372 lines
14 KiB
Text
372 lines
14 KiB
Text
|
/**
|
||
|
* llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
|
||
|
*
|
||
|
* MIT License
|
||
|
*
|
||
|
* Copyright (c) 2023-2024 The ggml authors
|
||
|
*
|
||
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
* of this software and associated documentation files (the "Software"), to deal
|
||
|
* in the Software without restriction, including without limitation the rights
|
||
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
|
* copies of the Software, and to permit persons to whom the Software is
|
||
|
* furnished to do so, subject to the following conditions:
|
||
|
*
|
||
|
* The above copyright notice and this permission notice shall be included in all
|
||
|
* copies or substantial portions of the Software.
|
||
|
*
|
||
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||
|
* SOFTWARE.
|
||
|
*/
|
||
|
|
||
|
#include "common.cuh"
|
||
|
#include "fattn-common.cuh"
|
||
|
#include "fattn-tile-f32.cuh"
|
||
|
|
||
|
#define FATTN_KQ_STRIDE_TILE_F32 32
|
||
|
|
||
|
template<int D, int ncols, int nwarps, int parallel_blocks, bool use_logit_softcap> // D == head size
|
||
|
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||
|
__launch_bounds__(nwarps*WARP_SIZE, 1)
|
||
|
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||
|
static __global__ void flash_attn_tile_ext_f32(
|
||
|
const char * __restrict__ Q,
|
||
|
const char * __restrict__ K,
|
||
|
const char * __restrict__ V,
|
||
|
const char * __restrict__ mask,
|
||
|
float * __restrict__ dst,
|
||
|
float2 * __restrict__ dst_meta,
|
||
|
const float scale,
|
||
|
const float max_bias,
|
||
|
const float m0,
|
||
|
const float m1,
|
||
|
const uint32_t n_head_log2,
|
||
|
const float logit_softcap,
|
||
|
const int ne00,
|
||
|
const int ne01,
|
||
|
const int ne02,
|
||
|
const int ne03,
|
||
|
const int ne10,
|
||
|
const int ne11,
|
||
|
const int ne12,
|
||
|
const int ne13,
|
||
|
const int ne31,
|
||
|
const int nb31,
|
||
|
const int nb01,
|
||
|
const int nb02,
|
||
|
const int nb03,
|
||
|
const int nb11,
|
||
|
const int nb12,
|
||
|
const int nb13,
|
||
|
const int nb21,
|
||
|
const int nb22,
|
||
|
const int nb23,
|
||
|
const int ne0,
|
||
|
const int ne1,
|
||
|
const int ne2,
|
||
|
const int ne3) {
|
||
|
// Skip unused kernel variants for faster compilation:
|
||
|
if (use_logit_softcap && !(D == 128 || D == 256)) {
|
||
|
NO_DEVICE_CODE;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
||
|
|
||
|
const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on.
|
||
|
const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
|
||
|
|
||
|
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
|
||
|
const float2 * Q_f2 = (const float2 *) (Q + nb02* blockIdx.y + nb01*ic0);
|
||
|
const half2 * K_h2 = (const half2 *) (K + nb12*(blockIdx.y / gqa_ratio));
|
||
|
const half2 * V_h2 = (const half2 *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
|
||
|
const half * maskh = (const half *) mask + ne11*ic0;
|
||
|
|
||
|
const int stride_KV2 = nb11 / sizeof(half2);
|
||
|
|
||
|
const float slope = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
|
||
|
|
||
|
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
|
||
|
|
||
|
__shared__ float KQ[ncols*FATTN_KQ_STRIDE_TILE_F32];
|
||
|
|
||
|
__shared__ float KV_tmp[FATTN_KQ_STRIDE_TILE_F32][D + 1]; // Pad D to avoid memory bank conflicts.
|
||
|
float2 * KV_tmp2 = (float2 *) KV_tmp;
|
||
|
|
||
|
float kqmax[ncols/nwarps];
|
||
|
#pragma unroll
|
||
|
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||
|
kqmax[j0/nwarps] = -FLT_MAX/2.0f;
|
||
|
}
|
||
|
float kqsum[ncols/nwarps] = {0.0f};
|
||
|
|
||
|
float2 VKQ[ncols/nwarps][(D/2)/WARP_SIZE] = {{{0.0f, 0.0f}}};
|
||
|
|
||
|
// Convert Q to half2 and store in registers:
|
||
|
__shared__ float Q_f[ncols][D];
|
||
|
#pragma unroll
|
||
|
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||
|
const int j = j0 + threadIdx.y;
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int i0 = 0; i0 < D; i0 += 2*WARP_SIZE) {
|
||
|
float2 tmp = ic0 + j < ne01 ? Q_f2[j*(nb01/sizeof(float2)) + i0/2 + threadIdx.x] : make_float2(0.0f, 0.0f);
|
||
|
Q_f[j][i0 + 0*WARP_SIZE + threadIdx.x] = tmp.x * scale;
|
||
|
Q_f[j][i0 + 1*WARP_SIZE + threadIdx.x] = tmp.y * scale;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
__syncthreads();
|
||
|
|
||
|
const int k_start = parallel_blocks == 1 ? 0 : ip*FATTN_KQ_STRIDE_TILE_F32;
|
||
|
for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*FATTN_KQ_STRIDE_TILE_F32) {
|
||
|
// Calculate KQ tile and keep track of new maximum KQ values:
|
||
|
|
||
|
float kqmax_new[ncols/nwarps];
|
||
|
#pragma unroll
|
||
|
for (int j = 0; j < ncols/nwarps; ++j) {
|
||
|
kqmax_new[j] = kqmax[j];
|
||
|
}
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += nwarps) {
|
||
|
const int i_KQ = i_KQ_0 + threadIdx.y;
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int k_KQ_0 = 0; k_KQ_0 < D; k_KQ_0 += 2*WARP_SIZE) {
|
||
|
const half2 tmp = K_h2[(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ_0/2 + threadIdx.x];
|
||
|
KV_tmp[i_KQ][k_KQ_0 + 0*WARP_SIZE + threadIdx.x] = __low2float(tmp);
|
||
|
KV_tmp[i_KQ][k_KQ_0 + 1*WARP_SIZE + threadIdx.x] = __high2float(tmp);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
__syncthreads();
|
||
|
|
||
|
float sum[FATTN_KQ_STRIDE_TILE_F32/WARP_SIZE][ncols/nwarps] = {{0.0f}};
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int k_KQ = 0; k_KQ < D; ++k_KQ) {
|
||
|
float K_k[FATTN_KQ_STRIDE_TILE_F32/WARP_SIZE];
|
||
|
float Q_k[ncols/nwarps];
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += WARP_SIZE) {
|
||
|
const int i_KQ = i_KQ_0 + threadIdx.x;
|
||
|
|
||
|
K_k[i_KQ_0/WARP_SIZE] = KV_tmp[i_KQ][k_KQ];
|
||
|
}
|
||
|
#pragma unroll
|
||
|
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
|
||
|
const int j_KQ = j_KQ_0 + threadIdx.y;
|
||
|
|
||
|
Q_k[j_KQ_0/nwarps] = Q_f[j_KQ][k_KQ];
|
||
|
}
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += WARP_SIZE) {
|
||
|
#pragma unroll
|
||
|
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
|
||
|
sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] += K_k[i_KQ_0/WARP_SIZE] * Q_k[j_KQ_0/nwarps];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += WARP_SIZE) {
|
||
|
const int i_KQ = i_KQ_0 + threadIdx.x;
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
|
||
|
const int j_KQ = j_KQ_0 + threadIdx.y;
|
||
|
|
||
|
if (use_logit_softcap) {
|
||
|
sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] = logit_softcap * tanhf(sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);
|
||
|
}
|
||
|
|
||
|
sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] += mask ? slope*__half2float(maskh[j_KQ*ne11 + k_VKQ_0 + i_KQ]) : 0.0f;
|
||
|
|
||
|
kqmax_new[j_KQ_0/nwarps] = fmaxf(kqmax_new[j_KQ_0/nwarps], sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);
|
||
|
|
||
|
KQ[j_KQ*FATTN_KQ_STRIDE_TILE_F32 + i_KQ] = sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
__syncthreads();
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||
|
const int j = j0 + threadIdx.y;
|
||
|
|
||
|
kqmax_new[j0/nwarps] = warp_reduce_max(kqmax_new[j0/nwarps]);
|
||
|
const float KQ_max_scale = expf(kqmax[j0/nwarps] - kqmax_new[j0/nwarps]);
|
||
|
kqmax[j0/nwarps] = kqmax_new[j0/nwarps];
|
||
|
|
||
|
float kqsum_add = 0.0f;
|
||
|
#pragma unroll
|
||
|
for (int i0 = 0; i0 < FATTN_KQ_STRIDE_TILE_F32; i0 += WARP_SIZE) {
|
||
|
const int i = i0 + threadIdx.x;
|
||
|
|
||
|
const float diff = KQ[j*FATTN_KQ_STRIDE_TILE_F32 + i] - kqmax[j0/nwarps];
|
||
|
const float val = expf(diff);
|
||
|
kqsum_add += val;
|
||
|
KQ[j*FATTN_KQ_STRIDE_TILE_F32 + i] = val;
|
||
|
}
|
||
|
kqsum[j0/nwarps] = kqsum[j0/nwarps]*KQ_max_scale + kqsum_add;
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||
|
VKQ[j0/nwarps][i0/WARP_SIZE].x *= KQ_max_scale;
|
||
|
VKQ[j0/nwarps][i0/WARP_SIZE].y *= KQ_max_scale;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
__syncthreads();
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int k0 = 0; k0 < FATTN_KQ_STRIDE_TILE_F32; k0 += nwarps) {
|
||
|
const int k = k0 + threadIdx.y;
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||
|
const int i = i0 + threadIdx.x;
|
||
|
|
||
|
KV_tmp2[k*(D/2) + i].x = __low2float(V_h2[(k_VKQ_0 + k)*stride_KV2 + i]);
|
||
|
KV_tmp2[k*(D/2) + i].y = __high2float(V_h2[(k_VKQ_0 + k)*stride_KV2 + i]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
__syncthreads();
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int k = 0; k < FATTN_KQ_STRIDE_TILE_F32; ++k) {
|
||
|
float2 V_k[(D/2)/WARP_SIZE];
|
||
|
float KQ_k[ncols/nwarps];
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||
|
const int i = i0 + threadIdx.x;
|
||
|
|
||
|
V_k[i0/WARP_SIZE] = KV_tmp2[k*(D/2) + i];
|
||
|
}
|
||
|
#pragma unroll
|
||
|
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||
|
const int j = j0 + threadIdx.y;
|
||
|
|
||
|
KQ_k[j0/nwarps] = KQ[j*FATTN_KQ_STRIDE_TILE_F32 + k];
|
||
|
}
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||
|
#pragma unroll
|
||
|
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||
|
VKQ[j0/nwarps][i0/WARP_SIZE].x += V_k[i0/WARP_SIZE].x*KQ_k[j0/nwarps];
|
||
|
VKQ[j0/nwarps][i0/WARP_SIZE].y += V_k[i0/WARP_SIZE].y*KQ_k[j0/nwarps];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
__syncthreads();
|
||
|
}
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int j_VKQ_0 = 0; j_VKQ_0 < ncols; j_VKQ_0 += nwarps) {
|
||
|
const int j_VKQ = j_VKQ_0 + threadIdx.y;
|
||
|
|
||
|
if (ic0 + j_VKQ >= ne01) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
float kqsum_j = kqsum[j_VKQ_0/nwarps];
|
||
|
kqsum_j = warp_reduce_sum(kqsum_j);
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int i00 = 0; i00 < D; i00 += 2*WARP_SIZE) {
|
||
|
const int i0 = i00 + 2*threadIdx.x;
|
||
|
|
||
|
float2 dst_val = VKQ[j_VKQ_0/nwarps][i0/(2*WARP_SIZE)];
|
||
|
if (parallel_blocks == 1) {
|
||
|
dst_val.x /= kqsum_j;
|
||
|
dst_val.y /= kqsum_j;
|
||
|
}
|
||
|
const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
|
||
|
dst[j_dst*D*gridDim.y + D*blockIdx.y + i0 + 0] = dst_val.x;
|
||
|
dst[j_dst*D*gridDim.y + D*blockIdx.y + i0 + 1] = dst_val.y;
|
||
|
}
|
||
|
|
||
|
if (parallel_blocks != 1 && threadIdx.x == 0) {
|
||
|
dst_meta[(ic0 + j_VKQ)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[j_VKQ_0/nwarps], kqsum_j);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <int cols_per_block, int parallel_blocks, bool use_logit_softcap>
|
||
|
void launch_fattn_tile_f32_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||
|
const ggml_tensor * Q = dst->src[0];
|
||
|
switch (Q->ne[0]) {
|
||
|
case 64: {
|
||
|
constexpr int D = 64;
|
||
|
constexpr int nwarps = 8;
|
||
|
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, parallel_blocks, use_logit_softcap>;
|
||
|
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
|
||
|
} break;
|
||
|
case 128: {
|
||
|
constexpr int D = 128;
|
||
|
constexpr int nwarps = 8;
|
||
|
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, parallel_blocks, use_logit_softcap>;
|
||
|
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
|
||
|
} break;
|
||
|
default: {
|
||
|
GGML_ABORT("FlashAttention without tensor cores only supports head sizes 64 and 128.");
|
||
|
} break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void ggml_cuda_flash_attn_ext_tile_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||
|
const ggml_tensor * KQV = dst;
|
||
|
const ggml_tensor * Q = dst->src[0];
|
||
|
|
||
|
float logit_softcap;
|
||
|
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
|
||
|
|
||
|
if (Q->ne[1] <= 16) {
|
||
|
constexpr int cols_per_block = 16;
|
||
|
constexpr int parallel_blocks = 4;
|
||
|
if (logit_softcap == 0.0f) {
|
||
|
constexpr bool use_logit_softcap = false;
|
||
|
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
|
||
|
} else {
|
||
|
constexpr bool use_logit_softcap = true;
|
||
|
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (Q->ne[1] <= 32) {
|
||
|
constexpr int cols_per_block = 32;
|
||
|
constexpr int parallel_blocks = 4;
|
||
|
if (logit_softcap == 0.0f) {
|
||
|
constexpr bool use_logit_softcap = false;
|
||
|
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
|
||
|
} else {
|
||
|
constexpr bool use_logit_softcap = true;
|
||
|
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
constexpr int cols_per_block = 32;
|
||
|
constexpr int parallel_blocks = 1;
|
||
|
if (logit_softcap == 0.0f) {
|
||
|
constexpr bool use_logit_softcap = false;
|
||
|
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
|
||
|
} else {
|
||
|
constexpr bool use_logit_softcap = true;
|
||
|
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
|
||
|
}
|
||
|
}
|