ollama/convert/safetensors.go

318 lines
7.3 KiB
Go
Raw Normal View History

package convert
import (
"bytes"
"encoding/binary"
"encoding/json"
"fmt"
"io"
"log/slog"
"os"
"path/filepath"
"regexp"
"slices"
"github.com/d4l3k/go-bfloat16"
"github.com/mitchellh/mapstructure"
"github.com/x448/float16"
"github.com/ollama/ollama/llm"
)
type safetensorWriterTo struct {
t *llm.Tensor
params *Params
bo ByteOrder
filename string
start, end, padding uint64
handler func(w io.Writer, r safetensorWriterTo, f *os.File) error
}
type tensorMetaData struct {
Type string `mapstructure:"dtype"`
Shape []int `mapstructure:"shape"`
Offsets []int `mapstructure:"data_offsets"`
}
type SafetensorFormat struct{}
func (m *SafetensorFormat) GetTensors(dirpath string, params *Params) ([]llm.Tensor, error) {
slog.Debug("getting tensor data")
var tensors []llm.Tensor
files, err := filepath.Glob(filepath.Join(dirpath, "/model-*.safetensors"))
if err != nil {
return nil, err
}
var offset uint64
for _, f := range files {
var t []llm.Tensor
var err error
t, offset, err = m.readTensors(f, offset, params)
if err != nil {
2024-05-03 16:44:19 -07:00
slog.Error(err.Error())
return nil, err
}
tensors = append(tensors, t...)
}
slog.Debug(fmt.Sprintf("all tensors = %d", len(tensors)))
return tensors, nil
}
func (m *SafetensorFormat) readTensors(fn string, offset uint64, params *Params) ([]llm.Tensor, uint64, error) {
f, err := os.Open(fn)
if err != nil {
return nil, 0, err
}
defer f.Close()
var jsonSize uint64
if err := binary.Read(f, binary.LittleEndian, &jsonSize); err != nil {
return nil, 0, err
}
buf := make([]byte, jsonSize)
_, err = io.ReadFull(f, buf)
if err != nil {
return nil, 0, err
}
d := json.NewDecoder(bytes.NewBuffer(buf))
d.UseNumber()
var parsed map[string]interface{}
if err = d.Decode(&parsed); err != nil {
return nil, 0, err
}
var keys []string
for k := range parsed {
keys = append(keys, k)
}
slices.Sort(keys)
slog.Info("converting layers")
var tensors []llm.Tensor
for _, k := range keys {
vals := parsed[k].(map[string]interface{})
var data tensorMetaData
if err = mapstructure.Decode(vals, &data); err != nil {
slog.Error("couldn't decode properly")
return nil, 0, err
}
var size uint64
var kind uint32
switch len(data.Shape) {
case 0:
// metadata
continue
case 1:
// convert to float32
kind = 0
size = uint64(data.Shape[0] * 4)
case 2:
// convert to float16
kind = 1
size = uint64(data.Shape[0] * data.Shape[1] * 2)
}
ggufName, err := m.GetLayerName(k)
if err != nil {
2024-05-03 16:44:19 -07:00
slog.Error(err.Error())
return nil, 0, err
}
shape := []uint64{0, 0, 0, 0}
for i := range data.Shape {
shape[i] = uint64(data.Shape[i])
}
t := llm.Tensor{
Name: ggufName,
Kind: kind,
Offset: offset,
Shape: shape[:],
}
t.WriterTo = safetensorWriterTo{
t: &t,
params: params,
bo: params.ByteOrder,
filename: fn,
start: uint64(data.Offsets[0]),
end: uint64(data.Offsets[1]),
padding: 8 + jsonSize,
}
offset += size
tensors = append(tensors, t)
}
slog.Debug(fmt.Sprintf("total tensors for file = %d", len(tensors)))
slog.Debug(fmt.Sprintf("offset = %d", offset))
return tensors, offset, nil
}
func (m *SafetensorFormat) GetParams(dirpath string) (*Params, error) {
f, err := os.Open(filepath.Join(dirpath, "config.json"))
if err != nil {
return nil, err
}
defer f.Close()
var params Params
d := json.NewDecoder(f)
err = d.Decode(&params)
if err != nil {
return nil, err
}
params.ByteOrder = binary.LittleEndian
return &params, nil
}
func (m *SafetensorFormat) GetLayerName(n string) (string, error) {
directMap := map[string]string{
"model.embed_tokens.weight": "token_embd.weight",
"lm_head.weight": "output.weight",
"model.norm.weight": "output_norm.weight",
}
tMap := map[string]string{
"model.layers.(\\d+).input_layernorm.weight": "blk.$1.attn_norm.weight",
"model.layers.(\\d+).mlp.down_proj.weight": "blk.$1.ffn_down.weight",
"model.layers.(\\d+).mlp.gate_proj.weight": "blk.$1.ffn_gate.weight",
"model.layers.(\\d+).mlp.up_proj.weight": "blk.$1.ffn_up.weight",
"model.layers.(\\d+).post_attention_layernorm.weight": "blk.$1.ffn_norm.weight",
"model.layers.(\\d+).self_attn.k_proj.weight": "blk.$1.attn_k.weight",
"model.layers.(\\d+).self_attn.o_proj.weight": "blk.$1.attn_output.weight",
"model.layers.(\\d+).self_attn.q_proj.weight": "blk.$1.attn_q.weight",
"model.layers.(\\d+).self_attn.v_proj.weight": "blk.$1.attn_v.weight",
"model.layers.(\\d+).block_sparse_moe.gate.weight": "blk.$1.ffn_gate_inp.weight",
"model.layers.(\\d+).block_sparse_moe.experts.(\\d+).w1.weight": "blk.$1.ffn_gate.$2.weight",
"model.layers.(\\d+).block_sparse_moe.experts.(\\d+).w2.weight": "blk.$1.ffn_down.$2.weight",
"model.layers.(\\d+).block_sparse_moe.experts.(\\d+).w3.weight": "blk.$1.ffn_up.$2.weight",
}
v, ok := directMap[n]
if ok {
return v, nil
}
// quick hack to rename the layers to gguf format
for k, v := range tMap {
re := regexp.MustCompile(k)
newName := re.ReplaceAllString(n, v)
if newName != n {
return newName, nil
}
}
return "", fmt.Errorf("couldn't find a layer name for '%s'", n)
}
func (r safetensorWriterTo) WriteTo(w io.Writer) (n int64, err error) {
f, err := os.Open(r.filename)
if err != nil {
return 0, err
}
defer f.Close()
if _, err = f.Seek(int64(r.padding+r.start), 0); err != nil {
return 0, err
}
// use the handler if one is present
if r.handler != nil {
return 0, r.handler(w, r, f)
}
remaining := r.end - r.start
bufSize := uint64(10240)
var finished bool
for {
data := make([]byte, min(bufSize, remaining))
b, err := io.ReadFull(f, data)
remaining -= uint64(b)
if err == io.EOF || remaining <= 0 {
finished = true
} else if err != nil {
return 0, err
}
// convert bfloat16 -> ieee float32
tDataF32 := bfloat16.DecodeFloat32(data)
switch r.t.Kind {
case 0:
if err := binary.Write(w, r.bo, tDataF32); err != nil {
return 0, err
}
case 1:
// convert float32 -> float16
tempBuf := make([]uint16, len(data)/2)
for cnt, v := range tDataF32 {
tDataF16 := float16.Fromfloat32(v)
tempBuf[cnt] = uint16(tDataF16)
}
if err := binary.Write(w, r.bo, tempBuf); err != nil {
return 0, err
}
}
if finished {
break
}
}
return 0, nil
}
func (m *SafetensorFormat) GetModelArch(name, dirPath string, params *Params) (ModelArch, error) {
switch len(params.Architectures) {
case 0:
return nil, fmt.Errorf("No architecture specified to convert")
case 1:
switch params.Architectures[0] {
case "MistralForCausalLM":
return &MistralModel{
ModelData{
Name: name,
Path: dirPath,
Params: params,
Format: m,
},
}, nil
case "MixtralForCausalLM":
return &MixtralModel{
ModelData{
Name: name,
Path: dirPath,
Params: params,
Format: m,
},
}, nil
case "GemmaForCausalLM":
return &GemmaModel{
ModelData{
Name: name,
Path: dirPath,
Params: params,
Format: m,
},
}, nil
default:
return nil, fmt.Errorf("Models based on '%s' are not yet supported", params.Architectures[0])
}
}
return nil, fmt.Errorf("Unknown error")
}