ollama/examples/langchain-python-rag-privategpt/privateGPT.py

75 lines
2.8 KiB
Python
Raw Normal View History

2023-08-11 07:18:13 +00:00
#!/usr/bin/env python3
from langchain.chains import RetrievalQA
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.vectorstores import Chroma
2023-08-11 15:58:57 +00:00
from langchain.llms import Ollama
import chromadb
2023-08-11 07:18:13 +00:00
import os
import argparse
import time
model = os.environ.get("MODEL", "llama2-uncensored")
2023-08-11 15:58:57 +00:00
# For embeddings model, the example uses a sentence-transformers model
# https://www.sbert.net/docs/pretrained_models.html
# "The all-mpnet-base-v2 model provides the best quality, while all-MiniLM-L6-v2 is 5 times faster and still offers good quality."
2023-08-11 07:18:13 +00:00
embeddings_model_name = os.environ.get("EMBEDDINGS_MODEL_NAME", "all-MiniLM-L6-v2")
persist_directory = os.environ.get("PERSIST_DIRECTORY", "db")
target_source_chunks = int(os.environ.get('TARGET_SOURCE_CHUNKS',4))
from constants import CHROMA_SETTINGS
def main():
# Parse the command line arguments
args = parse_arguments()
embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name)
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
2023-08-11 07:18:13 +00:00
retriever = db.as_retriever(search_kwargs={"k": target_source_chunks})
# activate/deactivate the streaming StdOut callback for LLMs
callbacks = [] if args.mute_stream else [StreamingStdOutCallbackHandler()]
llm = Ollama(model=model, callbacks=callbacks)
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents= not args.hide_source)
# Interactive questions and answers
while True:
query = input("\nEnter a query: ")
if query == "exit":
break
if query.strip() == "":
continue
# Get the answer from the chain
start = time.time()
res = qa(query)
answer, docs = res['result'], [] if args.hide_source else res['source_documents']
end = time.time()
# Print the result
print("\n\n> Question:")
print(query)
print(answer)
# Print the relevant sources used for the answer
for document in docs:
print("\n> " + document.metadata["source"] + ":")
print(document.page_content)
def parse_arguments():
parser = argparse.ArgumentParser(description='privateGPT: Ask questions to your documents without an internet connection, '
'using the power of LLMs.')
parser.add_argument("--hide-source", "-S", action='store_true',
help='Use this flag to disable printing of source documents used for answers.')
parser.add_argument("--mute-stream", "-M",
action='store_true',
help='Use this flag to disable the streaming StdOut callback for LLMs.')
return parser.parse_args()
if __name__ == "__main__":
main()