2023-11-29 19:00:37 +00:00
|
|
|
//go:build linux || windows
|
|
|
|
|
|
|
|
package gpu
|
|
|
|
|
|
|
|
/*
|
2023-12-14 01:26:47 +00:00
|
|
|
#cgo linux LDFLAGS: -lrt -lpthread -ldl -lstdc++ -lm
|
|
|
|
#cgo windows LDFLAGS: -lpthread
|
|
|
|
|
2023-11-29 19:00:37 +00:00
|
|
|
#include "gpu_info.h"
|
|
|
|
|
|
|
|
*/
|
|
|
|
import "C"
|
|
|
|
import (
|
|
|
|
"fmt"
|
|
|
|
"log"
|
2023-12-23 19:35:44 +00:00
|
|
|
"runtime"
|
2023-11-29 19:00:37 +00:00
|
|
|
"sync"
|
|
|
|
"unsafe"
|
|
|
|
|
|
|
|
"github.com/jmorganca/ollama/api"
|
|
|
|
)
|
|
|
|
|
|
|
|
type handles struct {
|
|
|
|
cuda *C.cuda_handle_t
|
|
|
|
rocm *C.rocm_handle_t
|
|
|
|
}
|
|
|
|
|
|
|
|
var gpuMutex sync.Mutex
|
|
|
|
var gpuHandles *handles = nil
|
|
|
|
|
2024-01-07 05:40:04 +00:00
|
|
|
// TODO verify this is the correct min version
|
|
|
|
const CudaComputeMajorMin = 5
|
|
|
|
|
2023-11-29 19:00:37 +00:00
|
|
|
// Note: gpuMutex must already be held
|
|
|
|
func initGPUHandles() {
|
2023-12-14 01:26:47 +00:00
|
|
|
// TODO - if the ollama build is CPU only, don't do these checks as they're irrelevant and confusing
|
2023-11-29 19:00:37 +00:00
|
|
|
log.Printf("Detecting GPU type")
|
|
|
|
gpuHandles = &handles{nil, nil}
|
|
|
|
var resp C.cuda_init_resp_t
|
|
|
|
C.cuda_init(&resp)
|
|
|
|
if resp.err != nil {
|
|
|
|
log.Printf("CUDA not detected: %s", C.GoString(resp.err))
|
|
|
|
C.free(unsafe.Pointer(resp.err))
|
|
|
|
|
|
|
|
var resp C.rocm_init_resp_t
|
|
|
|
C.rocm_init(&resp)
|
|
|
|
if resp.err != nil {
|
|
|
|
log.Printf("ROCm not detected: %s", C.GoString(resp.err))
|
|
|
|
C.free(unsafe.Pointer(resp.err))
|
|
|
|
} else {
|
|
|
|
log.Printf("Radeon GPU detected")
|
|
|
|
rocm := resp.rh
|
|
|
|
gpuHandles.rocm = &rocm
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
log.Printf("Nvidia GPU detected")
|
|
|
|
cuda := resp.ch
|
|
|
|
gpuHandles.cuda = &cuda
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
func GetGPUInfo() GpuInfo {
|
|
|
|
// TODO - consider exploring lspci (and equivalent on windows) to check for
|
|
|
|
// GPUs so we can report warnings if we see Nvidia/AMD but fail to load the libraries
|
|
|
|
gpuMutex.Lock()
|
|
|
|
defer gpuMutex.Unlock()
|
|
|
|
if gpuHandles == nil {
|
|
|
|
initGPUHandles()
|
|
|
|
}
|
|
|
|
|
|
|
|
var memInfo C.mem_info_t
|
2023-12-22 23:43:31 +00:00
|
|
|
resp := GpuInfo{}
|
2023-11-29 19:00:37 +00:00
|
|
|
if gpuHandles.cuda != nil {
|
|
|
|
C.cuda_check_vram(*gpuHandles.cuda, &memInfo)
|
2023-12-14 01:26:47 +00:00
|
|
|
if memInfo.err != nil {
|
|
|
|
log.Printf("error looking up CUDA GPU memory: %s", C.GoString(memInfo.err))
|
|
|
|
C.free(unsafe.Pointer(memInfo.err))
|
|
|
|
} else {
|
2024-01-07 05:40:04 +00:00
|
|
|
// Verify minimum compute capability
|
|
|
|
var cc C.cuda_compute_capability_t
|
|
|
|
C.cuda_compute_capability(*gpuHandles.cuda, &cc)
|
|
|
|
if cc.err != nil {
|
|
|
|
log.Printf("error looking up CUDA GPU compute capability: %s", C.GoString(cc.err))
|
|
|
|
C.free(unsafe.Pointer(cc.err))
|
|
|
|
} else if cc.major >= CudaComputeMajorMin {
|
|
|
|
log.Printf("CUDA Compute Capability detected: %d.%d", cc.major, cc.minor)
|
|
|
|
resp.Library = "cuda"
|
|
|
|
} else {
|
|
|
|
log.Printf("CUDA GPU is too old. Falling back to CPU mode. Compute Capability detected: %d.%d", cc.major, cc.minor)
|
|
|
|
}
|
2023-12-14 01:26:47 +00:00
|
|
|
}
|
2023-11-29 19:00:37 +00:00
|
|
|
} else if gpuHandles.rocm != nil {
|
|
|
|
C.rocm_check_vram(*gpuHandles.rocm, &memInfo)
|
2023-12-14 01:26:47 +00:00
|
|
|
if memInfo.err != nil {
|
|
|
|
log.Printf("error looking up ROCm GPU memory: %s", C.GoString(memInfo.err))
|
|
|
|
C.free(unsafe.Pointer(memInfo.err))
|
|
|
|
} else {
|
2023-12-23 19:35:44 +00:00
|
|
|
resp.Library = "rocm"
|
2023-12-14 01:26:47 +00:00
|
|
|
}
|
|
|
|
}
|
2023-12-23 19:35:44 +00:00
|
|
|
if resp.Library == "" {
|
2023-11-29 19:00:37 +00:00
|
|
|
C.cpu_check_ram(&memInfo)
|
2023-12-20 18:36:01 +00:00
|
|
|
// In the future we may offer multiple CPU variants to tune CPU features
|
2023-12-23 19:35:44 +00:00
|
|
|
if runtime.GOOS == "windows" {
|
|
|
|
resp.Library = "cpu"
|
|
|
|
} else {
|
|
|
|
resp.Library = "default"
|
|
|
|
}
|
2023-11-29 19:00:37 +00:00
|
|
|
}
|
|
|
|
if memInfo.err != nil {
|
2023-12-14 01:26:47 +00:00
|
|
|
log.Printf("error looking up CPU memory: %s", C.GoString(memInfo.err))
|
2023-11-29 19:00:37 +00:00
|
|
|
C.free(unsafe.Pointer(memInfo.err))
|
2023-12-14 01:26:47 +00:00
|
|
|
return resp
|
2023-11-29 19:00:37 +00:00
|
|
|
}
|
|
|
|
resp.FreeMemory = uint64(memInfo.free)
|
|
|
|
resp.TotalMemory = uint64(memInfo.total)
|
|
|
|
return resp
|
|
|
|
}
|
|
|
|
|
2023-12-22 23:43:31 +00:00
|
|
|
func getCPUMem() (memInfo, error) {
|
|
|
|
var ret memInfo
|
|
|
|
var info C.mem_info_t
|
|
|
|
C.cpu_check_ram(&info)
|
|
|
|
if info.err != nil {
|
|
|
|
defer C.free(unsafe.Pointer(info.err))
|
|
|
|
return ret, fmt.Errorf(C.GoString(info.err))
|
|
|
|
}
|
|
|
|
ret.FreeMemory = uint64(info.free)
|
|
|
|
ret.TotalMemory = uint64(info.total)
|
|
|
|
return ret, nil
|
|
|
|
}
|
|
|
|
|
2023-11-29 19:00:37 +00:00
|
|
|
func CheckVRAM() (int64, error) {
|
|
|
|
gpuInfo := GetGPUInfo()
|
2023-12-23 19:35:44 +00:00
|
|
|
if gpuInfo.FreeMemory > 0 && (gpuInfo.Library == "cuda" || gpuInfo.Library == "rocm") {
|
2023-11-29 19:00:37 +00:00
|
|
|
return int64(gpuInfo.FreeMemory), nil
|
|
|
|
}
|
|
|
|
return 0, fmt.Errorf("no GPU detected") // TODO - better handling of CPU based memory determiniation
|
|
|
|
}
|
|
|
|
|
|
|
|
func NumGPU(numLayer, fileSizeBytes int64, opts api.Options) int {
|
|
|
|
if opts.NumGPU != -1 {
|
|
|
|
return opts.NumGPU
|
|
|
|
}
|
|
|
|
info := GetGPUInfo()
|
2023-12-23 19:35:44 +00:00
|
|
|
if info.Library == "cpu" || info.Library == "default" {
|
2023-11-29 19:00:37 +00:00
|
|
|
return 0
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
Calculate bytes per layer, this will roughly be the size of the model file divided by the number of layers.
|
|
|
|
We can store the model weights and the kv cache in vram,
|
|
|
|
to enable kv chache vram storage add two additional layers to the number of layers retrieved from the model file.
|
|
|
|
*/
|
|
|
|
bytesPerLayer := uint64(fileSizeBytes / numLayer)
|
|
|
|
|
|
|
|
// 75% of the absolute max number of layers we can fit in available VRAM, off-loading too many layers to the GPU can cause OOM errors
|
|
|
|
layers := int(info.FreeMemory/bytesPerLayer) * 3 / 4
|
|
|
|
|
2023-12-23 19:35:44 +00:00
|
|
|
log.Printf("%d MB VRAM available, loading up to %d %s GPU layers out of %d", info.FreeMemory/(1024*1024), layers, info.Library, numLayer)
|
2023-11-29 19:00:37 +00:00
|
|
|
|
|
|
|
return layers
|
|
|
|
}
|