2023-07-18 12:45:38 -07:00
< div align = "center" >
< picture >
2023-07-20 08:55:20 -07:00
< source media = "(prefers-color-scheme: dark)" height = "200px" srcset = "https://github.com/jmorganca/ollama/assets/3325447/56ea1849-1284-4645-8970-956de6e51c3c" >
< img alt = "logo" height = "200px" src = "https://github.com/jmorganca/ollama/assets/3325447/0d0b44e2-8f4a-4e99-9b52-a5c1c741c8f7" >
2023-07-18 12:45:38 -07:00
< / picture >
< / div >
2023-07-05 15:37:33 -04:00
2023-06-27 12:08:52 -04:00
# Ollama
2023-06-22 12:45:31 -04:00
2023-07-19 12:31:48 -07:00
[![Discord ](https://dcbadge.vercel.app/api/server/ollama?style=flat&compact=true )](https://discord.gg/ollama)
2023-07-19 12:28:50 -07:00
2023-07-20 12:21:29 -07:00
Run, create, and share large language models (LLMs).
2023-07-20 08:33:28 -07:00
2023-08-08 15:50:23 -07:00
> Note: Ollama is in early preview. Please report any issues you find.
2023-07-18 13:31:25 -07:00
## Download
2023-08-04 15:45:55 -04:00
- [Download ](https://ollama.ai/download ) for macOS
2023-07-18 13:31:25 -07:00
- Download for Windows and Linux (coming soon)
- Build [from source ](#building )
2023-07-19 12:28:50 -07:00
## Quickstart
To run and chat with [Llama 2 ](https://ai.meta.com/llama ), the new model by Meta:
```
ollama run llama2
```
## Model library
2023-08-25 20:44:26 -07:00
Ollama supports a list of open-source models available on [ollama.ai/library ](https://ollama.ai/library 'ollama model library' )
2023-08-16 22:53:27 -04:00
2023-08-25 20:44:26 -07:00
Here are some example open-source models that can be downloaded:
2023-07-19 12:28:50 -07:00
2023-08-01 11:25:01 -04:00
| Model | Parameters | Size | Download |
| ------------------------ | ---------- | ----- | ------------------------------- |
| Llama2 | 7B | 3.8GB | `ollama pull llama2` |
| Llama2 13B | 13B | 7.3GB | `ollama pull llama2:13b` |
2023-08-08 13:08:05 -07:00
| Llama2 70B | 70B | 39GB | `ollama pull llama2:70b` |
| Llama2 Uncensored | 7B | 3.8GB | `ollama pull llama2-uncensored` |
2023-08-25 20:44:26 -07:00
| Code Llama | 7B | 3.8GB | `ollama pull codellama` |
2023-08-15 21:10:28 -04:00
| Orca Mini | 3B | 1.9GB | `ollama pull orca-mini` |
2023-08-01 11:25:01 -04:00
| Vicuna | 7B | 3.8GB | `ollama pull vicuna` |
2023-08-16 23:42:00 -04:00
| Nous-Hermes | 7B | 3.8GB | `ollama pull nous-hermes` |
| Nous-Hermes 13B | 13B | 7.3GB | `ollama pull nous-hermes:13b` |
2023-08-01 11:25:01 -04:00
| Wizard Vicuna Uncensored | 13B | 7.3GB | `ollama pull wizard-vicuna` |
2023-07-19 12:28:50 -07:00
2023-07-20 12:21:29 -07:00
> Note: You should have at least 8 GB of RAM to run the 3B models, 16 GB to run the 7B models, and 32 GB to run the 13B models.
2023-07-18 13:22:33 -07:00
## Examples
2023-06-27 17:13:07 -04:00
2023-09-01 10:54:31 -04:00
### Pull a public model
```
ollama pull llama2
```
> This command can also be used to update a local model. Only updated changes will be pulled.
2023-09-01 13:44:14 -07:00
### Run a model interactively
2023-06-30 12:39:25 -04:00
2023-06-22 12:45:31 -04:00
```
2023-07-18 13:22:33 -07:00
ollama run llama2
>>> hi
Hello! How can I help you today?
2023-06-22 12:45:31 -04:00
```
2023-08-10 09:54:03 -07:00
For multiline input, you can wrap text with `"""` :
2023-08-10 23:22:28 +08:00
```
>>> """Hello,
... world!
... """
I'm a basic program that prints the famous "Hello, world!" message to the console.
```
2023-09-01 13:44:14 -07:00
### Run a model non-interactively
```
$ ollama run llama2 'tell me a joke'
Sure! Here's a quick one:
Why did the scarecrow win an award? Because he was outstanding in his field!
```
```
$ cat < < EOF > prompts.txt
tell me a joke about llamas
tell me another one
EOF
$ ollama run llama2 < prompts.txt
>>> tell me a joke about llamas
Why did the llama refuse to play hide-and-seek?
nobody likes to be hided!
>>> tell me another one
Sure, here's another one:
Why did the llama go to the bar?
To have a hay-often good time!
```
### Run a model on contents of a text file
```
$ ollama run llama2 "summarize this file:" "$(cat README.md)"
Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.
```
2023-09-01 10:54:31 -04:00
### Customize a model
2023-07-19 12:28:50 -07:00
Pull a base model:
```
2023-07-20 02:21:51 -07:00
ollama pull llama2
2023-07-19 12:28:50 -07:00
```
2023-08-08 15:41:48 -07:00
2023-07-18 13:22:33 -07:00
Create a `Modelfile` :
2023-07-05 15:37:33 -04:00
2023-06-30 12:31:00 -04:00
```
2023-07-20 02:21:51 -07:00
FROM llama2
2023-07-20 08:17:09 -07:00
# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1
# set the system prompt
2023-07-20 02:21:51 -07:00
SYSTEM """
2023-07-18 13:32:06 -07:00
You are Mario from Super Mario Bros. Answer as Mario, the assistant, only.
2023-07-18 13:22:33 -07:00
"""
2023-06-29 18:25:02 -04:00
```
2023-07-07 16:14:58 -04:00
2023-07-18 13:22:33 -07:00
Next, create and run the model:
2023-07-07 16:14:58 -04:00
```
2023-07-18 13:22:33 -07:00
ollama create mario -f ./Modelfile
ollama run mario
>>> hi
Hello! It's your friend Mario.
2023-07-07 16:14:58 -04:00
```
2023-08-10 09:54:03 -07:00
For more examples, see the [examples ](./examples ) directory. For more information on creating a Modelfile, see the [Modelfile ](./docs/modelfile.md ) documentation.
2023-07-19 12:28:50 -07:00
2023-09-01 10:54:31 -04:00
### Listing local models
2023-07-06 16:21:01 -04:00
2023-07-19 12:28:50 -07:00
```
2023-09-01 10:54:31 -04:00
ollama list
2023-07-19 12:28:50 -07:00
```
2023-06-28 09:57:36 -04:00
2023-09-01 10:54:31 -04:00
### Removing local models
2023-07-20 12:21:29 -07:00
```
2023-09-01 10:54:31 -04:00
ollama rm llama2
2023-07-20 12:21:29 -07:00
```
## Model packages
### Overview
2023-09-01 10:54:31 -04:00
Ollama bundles model weights, configurations, and data into a single package, defined by a [Modelfile ](./docs/modelfile.md ).
2023-07-20 12:21:29 -07:00
< picture >
< source media = "(prefers-color-scheme: dark)" height = "480" srcset = "https://github.com/jmorganca/ollama/assets/251292/2fd96b5f-191b-45c1-9668-941cfad4eb70" >
< img alt = "logo" height = "480" src = "https://github.com/jmorganca/ollama/assets/251292/2fd96b5f-191b-45c1-9668-941cfad4eb70" >
< / picture >
2023-07-03 16:32:48 -04:00
## Building
2023-09-07 12:43:26 +02:00
Install `cmake` and `go` :
2023-08-25 11:44:25 -07:00
2023-07-03 16:32:48 -04:00
```
2023-08-30 17:54:02 -04:00
brew install cmake
2023-09-07 12:43:26 +02:00
brew install go
2023-08-30 17:54:02 -04:00
```
Then generate dependencies and build:
```
go generate ./...
2023-07-11 09:50:02 -07:00
go build .
2023-07-03 16:32:48 -04:00
```
2023-08-30 17:54:02 -04:00
Next, start the server:
2023-06-27 13:46:46 -04:00
2023-07-05 15:37:33 -04:00
```
2023-08-30 17:54:02 -04:00
./ollama serve
2023-07-05 15:37:33 -04:00
```
2023-09-01 10:54:31 -04:00
Finally, in a separate shell, run a model:
2023-07-05 15:37:33 -04:00
```
2023-07-18 13:22:33 -07:00
./ollama run llama2
2023-07-05 15:37:33 -04:00
```
2023-07-21 00:47:17 -07:00
## REST API
2023-08-08 15:48:47 -07:00
> See the [API documentation](./docs/api.md) for all endpoints.
2023-07-21 00:47:17 -07:00
2023-08-08 15:48:47 -07:00
Ollama has an API for running and managing models. For example to generate text from a model:
2023-07-21 00:47:17 -07:00
```
2023-08-08 15:48:47 -07:00
curl -X POST http://localhost:11434/api/generate -d '{
"model": "llama2",
"prompt":"Why is the sky blue?"
}'
2023-07-23 18:01:05 -04:00
```
2023-07-31 13:59:39 -07:00
2023-09-01 13:44:14 -07:00
## Community Projects using Ollama
2023-07-31 13:59:39 -07:00
2023-09-18 12:22:50 -07:00
| Project | Description |
| -------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| [LangChain][1] and [LangChain.js][2] | Also, there is a question-answering [example][3]. |
| [Continue ](https://github.com/continuedev/continue ) | Embeds Ollama inside Visual Studio Code. The extension lets you highlight code to add to the prompt, ask questions in the sidebar, and generate code inline. |
| [LiteLLM ](https://github.com/BerriAI/litellm ) | Lightweight Python package to simplify LLM API calls. |
| [Discord AI Bot ](https://github.com/mekb-turtle/discord-ai-bot ) | Interact with Ollama as a chatbot on Discord. |
| [Raycast Ollama ](https://github.com/MassimilianoPasquini97/raycast_ollama ) | Raycast extension to use Ollama for local llama inference on Raycast. |
| [Simple HTML UI ](https://github.com/rtcfirefly/ollama-ui ) | Also, there is a Chrome extension. |
2023-09-25 07:40:59 -07:00
| [Ollama-GUI ](https://github.com/ollama-interface/Ollama-Gui?tab=readme-ov-file ) | 🖥️ Mac Chat Interface ⚡️ |
2023-09-18 12:22:50 -07:00
| [Emacs client ](https://github.com/zweifisch/ollama ) | |
[1]: https://python.langchain.com/docs/integrations/llms/ollama
[2]: https://js.langchain.com/docs/modules/model_io/models/llms/integrations/ollama
[3]: https://js.langchain.com/docs/use_cases/question_answering/local_retrieval_qa