of decoding these images, the embeddings
need to be regenerated every time. This is not necessary if we get
the same image over and over again, for example, during a conversation.
This currently uses a very small cache with a very simple algorithm
but it is easy to improve as is warranted.
* llama: catch up on patches
Carry forward solar-pro and cli-unicode patches
* runner.go: Don't re-allocate memory for every batch
We can reuse memory allocated from batch to batch since batch
size is fixed. This both saves the cost of reallocation as well
keeps the cache lines hot.
This results in a roughly 1% performance improvement for token
generation with Nvidia GPUs on Linux.
* runner.go: Default to classic input cache policy
The input cache as part of the go runner implemented a cache
policy that aims to maximize hit rate in both single and multi-
user scenarios. When there is a cache hit, the response is
very fast.
However, performance is actually slower when there is an input
cache miss due to worse GPU VRAM locality. This means that
performance is generally better overall for multi-user scenarios
(better input cache hit rate, locality was relatively poor already).
But worse for single users (input cache hit rate is about the same,
locality is now worse).
This defaults the policy back to the old one to avoid a regression
but keeps the new one available through an environment variable
OLLAMA_MULTIUSER_CACHE. This is left undocumented as the goal is
to improve this in the future to get the best of both worlds
without user configuration.
For inputs that result in cache misses, on Nvidia/Linux this
change improves performance by 31% for prompt processing and
13% for token generation.
* runner.go: Increase size of response channel
Generally the CPU can easily keep up with handling reponses that
are generated but there's no reason not to let generation continue
and handle things in larger batches if needed.
* llama: Add CI to verify all vendored changes have patches (#7066)
Make sure we don't accidentally merge changes in the vendored code
that aren't also reflected in the patches.
* llama: adjust clip patch for mingw utf-16 (#7065)
* llama: adjust clip patch for mingw utf-16
* llama: ensure static linking of runtime libs
Avoid runtime dependencies on non-standard libraries
* runner.go: Enable llamafile (all platforms) and BLAS (Mac OS)
These are two features that are shown on llama.cpp's system info
that are currently different between the two runners. On my test
systems the performance difference is very small to negligible
but it is probably still good to equalize the features.
* llm: Don't add BOS/EOS for tokenize requests
This is consistent with what server.cpp currently does. It affects
things like token processing counts for embedding requests.
* runner.go: Don't cache prompts for embeddings
Our integration with server.cpp implicitly disables prompt caching
because it is not part of the JSON object being parsed, this makes
the Go runner behavior similarly.
Prompt caching has been seen to affect the results of text completions
on certain hardware. The results are not wrong either way but they
are non-deterministic. However, embeddings seem to be affected even
on hardware that does not show this behavior for completions. For
now, it is best to maintain consistency with the existing behavior.
* runner.go: Adjust debug log levels
Add system info printed at startup and quiet down noisier logging.
* llama: fix compiler flag differences (#7082)
Adjust the flags for the new Go server to more closely match the
generate flow
* llama: refine developer docs (#7121)
* llama: doc and example clean up (#7122)
* llama: doc and example clean up
* llama: Move new dockerfile into llama dir
Temporary home until we fully transition to the Go server
* llama: runner doc cleanup
* llama.go: Add description for Tokenize error case
---------
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
Co-authored-by: Daniel Hiltgen <dhiltgen@users.noreply.github.com>
2024-10-08 11:53:54 -04:00
std : : vector < std : : string > image ; // path to image file(s)
// embedding
bool embedding = false ; // get only sentence embedding
int32_t embd_normalize = 2 ; // normalisation for embendings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
std : : string embd_out = " " ; // empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix
std : : string embd_sep = " \n " ; // separator of embendings
2024-10-17 12:59:52 -06:00
bool reranking = false ; // enable reranking support on server
Re-introduce the `llama` package (#5034)
* Re-introduce the llama package
This PR brings back the llama package, making it possible to call llama.cpp and
ggml APIs from Go directly via CGo. This has a few advantages:
- C APIs can be called directly from Go without needing to use the previous
"server" REST API
- On macOS and for CPU builds on Linux and Windows, Ollama can be built without
a go generate ./... step, making it easy to get up and running to hack on
parts of Ollama that don't require fast inference
- Faster build times for AVX,AVX2,CUDA and ROCM (a full build of all runners
takes <5 min on a fast CPU)
- No git submodule making it easier to clone and build from source
This is a big PR, but much of it is vendor code except for:
- llama.go CGo bindings
- example/: a simple example of running inference
- runner/: a subprocess server designed to replace the llm/ext_server package
- Makefile an as minimal as possible Makefile to build the runner package for
different targets (cpu, avx, avx2, cuda, rocm)
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
* cache: Clear old KV cache entries when evicting a slot
When forking a cache entry, if no empty slots are available we
evict the least recently used one and copy over the KV entries
from the closest match. However, this copy does not overwrite
existing values but only adds new ones. Therefore, we need to
clear the old slot first.
This change fixes two issues:
- The KV cache fills up and runs out of space even though we think
we are managing it correctly
- Performance gets worse over time as we use new cache entries that
are not hot in the processor caches
* doc: explain golang objc linker warning (#6830)
* llama: gather transitive dependencies for rocm for dist packaging (#6848)
* Refine go server makefiles to be more DRY (#6924)
This breaks up the monolithic Makefile for the Go based runners into a
set of utility files as well as recursive Makefiles for the runners.
Files starting with the name "Makefile" are buildable, while files that
end with ".make" are utilities to include in other Makefiles. This
reduces the amount of nearly identical targets and helps set a pattern
for future community contributions for new GPU runner architectures.
When we are ready to switch over to the Go runners, these files should
move to the top of the repo, and we should add targets for the main CLI,
as well as a helper "install" (put all the built binaries on the local
system in a runnable state) and "dist" target (generate the various
tar/zip files for distribution) for local developer use.
* llama: don't create extraneous directories (#6988)
* llama: Exercise the new build in CI (#6989)
Wire up some basic sanity testing in CI for the Go runner. GPU runners are not covered yet.
* llama: Refine developer docs for Go server (#6842)
This enhances the documentation for development focusing on the new Go
server. After we complete the transition further doc refinements
can remove the "transition" discussion.
* runner.go: Allocate batches for all sequences during init
We should tell the model that we could have full batches for all
sequences. We already do this when we allocate the batches but it was
missed during initialization.
* llama.go: Don't return nil from Tokenize on zero length input
Potentially receiving nil in a non-error condition is surprising to
most callers - it's better to return an empty slice.
* runner.go: Remove stop tokens from cache
If the last token is EOG then we don't return this and it isn't
present in the cache (because it was never submitted to Decode).
This works well for extending the cache entry with a new sequence.
However, for multi-token stop sequences, we won't return any of the
tokens but all but the last one will be in the cache. This means
when the conversation continues the cache will contain tokens that
don't overlap with the new prompt.
This works (we will pick up the portion where there is overlap) but
it causes unnecessary cache thrashing because we will fork the original
cache entry as it is not a perfect match.
By trimming the cache to the tokens that we actually return this
issue can be avoided.
* runner.go: Simplify flushing of pending tokens
* runner.go: Update TODOs
* runner.go: Don't panic when processing sequences
If there is an error processing a sequence, we should return a
clean HTTP error back to Ollama rather than panicing. This will
make us more resilient to transient failures.
Panics can still occur during startup as there is no way to serve
requests if that fails.
Co-authored-by: jmorganca <jmorganca@gmail.com>
* runner.go: More accurately capture timings
Currently prompt processing time doesn't capture the that it takes
to tokenize the input, only decoding time. We should capture the
full process to more accurately reflect reality. This is especially
true once we start processing images where the initial processing
can take significant time. This is also more consistent with the
existing C++ runner.
* runner.go: Support for vision models
In addition to bringing feature parity with the C++ runner, this also
incorporates several improvements:
- Cache prompting works with images, avoiding the need to re-decode
embeddings for every message in a conversation
- Parallelism is supported, avoiding the need to restrict to one
sequence at a time. (Though for now Ollama will not schedule
them while we might need to fall back to the old runner.)
Co-authored-by: jmorganca <jmorganca@gmail.com>
* runner.go: Move Unicode checking code and add tests
* runner.go: Export external cache members
Runner and cache are in the same package so the change doesn't
affect anything but it is more internally consistent.
* runner.go: Image embedding cache
Generating embeddings from images can take significant time (on
my machine between 100ms and 8s depending on the model). Although
we already cache the result of decoding these images, the embeddings
need to be regenerated every time. This is not necessary if we get
the same image over and over again, for example, during a conversation.
This currently uses a very small cache with a very simple algorithm
but it is easy to improve as is warranted.
* llama: catch up on patches
Carry forward solar-pro and cli-unicode patches
* runner.go: Don't re-allocate memory for every batch
We can reuse memory allocated from batch to batch since batch
size is fixed. This both saves the cost of reallocation as well
keeps the cache lines hot.
This results in a roughly 1% performance improvement for token
generation with Nvidia GPUs on Linux.
* runner.go: Default to classic input cache policy
The input cache as part of the go runner implemented a cache
policy that aims to maximize hit rate in both single and multi-
user scenarios. When there is a cache hit, the response is
very fast.
However, performance is actually slower when there is an input
cache miss due to worse GPU VRAM locality. This means that
performance is generally better overall for multi-user scenarios
(better input cache hit rate, locality was relatively poor already).
But worse for single users (input cache hit rate is about the same,
locality is now worse).
This defaults the policy back to the old one to avoid a regression
but keeps the new one available through an environment variable
OLLAMA_MULTIUSER_CACHE. This is left undocumented as the goal is
to improve this in the future to get the best of both worlds
without user configuration.
For inputs that result in cache misses, on Nvidia/Linux this
change improves performance by 31% for prompt processing and
13% for token generation.
* runner.go: Increase size of response channel
Generally the CPU can easily keep up with handling reponses that
are generated but there's no reason not to let generation continue
and handle things in larger batches if needed.
* llama: Add CI to verify all vendored changes have patches (#7066)
Make sure we don't accidentally merge changes in the vendored code
that aren't also reflected in the patches.
* llama: adjust clip patch for mingw utf-16 (#7065)
* llama: adjust clip patch for mingw utf-16
* llama: ensure static linking of runtime libs
Avoid runtime dependencies on non-standard libraries
* runner.go: Enable llamafile (all platforms) and BLAS (Mac OS)
These are two features that are shown on llama.cpp's system info
that are currently different between the two runners. On my test
systems the performance difference is very small to negligible
but it is probably still good to equalize the features.
* llm: Don't add BOS/EOS for tokenize requests
This is consistent with what server.cpp currently does. It affects
things like token processing counts for embedding requests.
* runner.go: Don't cache prompts for embeddings
Our integration with server.cpp implicitly disables prompt caching
because it is not part of the JSON object being parsed, this makes
the Go runner behavior similarly.
Prompt caching has been seen to affect the results of text completions
on certain hardware. The results are not wrong either way but they
are non-deterministic. However, embeddings seem to be affected even
on hardware that does not show this behavior for completions. For
now, it is best to maintain consistency with the existing behavior.
* runner.go: Adjust debug log levels
Add system info printed at startup and quiet down noisier logging.
* llama: fix compiler flag differences (#7082)
Adjust the flags for the new Go server to more closely match the
generate flow
* llama: refine developer docs (#7121)
* llama: doc and example clean up (#7122)
* llama: doc and example clean up
* llama: Move new dockerfile into llama dir
Temporary home until we fully transition to the Go server
* llama: runner doc cleanup
* llama.go: Add description for Tokenize error case
---------
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
Co-authored-by: Daniel Hiltgen <dhiltgen@users.noreply.github.com>
2024-10-08 11:53:54 -04:00
// server params
int32_t port = 8080 ; // server listens on this network port
int32_t timeout_read = 600 ; // http read timeout in seconds
int32_t timeout_write = timeout_read ; // http write timeout in seconds
int n_threads_http = - 1 ; // number of threads to process HTTP requests (TODO: support threadpool)
std : : string hostname = " 127.0.0.1 " ;
2024-10-17 12:59:52 -06:00
std : : string public_path = " " ; // NOLINT
std : : string chat_template = " " ; // NOLINT
std : : string system_prompt = " " ; // NOLINT
Re-introduce the `llama` package (#5034)
* Re-introduce the llama package
This PR brings back the llama package, making it possible to call llama.cpp and
ggml APIs from Go directly via CGo. This has a few advantages:
- C APIs can be called directly from Go without needing to use the previous
"server" REST API
- On macOS and for CPU builds on Linux and Windows, Ollama can be built without
a go generate ./... step, making it easy to get up and running to hack on
parts of Ollama that don't require fast inference
- Faster build times for AVX,AVX2,CUDA and ROCM (a full build of all runners
takes <5 min on a fast CPU)
- No git submodule making it easier to clone and build from source
This is a big PR, but much of it is vendor code except for:
- llama.go CGo bindings
- example/: a simple example of running inference
- runner/: a subprocess server designed to replace the llm/ext_server package
- Makefile an as minimal as possible Makefile to build the runner package for
different targets (cpu, avx, avx2, cuda, rocm)
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
* cache: Clear old KV cache entries when evicting a slot
When forking a cache entry, if no empty slots are available we
evict the least recently used one and copy over the KV entries
from the closest match. However, this copy does not overwrite
existing values but only adds new ones. Therefore, we need to
clear the old slot first.
This change fixes two issues:
- The KV cache fills up and runs out of space even though we think
we are managing it correctly
- Performance gets worse over time as we use new cache entries that
are not hot in the processor caches
* doc: explain golang objc linker warning (#6830)
* llama: gather transitive dependencies for rocm for dist packaging (#6848)
* Refine go server makefiles to be more DRY (#6924)
This breaks up the monolithic Makefile for the Go based runners into a
set of utility files as well as recursive Makefiles for the runners.
Files starting with the name "Makefile" are buildable, while files that
end with ".make" are utilities to include in other Makefiles. This
reduces the amount of nearly identical targets and helps set a pattern
for future community contributions for new GPU runner architectures.
When we are ready to switch over to the Go runners, these files should
move to the top of the repo, and we should add targets for the main CLI,
as well as a helper "install" (put all the built binaries on the local
system in a runnable state) and "dist" target (generate the various
tar/zip files for distribution) for local developer use.
* llama: don't create extraneous directories (#6988)
* llama: Exercise the new build in CI (#6989)
Wire up some basic sanity testing in CI for the Go runner. GPU runners are not covered yet.
* llama: Refine developer docs for Go server (#6842)
This enhances the documentation for development focusing on the new Go
server. After we complete the transition further doc refinements
can remove the "transition" discussion.
* runner.go: Allocate batches for all sequences during init
We should tell the model that we could have full batches for all
sequences. We already do this when we allocate the batches but it was
missed during initialization.
* llama.go: Don't return nil from Tokenize on zero length input
Potentially receiving nil in a non-error condition is surprising to
most callers - it's better to return an empty slice.
* runner.go: Remove stop tokens from cache
If the last token is EOG then we don't return this and it isn't
present in the cache (because it was never submitted to Decode).
This works well for extending the cache entry with a new sequence.
However, for multi-token stop sequences, we won't return any of the
tokens but all but the last one will be in the cache. This means
when the conversation continues the cache will contain tokens that
don't overlap with the new prompt.
This works (we will pick up the portion where there is overlap) but
it causes unnecessary cache thrashing because we will fork the original
cache entry as it is not a perfect match.
By trimming the cache to the tokens that we actually return this
issue can be avoided.
* runner.go: Simplify flushing of pending tokens
* runner.go: Update TODOs
* runner.go: Don't panic when processing sequences
If there is an error processing a sequence, we should return a
clean HTTP error back to Ollama rather than panicing. This will
make us more resilient to transient failures.
Panics can still occur during startup as there is no way to serve
requests if that fails.
Co-authored-by: jmorganca <jmorganca@gmail.com>
* runner.go: More accurately capture timings
Currently prompt processing time doesn't capture the that it takes
to tokenize the input, only decoding time. We should capture the
full process to more accurately reflect reality. This is especially
true once we start processing images where the initial processing
can take significant time. This is also more consistent with the
existing C++ runner.
* runner.go: Support for vision models
In addition to bringing feature parity with the C++ runner, this also
incorporates several improvements:
- Cache prompting works with images, avoiding the need to re-decode
embeddings for every message in a conversation
- Parallelism is supported, avoiding the need to restrict to one
sequence at a time. (Though for now Ollama will not schedule
them while we might need to fall back to the old runner.)
Co-authored-by: jmorganca <jmorganca@gmail.com>
* runner.go: Move Unicode checking code and add tests
* runner.go: Export external cache members
Runner and cache are in the same package so the change doesn't
affect anything but it is more internally consistent.
* runner.go: Image embedding cache
Generating embeddings from images can take significant time (on
my machine between 100ms and 8s depending on the model). Although
we already cache the result of decoding these images, the embeddings
need to be regenerated every time. This is not necessary if we get
the same image over and over again, for example, during a conversation.
This currently uses a very small cache with a very simple algorithm
but it is easy to improve as is warranted.
* llama: catch up on patches
Carry forward solar-pro and cli-unicode patches
* runner.go: Don't re-allocate memory for every batch
We can reuse memory allocated from batch to batch since batch
size is fixed. This both saves the cost of reallocation as well
keeps the cache lines hot.
This results in a roughly 1% performance improvement for token
generation with Nvidia GPUs on Linux.
* runner.go: Default to classic input cache policy
The input cache as part of the go runner implemented a cache
policy that aims to maximize hit rate in both single and multi-
user scenarios. When there is a cache hit, the response is
very fast.
However, performance is actually slower when there is an input
cache miss due to worse GPU VRAM locality. This means that
performance is generally better overall for multi-user scenarios
(better input cache hit rate, locality was relatively poor already).
But worse for single users (input cache hit rate is about the same,
locality is now worse).
This defaults the policy back to the old one to avoid a regression
but keeps the new one available through an environment variable
OLLAMA_MULTIUSER_CACHE. This is left undocumented as the goal is
to improve this in the future to get the best of both worlds
without user configuration.
For inputs that result in cache misses, on Nvidia/Linux this
change improves performance by 31% for prompt processing and
13% for token generation.
* runner.go: Increase size of response channel
Generally the CPU can easily keep up with handling reponses that
are generated but there's no reason not to let generation continue
and handle things in larger batches if needed.
* llama: Add CI to verify all vendored changes have patches (#7066)
Make sure we don't accidentally merge changes in the vendored code
that aren't also reflected in the patches.
* llama: adjust clip patch for mingw utf-16 (#7065)
* llama: adjust clip patch for mingw utf-16
* llama: ensure static linking of runtime libs
Avoid runtime dependencies on non-standard libraries
* runner.go: Enable llamafile (all platforms) and BLAS (Mac OS)
These are two features that are shown on llama.cpp's system info
that are currently different between the two runners. On my test
systems the performance difference is very small to negligible
but it is probably still good to equalize the features.
* llm: Don't add BOS/EOS for tokenize requests
This is consistent with what server.cpp currently does. It affects
things like token processing counts for embedding requests.
* runner.go: Don't cache prompts for embeddings
Our integration with server.cpp implicitly disables prompt caching
because it is not part of the JSON object being parsed, this makes
the Go runner behavior similarly.
Prompt caching has been seen to affect the results of text completions
on certain hardware. The results are not wrong either way but they
are non-deterministic. However, embeddings seem to be affected even
on hardware that does not show this behavior for completions. For
now, it is best to maintain consistency with the existing behavior.
* runner.go: Adjust debug log levels
Add system info printed at startup and quiet down noisier logging.
* llama: fix compiler flag differences (#7082)
Adjust the flags for the new Go server to more closely match the
generate flow
* llama: refine developer docs (#7121)
* llama: doc and example clean up (#7122)
* llama: doc and example clean up
* llama: Move new dockerfile into llama dir
Temporary home until we fully transition to the Go server
* llama: runner doc cleanup
* llama.go: Add description for Tokenize error case
---------
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
Co-authored-by: Daniel Hiltgen <dhiltgen@users.noreply.github.com>
2024-10-08 11:53:54 -04:00
bool enable_chat_template = true ;
std : : vector < std : : string > api_keys ;
2024-10-17 12:59:52 -06:00
std : : string ssl_file_key = " " ; // NOLINT
std : : string ssl_file_cert = " " ; // NOLINT
Re-introduce the `llama` package (#5034)
* Re-introduce the llama package
This PR brings back the llama package, making it possible to call llama.cpp and
ggml APIs from Go directly via CGo. This has a few advantages:
- C APIs can be called directly from Go without needing to use the previous
"server" REST API
- On macOS and for CPU builds on Linux and Windows, Ollama can be built without
a go generate ./... step, making it easy to get up and running to hack on
parts of Ollama that don't require fast inference
- Faster build times for AVX,AVX2,CUDA and ROCM (a full build of all runners
takes <5 min on a fast CPU)
- No git submodule making it easier to clone and build from source
This is a big PR, but much of it is vendor code except for:
- llama.go CGo bindings
- example/: a simple example of running inference
- runner/: a subprocess server designed to replace the llm/ext_server package
- Makefile an as minimal as possible Makefile to build the runner package for
different targets (cpu, avx, avx2, cuda, rocm)
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
* cache: Clear old KV cache entries when evicting a slot
When forking a cache entry, if no empty slots are available we
evict the least recently used one and copy over the KV entries
from the closest match. However, this copy does not overwrite
existing values but only adds new ones. Therefore, we need to
clear the old slot first.
This change fixes two issues:
- The KV cache fills up and runs out of space even though we think
we are managing it correctly
- Performance gets worse over time as we use new cache entries that
are not hot in the processor caches
* doc: explain golang objc linker warning (#6830)
* llama: gather transitive dependencies for rocm for dist packaging (#6848)
* Refine go server makefiles to be more DRY (#6924)
This breaks up the monolithic Makefile for the Go based runners into a
set of utility files as well as recursive Makefiles for the runners.
Files starting with the name "Makefile" are buildable, while files that
end with ".make" are utilities to include in other Makefiles. This
reduces the amount of nearly identical targets and helps set a pattern
for future community contributions for new GPU runner architectures.
When we are ready to switch over to the Go runners, these files should
move to the top of the repo, and we should add targets for the main CLI,
as well as a helper "install" (put all the built binaries on the local
system in a runnable state) and "dist" target (generate the various
tar/zip files for distribution) for local developer use.
* llama: don't create extraneous directories (#6988)
* llama: Exercise the new build in CI (#6989)
Wire up some basic sanity testing in CI for the Go runner. GPU runners are not covered yet.
* llama: Refine developer docs for Go server (#6842)
This enhances the documentation for development focusing on the new Go
server. After we complete the transition further doc refinements
can remove the "transition" discussion.
* runner.go: Allocate batches for all sequences during init
We should tell the model that we could have full batches for all
sequences. We already do this when we allocate the batches but it was
missed during initialization.
* llama.go: Don't return nil from Tokenize on zero length input
Potentially receiving nil in a non-error condition is surprising to
most callers - it's better to return an empty slice.
* runner.go: Remove stop tokens from cache
If the last token is EOG then we don't return this and it isn't
present in the cache (because it was never submitted to Decode).
This works well for extending the cache entry with a new sequence.
However, for multi-token stop sequences, we won't return any of the
tokens but all but the last one will be in the cache. This means
when the conversation continues the cache will contain tokens that
don't overlap with the new prompt.
This works (we will pick up the portion where there is overlap) but
it causes unnecessary cache thrashing because we will fork the original
cache entry as it is not a perfect match.
By trimming the cache to the tokens that we actually return this
issue can be avoided.
* runner.go: Simplify flushing of pending tokens
* runner.go: Update TODOs
* runner.go: Don't panic when processing sequences
If there is an error processing a sequence, we should return a
clean HTTP error back to Ollama rather than panicing. This will
make us more resilient to transient failures.
Panics can still occur during startup as there is no way to serve
requests if that fails.
Co-authored-by: jmorganca <jmorganca@gmail.com>
* runner.go: More accurately capture timings
Currently prompt processing time doesn't capture the that it takes
to tokenize the input, only decoding time. We should capture the
full process to more accurately reflect reality. This is especially
true once we start processing images where the initial processing
can take significant time. This is also more consistent with the
existing C++ runner.
* runner.go: Support for vision models
In addition to bringing feature parity with the C++ runner, this also
incorporates several improvements:
- Cache prompting works with images, avoiding the need to re-decode
embeddings for every message in a conversation
- Parallelism is supported, avoiding the need to restrict to one
sequence at a time. (Though for now Ollama will not schedule
them while we might need to fall back to the old runner.)
Co-authored-by: jmorganca <jmorganca@gmail.com>
* runner.go: Move Unicode checking code and add tests
* runner.go: Export external cache members
Runner and cache are in the same package so the change doesn't
affect anything but it is more internally consistent.
* runner.go: Image embedding cache
Generating embeddings from images can take significant time (on
my machine between 100ms and 8s depending on the model). Although
we already cache the result of decoding these images, the embeddings
need to be regenerated every time. This is not necessary if we get
the same image over and over again, for example, during a conversation.
This currently uses a very small cache with a very simple algorithm
but it is easy to improve as is warranted.
* llama: catch up on patches
Carry forward solar-pro and cli-unicode patches
* runner.go: Don't re-allocate memory for every batch
We can reuse memory allocated from batch to batch since batch
size is fixed. This both saves the cost of reallocation as well
keeps the cache lines hot.
This results in a roughly 1% performance improvement for token
generation with Nvidia GPUs on Linux.
* runner.go: Default to classic input cache policy
The input cache as part of the go runner implemented a cache
policy that aims to maximize hit rate in both single and multi-
user scenarios. When there is a cache hit, the response is
very fast.
However, performance is actually slower when there is an input
cache miss due to worse GPU VRAM locality. This means that
performance is generally better overall for multi-user scenarios
(better input cache hit rate, locality was relatively poor already).
But worse for single users (input cache hit rate is about the same,
locality is now worse).
This defaults the policy back to the old one to avoid a regression
but keeps the new one available through an environment variable
OLLAMA_MULTIUSER_CACHE. This is left undocumented as the goal is
to improve this in the future to get the best of both worlds
without user configuration.
For inputs that result in cache misses, on Nvidia/Linux this
change improves performance by 31% for prompt processing and
13% for token generation.
* runner.go: Increase size of response channel
Generally the CPU can easily keep up with handling reponses that
are generated but there's no reason not to let generation continue
and handle things in larger batches if needed.
* llama: Add CI to verify all vendored changes have patches (#7066)
Make sure we don't accidentally merge changes in the vendored code
that aren't also reflected in the patches.
* llama: adjust clip patch for mingw utf-16 (#7065)
* llama: adjust clip patch for mingw utf-16
* llama: ensure static linking of runtime libs
Avoid runtime dependencies on non-standard libraries
* runner.go: Enable llamafile (all platforms) and BLAS (Mac OS)
These are two features that are shown on llama.cpp's system info
that are currently different between the two runners. On my test
systems the performance difference is very small to negligible
but it is probably still good to equalize the features.
* llm: Don't add BOS/EOS for tokenize requests
This is consistent with what server.cpp currently does. It affects
things like token processing counts for embedding requests.
* runner.go: Don't cache prompts for embeddings
Our integration with server.cpp implicitly disables prompt caching
because it is not part of the JSON object being parsed, this makes
the Go runner behavior similarly.
Prompt caching has been seen to affect the results of text completions
on certain hardware. The results are not wrong either way but they
are non-deterministic. However, embeddings seem to be affected even
on hardware that does not show this behavior for completions. For
now, it is best to maintain consistency with the existing behavior.
* runner.go: Adjust debug log levels
Add system info printed at startup and quiet down noisier logging.
* llama: fix compiler flag differences (#7082)
Adjust the flags for the new Go server to more closely match the
generate flow
* llama: refine developer docs (#7121)
* llama: doc and example clean up (#7122)
* llama: doc and example clean up
* llama: Move new dockerfile into llama dir
Temporary home until we fully transition to the Go server
* llama: runner doc cleanup
* llama.go: Add description for Tokenize error case
---------
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
Co-authored-by: Daniel Hiltgen <dhiltgen@users.noreply.github.com>
2024-10-08 11:53:54 -04:00
bool endpoint_slots = true ;
bool endpoint_metrics = false ;
bool log_json = false ;
std : : string slot_save_path ;
float slot_prompt_similarity = 0.5f ;
// batched-bench params
bool is_pp_shared = false ;
std : : vector < int32_t > n_pp ;
std : : vector < int32_t > n_tg ;
std : : vector < int32_t > n_pl ;
// retrieval params
std : : vector < std : : string > context_files ; // context files to embed
int32_t chunk_size = 64 ; // chunk size for context embedding
std : : string chunk_separator = " \n " ; // chunk separator for context embedding
// passkey params
int32_t n_junk = 250 ; // number of times to repeat the junk text
int32_t i_pos = - 1 ; // position of the passkey in the junk text
// imatrix params
std : : string out_file = " imatrix.dat " ; // save the resulting imatrix to this file
int32_t n_out_freq = 10 ; // output the imatrix every n_out_freq iterations
int32_t n_save_freq = 0 ; // save the imatrix every n_save_freq iterations
int32_t i_chunk = 0 ; // start processing from this chunk
bool process_output = false ; // collect data for the output tensor
bool compute_ppl = true ; // whether to compute perplexity
// cvector-generator params
int n_pca_batch = 100 ;
int n_pca_iterations = 1000 ;
dimre_method cvector_dimre_method = DIMRE_METHOD_PCA ;
std : : string cvector_outfile = " control_vector.gguf " ;
std : : string cvector_positive_file = " examples/cvector-generator/positive.txt " ;
std : : string cvector_negative_file = " examples/cvector-generator/negative.txt " ;
bool spm_infill = false ; // suffix/prefix/middle pattern for infill
std : : string lora_outfile = " ggml-lora-merged-f16.gguf " ;
2024-10-17 12:59:52 -06:00
// batched-bench params
bool batched_bench_output_jsonl = false ;
} ;
Re-introduce the `llama` package (#5034)
* Re-introduce the llama package
This PR brings back the llama package, making it possible to call llama.cpp and
ggml APIs from Go directly via CGo. This has a few advantages:
- C APIs can be called directly from Go without needing to use the previous
"server" REST API
- On macOS and for CPU builds on Linux and Windows, Ollama can be built without
a go generate ./... step, making it easy to get up and running to hack on
parts of Ollama that don't require fast inference
- Faster build times for AVX,AVX2,CUDA and ROCM (a full build of all runners
takes <5 min on a fast CPU)
- No git submodule making it easier to clone and build from source
This is a big PR, but much of it is vendor code except for:
- llama.go CGo bindings
- example/: a simple example of running inference
- runner/: a subprocess server designed to replace the llm/ext_server package
- Makefile an as minimal as possible Makefile to build the runner package for
different targets (cpu, avx, avx2, cuda, rocm)
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
* cache: Clear old KV cache entries when evicting a slot
When forking a cache entry, if no empty slots are available we
evict the least recently used one and copy over the KV entries
from the closest match. However, this copy does not overwrite
existing values but only adds new ones. Therefore, we need to
clear the old slot first.
This change fixes two issues:
- The KV cache fills up and runs out of space even though we think
we are managing it correctly
- Performance gets worse over time as we use new cache entries that
are not hot in the processor caches
* doc: explain golang objc linker warning (#6830)
* llama: gather transitive dependencies for rocm for dist packaging (#6848)
* Refine go server makefiles to be more DRY (#6924)
This breaks up the monolithic Makefile for the Go based runners into a
set of utility files as well as recursive Makefiles for the runners.
Files starting with the name "Makefile" are buildable, while files that
end with ".make" are utilities to include in other Makefiles. This
reduces the amount of nearly identical targets and helps set a pattern
for future community contributions for new GPU runner architectures.
When we are ready to switch over to the Go runners, these files should
move to the top of the repo, and we should add targets for the main CLI,
as well as a helper "install" (put all the built binaries on the local
system in a runnable state) and "dist" target (generate the various
tar/zip files for distribution) for local developer use.
* llama: don't create extraneous directories (#6988)
* llama: Exercise the new build in CI (#6989)
Wire up some basic sanity testing in CI for the Go runner. GPU runners are not covered yet.
* llama: Refine developer docs for Go server (#6842)
This enhances the documentation for development focusing on the new Go
server. After we complete the transition further doc refinements
can remove the "transition" discussion.
* runner.go: Allocate batches for all sequences during init
We should tell the model that we could have full batches for all
sequences. We already do this when we allocate the batches but it was
missed during initialization.
* llama.go: Don't return nil from Tokenize on zero length input
Potentially receiving nil in a non-error condition is surprising to
most callers - it's better to return an empty slice.
* runner.go: Remove stop tokens from cache
If the last token is EOG then we don't return this and it isn't
present in the cache (because it was never submitted to Decode).
This works well for extending the cache entry with a new sequence.
However, for multi-token stop sequences, we won't return any of the
tokens but all but the last one will be in the cache. This means
when the conversation continues the cache will contain tokens that
don't overlap with the new prompt.
This works (we will pick up the portion where there is overlap) but
it causes unnecessary cache thrashing because we will fork the original
cache entry as it is not a perfect match.
By trimming the cache to the tokens that we actually return this
issue can be avoided.
* runner.go: Simplify flushing of pending tokens
* runner.go: Update TODOs
* runner.go: Don't panic when processing sequences
If there is an error processing a sequence, we should return a
clean HTTP error back to Ollama rather than panicing. This will
make us more resilient to transient failures.
Panics can still occur during startup as there is no way to serve
requests if that fails.
Co-authored-by: jmorganca <jmorganca@gmail.com>
* runner.go: More accurately capture timings
Currently prompt processing time doesn't capture the that it takes
to tokenize the input, only decoding time. We should capture the
full process to more accurately reflect reality. This is especially
true once we start processing images where the initial processing
can take significant time. This is also more consistent with the
existing C++ runner.
* runner.go: Support for vision models
In addition to bringing feature parity with the C++ runner, this also
incorporates several improvements:
- Cache prompting works with images, avoiding the need to re-decode
embeddings for every message in a conversation
- Parallelism is supported, avoiding the need to restrict to one
sequence at a time. (Though for now Ollama will not schedule
them while we might need to fall back to the old runner.)
Co-authored-by: jmorganca <jmorganca@gmail.com>
* runner.go: Move Unicode checking code and add tests
* runner.go: Export external cache members
Runner and cache are in the same package so the change doesn't
affect anything but it is more internally consistent.
* runner.go: Image embedding cache
Generating embeddings from images can take significant time (on
my machine between 100ms and 8s depending on the model). Although
we already cache the result of decoding these images, the embeddings
need to be regenerated every time. This is not necessary if we get
the same image over and over again, for example, during a conversation.
This currently uses a very small cache with a very simple algorithm
but it is easy to improve as is warranted.
* llama: catch up on patches
Carry forward solar-pro and cli-unicode patches
* runner.go: Don't re-allocate memory for every batch
We can reuse memory allocated from batch to batch since batch
size is fixed. This both saves the cost of reallocation as well
keeps the cache lines hot.
This results in a roughly 1% performance improvement for token
generation with Nvidia GPUs on Linux.
* runner.go: Default to classic input cache policy
The input cache as part of the go runner implemented a cache
policy that aims to maximize hit rate in both single and multi-
user scenarios. When there is a cache hit, the response is
very fast.
However, performance is actually slower when there is an input
cache miss due to worse GPU VRAM locality. This means that
performance is generally better overall for multi-user scenarios
(better input cache hit rate, locality was relatively poor already).
But worse for single users (input cache hit rate is about the same,
locality is now worse).
This defaults the policy back to the old one to avoid a regression
but keeps the new one available through an environment variable
OLLAMA_MULTIUSER_CACHE. This is left undocumented as the goal is
to improve this in the future to get the best of both worlds
without user configuration.
For inputs that result in cache misses, on Nvidia/Linux this
change improves performance by 31% for prompt processing and
13% for token generation.
* runner.go: Increase size of response channel
Generally the CPU can easily keep up with handling reponses that
are generated but there's no reason not to let generation continue
and handle things in larger batches if needed.
* llama: Add CI to verify all vendored changes have patches (#7066)
Make sure we don't accidentally merge changes in the vendored code
that aren't also reflected in the patches.
* llama: adjust clip patch for mingw utf-16 (#7065)
* llama: adjust clip patch for mingw utf-16
* llama: ensure static linking of runtime libs
Avoid runtime dependencies on non-standard libraries
* runner.go: Enable llamafile (all platforms) and BLAS (Mac OS)
These are two features that are shown on llama.cpp's system info
that are currently different between the two runners. On my test
systems the performance difference is very small to negligible
but it is probably still good to equalize the features.
* llm: Don't add BOS/EOS for tokenize requests
This is consistent with what server.cpp currently does. It affects
things like token processing counts for embedding requests.
* runner.go: Don't cache prompts for embeddings
Our integration with server.cpp implicitly disables prompt caching
because it is not part of the JSON object being parsed, this makes
the Go runner behavior similarly.
Prompt caching has been seen to affect the results of text completions
on certain hardware. The results are not wrong either way but they
are non-deterministic. However, embeddings seem to be affected even
on hardware that does not show this behavior for completions. For
now, it is best to maintain consistency with the existing behavior.
* runner.go: Adjust debug log levels
Add system info printed at startup and quiet down noisier logging.
* llama: fix compiler flag differences (#7082)
Adjust the flags for the new Go server to more closely match the
generate flow
* llama: refine developer docs (#7121)
* llama: doc and example clean up (#7122)
* llama: doc and example clean up
* llama: Move new dockerfile into llama dir
Temporary home until we fully transition to the Go server
* llama: runner doc cleanup
* llama.go: Add description for Tokenize error case
---------
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
Co-authored-by: Daniel Hiltgen <dhiltgen@users.noreply.github.com>
2024-10-08 11:53:54 -04:00
2024-10-17 12:59:52 -06:00
// call once at the start of a program if it uses libcommon
// initializes the logging system and prints info about the build
void gpt_init ( ) ;
Re-introduce the `llama` package (#5034)
* Re-introduce the llama package
This PR brings back the llama package, making it possible to call llama.cpp and
ggml APIs from Go directly via CGo. This has a few advantages:
- C APIs can be called directly from Go without needing to use the previous
"server" REST API
- On macOS and for CPU builds on Linux and Windows, Ollama can be built without
a go generate ./... step, making it easy to get up and running to hack on
parts of Ollama that don't require fast inference
- Faster build times for AVX,AVX2,CUDA and ROCM (a full build of all runners
takes <5 min on a fast CPU)
- No git submodule making it easier to clone and build from source
This is a big PR, but much of it is vendor code except for:
- llama.go CGo bindings
- example/: a simple example of running inference
- runner/: a subprocess server designed to replace the llm/ext_server package
- Makefile an as minimal as possible Makefile to build the runner package for
different targets (cpu, avx, avx2, cuda, rocm)
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
* cache: Clear old KV cache entries when evicting a slot
When forking a cache entry, if no empty slots are available we
evict the least recently used one and copy over the KV entries
from the closest match. However, this copy does not overwrite
existing values but only adds new ones. Therefore, we need to
clear the old slot first.
This change fixes two issues:
- The KV cache fills up and runs out of space even though we think
we are managing it correctly
- Performance gets worse over time as we use new cache entries that
are not hot in the processor caches
* doc: explain golang objc linker warning (#6830)
* llama: gather transitive dependencies for rocm for dist packaging (#6848)
* Refine go server makefiles to be more DRY (#6924)
This breaks up the monolithic Makefile for the Go based runners into a
set of utility files as well as recursive Makefiles for the runners.
Files starting with the name "Makefile" are buildable, while files that
end with ".make" are utilities to include in other Makefiles. This
reduces the amount of nearly identical targets and helps set a pattern
for future community contributions for new GPU runner architectures.
When we are ready to switch over to the Go runners, these files should
move to the top of the repo, and we should add targets for the main CLI,
as well as a helper "install" (put all the built binaries on the local
system in a runnable state) and "dist" target (generate the various
tar/zip files for distribution) for local developer use.
* llama: don't create extraneous directories (#6988)
* llama: Exercise the new build in CI (#6989)
Wire up some basic sanity testing in CI for the Go runner. GPU runners are not covered yet.
* llama: Refine developer docs for Go server (#6842)
This enhances the documentation for development focusing on the new Go
server. After we complete the transition further doc refinements
can remove the "transition" discussion.
* runner.go: Allocate batches for all sequences during init
We should tell the model that we could have full batches for all
sequences. We already do this when we allocate the batches but it was
missed during initialization.
* llama.go: Don't return nil from Tokenize on zero length input
Potentially receiving nil in a non-error condition is surprising to
most callers - it's better to return an empty slice.
* runner.go: Remove stop tokens from cache
If the last token is EOG then we don't return this and it isn't
present in the cache (because it was never submitted to Decode).
This works well for extending the cache entry with a new sequence.
However, for multi-token stop sequences, we won't return any of the
tokens but all but the last one will be in the cache. This means
when the conversation continues the cache will contain tokens that
don't overlap with the new prompt.
This works (we will pick up the portion where there is overlap) but
it causes unnecessary cache thrashing because we will fork the original
cache entry as it is not a perfect match.
By trimming the cache to the tokens that we actually return this
issue can be avoided.
* runner.go: Simplify flushing of pending tokens
* runner.go: Update TODOs
* runner.go: Don't panic when processing sequences
If there is an error processing a sequence, we should return a
clean HTTP error back to Ollama rather than panicing. This will
make us more resilient to transient failures.
Panics can still occur during startup as there is no way to serve
requests if that fails.
Co-authored-by: jmorganca <jmorganca@gmail.com>
* runner.go: More accurately capture timings
Currently prompt processing time doesn't capture the that it takes
to tokenize the input, only decoding time. We should capture the
full process to more accurately reflect reality. This is especially
true once we start processing images where the initial processing
can take significant time. This is also more consistent with the
existing C++ runner.
* runner.go: Support for vision models
In addition to bringing feature parity with the C++ runner, this also
incorporates several improvements:
- Cache prompting works with images, avoiding the need to re-decode
embeddings for every message in a conversation
- Parallelism is supported, avoiding the need to restrict to one
sequence at a time. (Though for now Ollama will not schedule
them while we might need to fall back to the old runner.)
Co-authored-by: jmorganca <jmorganca@gmail.com>
* runner.go: Move Unicode checking code and add tests
* runner.go: Export external cache members
Runner and cache are in the same package so the change doesn't
affect anything but it is more internally consistent.
* runner.go: Image embedding cache
Generating embeddings from images can take significant time (on
my machine between 100ms and 8s depending on the model). Although
we already cache the result of decoding these images, the embeddings
need to be regenerated every time. This is not necessary if we get
the same image over and over again, for example, during a conversation.
This currently uses a very small cache with a very simple algorithm
but it is easy to improve as is warranted.
* llama: catch up on patches
Carry forward solar-pro and cli-unicode patches
* runner.go: Don't re-allocate memory for every batch
We can reuse memory allocated from batch to batch since batch
size is fixed. This both saves the cost of reallocation as well
keeps the cache lines hot.
This results in a roughly 1% performance improvement for token
generation with Nvidia GPUs on Linux.
* runner.go: Default to classic input cache policy
The input cache as part of the go runner implemented a cache
policy that aims to maximize hit rate in both single and multi-
user scenarios. When there is a cache hit, the response is
very fast.
However, performance is actually slower when there is an input
cache miss due to worse GPU VRAM locality. This means that
performance is generally better overall for multi-user scenarios
(better input cache hit rate, locality was relatively poor already).
But worse for single users (input cache hit rate is about the same,
locality is now worse).
This defaults the policy back to the old one to avoid a regression
but keeps the new one available through an environment variable
OLLAMA_MULTIUSER_CACHE. This is left undocumented as the goal is
to improve this in the future to get the best of both worlds
without user configuration.
For inputs that result in cache misses, on Nvidia/Linux this
change improves performance by 31% for prompt processing and
13% for token generation.
* runner.go: Increase size of response channel
Generally the CPU can easily keep up with handling reponses that
are generated but there's no reason not to let generation continue
and handle things in larger batches if needed.
* llama: Add CI to verify all vendored changes have patches (#7066)
Make sure we don't accidentally merge changes in the vendored code
that aren't also reflected in the patches.
* llama: adjust clip patch for mingw utf-16 (#7065)
* llama: adjust clip patch for mingw utf-16
* llama: ensure static linking of runtime libs
Avoid runtime dependencies on non-standard libraries
* runner.go: Enable llamafile (all platforms) and BLAS (Mac OS)
These are two features that are shown on llama.cpp's system info
that are currently different between the two runners. On my test
systems the performance difference is very small to negligible
but it is probably still good to equalize the features.
* llm: Don't add BOS/EOS for tokenize requests
This is consistent with what server.cpp currently does. It affects
things like token processing counts for embedding requests.
* runner.go: Don't cache prompts for embeddings
Our integration with server.cpp implicitly disables prompt caching
because it is not part of the JSON object being parsed, this makes
the Go runner behavior similarly.
Prompt caching has been seen to affect the results of text completions
on certain hardware. The results are not wrong either way but they
are non-deterministic. However, embeddings seem to be affected even
on hardware that does not show this behavior for completions. For
now, it is best to maintain consistency with the existing behavior.
* runner.go: Adjust debug log levels
Add system info printed at startup and quiet down noisier logging.
* llama: fix compiler flag differences (#7082)
Adjust the flags for the new Go server to more closely match the
generate flow
* llama: refine developer docs (#7121)
* llama: doc and example clean up (#7122)
* llama: doc and example clean up
* llama: Move new dockerfile into llama dir
Temporary home until we fully transition to the Go server
* llama: runner doc cleanup
* llama.go: Add description for Tokenize error case
---------
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
Co-authored-by: Daniel Hiltgen <dhiltgen@users.noreply.github.com>
2024-10-08 11:53:54 -04:00
std : : string gpt_params_get_system_info ( const gpt_params & params ) ;
bool parse_cpu_range ( const std : : string & range , bool ( & boolmask ) [ GGML_MAX_N_THREADS ] ) ;
bool parse_cpu_mask ( const std : : string & mask , bool ( & boolmask ) [ GGML_MAX_N_THREADS ] ) ;
void postprocess_cpu_params ( cpu_params & cpuparams , const cpu_params * role_model = nullptr ) ;
bool set_process_priority ( enum ggml_sched_priority prio ) ;
//
// String utils
//
std : : vector < std : : string > string_split ( std : : string input , char separator ) ;
std : : string string_strip ( const std : : string & str ) ;
std : : string string_get_sortable_timestamp ( ) ;
void string_replace_all ( std : : string & s , const std : : string & search , const std : : string & replace ) ;
template < class T >
static std : : vector < T > string_split ( const std : : string & str , char delim ) {
std : : vector < T > values ;
std : : istringstream str_stream ( str ) ;
std : : string token ;
while ( std : : getline ( str_stream , token , delim ) ) {
T value ;
std : : istringstream token_stream ( token ) ;
token_stream > > value ;
values . push_back ( value ) ;
}
return values ;
}
bool string_parse_kv_override ( const char * data , std : : vector < llama_model_kv_override > & overrides ) ;
void string_process_escapes ( std : : string & input ) ;
2024-10-17 12:59:52 -06:00
std : : string string_from ( bool value ) ;
std : : string string_from ( const std : : vector < int > & values ) ;
std : : string string_from ( const struct llama_context * ctx , const std : : vector < llama_token > & tokens ) ;
std : : string string_from ( const struct llama_context * ctx , const struct llama_batch & batch ) ;
Re-introduce the `llama` package (#5034)
* Re-introduce the llama package
This PR brings back the llama package, making it possible to call llama.cpp and
ggml APIs from Go directly via CGo. This has a few advantages:
- C APIs can be called directly from Go without needing to use the previous
"server" REST API
- On macOS and for CPU builds on Linux and Windows, Ollama can be built without
a go generate ./... step, making it easy to get up and running to hack on
parts of Ollama that don't require fast inference
- Faster build times for AVX,AVX2,CUDA and ROCM (a full build of all runners
takes <5 min on a fast CPU)
- No git submodule making it easier to clone and build from source
This is a big PR, but much of it is vendor code except for:
- llama.go CGo bindings
- example/: a simple example of running inference
- runner/: a subprocess server designed to replace the llm/ext_server package
- Makefile an as minimal as possible Makefile to build the runner package for
different targets (cpu, avx, avx2, cuda, rocm)
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
* cache: Clear old KV cache entries when evicting a slot
When forking a cache entry, if no empty slots are available we
evict the least recently used one and copy over the KV entries
from the closest match. However, this copy does not overwrite
existing values but only adds new ones. Therefore, we need to
clear the old slot first.
This change fixes two issues:
- The KV cache fills up and runs out of space even though we think
we are managing it correctly
- Performance gets worse over time as we use new cache entries that
are not hot in the processor caches
* doc: explain golang objc linker warning (#6830)
* llama: gather transitive dependencies for rocm for dist packaging (#6848)
* Refine go server makefiles to be more DRY (#6924)
This breaks up the monolithic Makefile for the Go based runners into a
set of utility files as well as recursive Makefiles for the runners.
Files starting with the name "Makefile" are buildable, while files that
end with ".make" are utilities to include in other Makefiles. This
reduces the amount of nearly identical targets and helps set a pattern
for future community contributions for new GPU runner architectures.
When we are ready to switch over to the Go runners, these files should
move to the top of the repo, and we should add targets for the main CLI,
as well as a helper "install" (put all the built binaries on the local
system in a runnable state) and "dist" target (generate the various
tar/zip files for distribution) for local developer use.
* llama: don't create extraneous directories (#6988)
* llama: Exercise the new build in CI (#6989)
Wire up some basic sanity testing in CI for the Go runner. GPU runners are not covered yet.
* llama: Refine developer docs for Go server (#6842)
This enhances the documentation for development focusing on the new Go
server. After we complete the transition further doc refinements
can remove the "transition" discussion.
* runner.go: Allocate batches for all sequences during init
We should tell the model that we could have full batches for all
sequences. We already do this when we allocate the batches but it was
missed during initialization.
* llama.go: Don't return nil from Tokenize on zero length input
Potentially receiving nil in a non-error condition is surprising to
most callers - it's better to return an empty slice.
* runner.go: Remove stop tokens from cache
If the last token is EOG then we don't return this and it isn't
present in the cache (because it was never submitted to Decode).
This works well for extending the cache entry with a new sequence.
However, for multi-token stop sequences, we won't return any of the
tokens but all but the last one will be in the cache. This means
when the conversation continues the cache will contain tokens that
don't overlap with the new prompt.
This works (we will pick up the portion where there is overlap) but
it causes unnecessary cache thrashing because we will fork the original
cache entry as it is not a perfect match.
By trimming the cache to the tokens that we actually return this
issue can be avoided.
* runner.go: Simplify flushing of pending tokens
* runner.go: Update TODOs
* runner.go: Don't panic when processing sequences
If there is an error processing a sequence, we should return a
clean HTTP error back to Ollama rather than panicing. This will
make us more resilient to transient failures.
Panics can still occur during startup as there is no way to serve
requests if that fails.
Co-authored-by: jmorganca <jmorganca@gmail.com>
* runner.go: More accurately capture timings
Currently prompt processing time doesn't capture the that it takes
to tokenize the input, only decoding time. We should capture the
full process to more accurately reflect reality. This is especially
true once we start processing images where the initial processing
can take significant time. This is also more consistent with the
existing C++ runner.
* runner.go: Support for vision models
In addition to bringing feature parity with the C++ runner, this also
incorporates several improvements:
- Cache prompting works with images, avoiding the need to re-decode
embeddings for every message in a conversation
- Parallelism is supported, avoiding the need to restrict to one
sequence at a time. (Though for now Ollama will not schedule
them while we might need to fall back to the old runner.)
Co-authored-by: jmorganca <jmorganca@gmail.com>
* runner.go: Move Unicode checking code and add tests
* runner.go: Export external cache members
Runner and cache are in the same package so the change doesn't
affect anything but it is more internally consistent.
* runner.go: Image embedding cache
Generating embeddings from images can take significant time (on
my machine between 100ms and 8s depending on the model). Although
we already cache the result of decoding these images, the embeddings
need to be regenerated every time. This is not necessary if we get
the same image over and over again, for example, during a conversation.
This currently uses a very small cache with a very simple algorithm
but it is easy to improve as is warranted.
* llama: catch up on patches
Carry forward solar-pro and cli-unicode patches
* runner.go: Don't re-allocate memory for every batch
We can reuse memory allocated from batch to batch since batch
size is fixed. This both saves the cost of reallocation as well
keeps the cache lines hot.
This results in a roughly 1% performance improvement for token
generation with Nvidia GPUs on Linux.
* runner.go: Default to classic input cache policy
The input cache as part of the go runner implemented a cache
policy that aims to maximize hit rate in both single and multi-
user scenarios. When there is a cache hit, the response is
very fast.
However, performance is actually slower when there is an input
cache miss due to worse GPU VRAM locality. This means that
performance is generally better overall for multi-user scenarios
(better input cache hit rate, locality was relatively poor already).
But worse for single users (input cache hit rate is about the same,
locality is now worse).
This defaults the policy back to the old one to avoid a regression
but keeps the new one available through an environment variable
OLLAMA_MULTIUSER_CACHE. This is left undocumented as the goal is
to improve this in the future to get the best of both worlds
without user configuration.
For inputs that result in cache misses, on Nvidia/Linux this
change improves performance by 31% for prompt processing and
13% for token generation.
* runner.go: Increase size of response channel
Generally the CPU can easily keep up with handling reponses that
are generated but there's no reason not to let generation continue
and handle things in larger batches if needed.
* llama: Add CI to verify all vendored changes have patches (#7066)
Make sure we don't accidentally merge changes in the vendored code
that aren't also reflected in the patches.
* llama: adjust clip patch for mingw utf-16 (#7065)
* llama: adjust clip patch for mingw utf-16
* llama: ensure static linking of runtime libs
Avoid runtime dependencies on non-standard libraries
* runner.go: Enable llamafile (all platforms) and BLAS (Mac OS)
These are two features that are shown on llama.cpp's system info
that are currently different between the two runners. On my test
systems the performance difference is very small to negligible
but it is probably still good to equalize the features.
* llm: Don't add BOS/EOS for tokenize requests
This is consistent with what server.cpp currently does. It affects
things like token processing counts for embedding requests.
* runner.go: Don't cache prompts for embeddings
Our integration with server.cpp implicitly disables prompt caching
because it is not part of the JSON object being parsed, this makes
the Go runner behavior similarly.
Prompt caching has been seen to affect the results of text completions
on certain hardware. The results are not wrong either way but they
are non-deterministic. However, embeddings seem to be affected even
on hardware that does not show this behavior for completions. For
now, it is best to maintain consistency with the existing behavior.
* runner.go: Adjust debug log levels
Add system info printed at startup and quiet down noisier logging.
* llama: fix compiler flag differences (#7082)
Adjust the flags for the new Go server to more closely match the
generate flow
* llama: refine developer docs (#7121)
* llama: doc and example clean up (#7122)
* llama: doc and example clean up
* llama: Move new dockerfile into llama dir
Temporary home until we fully transition to the Go server
* llama: runner doc cleanup
* llama.go: Add description for Tokenize error case
---------
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
Co-authored-by: Daniel Hiltgen <dhiltgen@users.noreply.github.com>
2024-10-08 11:53:54 -04:00
//
// Filesystem utils
//
bool fs_validate_filename ( const std : : string & filename ) ;
bool fs_create_directory_with_parents ( const std : : string & path ) ;
std : : string fs_get_cache_directory ( ) ;
std : : string fs_get_cache_file ( const std : : string & filename ) ;
//
// Model utils
//
struct llama_init_result {
struct llama_model * model = nullptr ;
struct llama_context * context = nullptr ;
std : : vector < llama_lora_adapter_container > lora_adapters ;
} ;
struct llama_init_result llama_init_from_gpt_params ( gpt_params & params ) ;
struct llama_model_params llama_model_params_from_gpt_params ( const gpt_params & params ) ;
struct llama_context_params llama_context_params_from_gpt_params ( const gpt_params & params ) ;
struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params ( const cpu_params & params ) ;
struct llama_model * llama_load_model_from_url ( const char * model_url , const char * path_model , const char * hf_token , const struct llama_model_params & params ) ;
struct llama_model * llama_load_model_from_hf ( const char * repo , const char * file , const char * path_model , const char * hf_token , const struct llama_model_params & params ) ;
// clear LoRA adapters from context, then apply new list of adapters
void llama_lora_adapters_apply ( struct llama_context * ctx , std : : vector < llama_lora_adapter_container > & lora_adapters ) ;
// Batch utils
void llama_batch_clear ( struct llama_batch & batch ) ;
void llama_batch_add (
struct llama_batch & batch ,
llama_token id ,
llama_pos pos ,
const std : : vector < llama_seq_id > & seq_ids ,
bool logits ) ;
//
// Vocab utils
//
// tokenizes a string into a vector of tokens
// should work similar to Python's `tokenizer.encode`
std : : vector < llama_token > llama_tokenize (
const struct llama_context * ctx ,
const std : : string & text ,
bool add_special ,
bool parse_special = false ) ;
std : : vector < llama_token > llama_tokenize (
const struct llama_model * model ,
const std : : string & text ,
bool add_special ,
bool parse_special = false ) ;
// tokenizes a token into a piece, optionally renders special/control tokens
// should work similar to Python's `tokenizer.id_to_piece`
std : : string llama_token_to_piece (
const struct llama_context * ctx ,
llama_token token ,
bool special = true ) ;
// detokenizes a vector of tokens into a string
// should work similar to Python's `tokenizer.decode`
// optionally renders special/control tokens
std : : string llama_detokenize (
llama_context * ctx ,
const std : : vector < llama_token > & tokens ,
bool special = true ) ;
//
// Chat template utils
//
// same with llama_chat_message, but uses std::string
struct llama_chat_msg {
std : : string role ;
std : : string content ;
} ;
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
bool llama_chat_verify_template ( const std : : string & tmpl ) ;
// CPP wrapper for llama_chat_apply_template
// If the built-in template is not supported, we default to chatml
// If the custom "tmpl" is not supported, we throw an error
std : : string llama_chat_apply_template ( const struct llama_model * model ,
const std : : string & tmpl ,
const std : : vector < llama_chat_msg > & chat ,
bool add_ass ) ;
// Format single message, while taking into account the position of that message in chat history
std : : string llama_chat_format_single ( const struct llama_model * model ,
const std : : string & tmpl ,
const std : : vector < llama_chat_msg > & past_msg ,
const llama_chat_msg & new_msg ,
bool add_ass ) ;
// Returns an example of formatted chat
std : : string llama_chat_format_example ( const struct llama_model * model ,
const std : : string & tmpl ) ;
//
// KV cache utils
//
// Dump the KV cache view with the number of sequences per cell.
void llama_kv_cache_dump_view ( const llama_kv_cache_view & view , int row_size = 80 ) ;
// Dump the KV cache view showing individual sequences in each cell (long output).
void llama_kv_cache_dump_view_seqs ( const llama_kv_cache_view & view , int row_size = 40 ) ;
//
// Embedding utils
//
void llama_embd_normalize ( const float * inp , float * out , int n , int embd_norm = 2 ) ;
float llama_embd_similarity_cos ( const float * embd1 , const float * embd2 , int n ) ;
//
// Control vector utils
//
struct llama_control_vector_data {
int n_embd ;
// stores data for layers [1, n_layer] where n_layer = data.size() / n_embd
std : : vector < float > data ;
} ;
struct llama_control_vector_load_info {
float strength ;
std : : string fname ;
} ;
// Load control vectors, scale each by strength, and add them together.
// On error, returns {-1, empty}
llama_control_vector_data llama_control_vector_load ( const std : : vector < llama_control_vector_load_info > & load_infos ) ;
//
// Split utils
//
static const char * const LLM_KV_SPLIT_NO = " split.no " ;
static const char * const LLM_KV_SPLIT_COUNT = " split.count " ;
static const char * const LLM_KV_SPLIT_TENSORS_COUNT = " split.tensors.count " ;
//
// YAML utils
//
void yaml_dump_vector_float ( FILE * stream , const char * prop_name , const std : : vector < float > & data ) ;
void yaml_dump_vector_int ( FILE * stream , const char * prop_name , const std : : vector < int > & data ) ;
void yaml_dump_string_multiline ( FILE * stream , const char * prop_name , const char * data ) ;
void yaml_dump_non_result_info (
FILE * stream , const gpt_params & params , const llama_context * lctx ,
const std : : string & timestamp , const std : : vector < int > & prompt_tokens , const char * model_desc ) ;