ollama/examples/python-rag-newssummary/utils.py

109 lines
3.5 KiB
Python
Raw Normal View History

import curses
import feedparser
import requests
import unicodedata
import json
from newspaper import Article
from bs4 import BeautifulSoup
from nltk.tokenize import sent_tokenize, word_tokenize
import numpy as np
from sklearn.neighbors import NearestNeighbors
from mattsollamatools import chunker
# Create a dictionary to store topics and their URLs
topic_urls = {
"Mac": "https://9to5mac.com/guides/mac/feed",
"News": "http://www.npr.org/rss/rss.php?id=1001",
"Nvidia": "https://nvidianews.nvidia.com/releases.xml",
"Raspberry Pi": "https://www.raspberrypi.com/news/feed/",
"Music": "https://www.billboard.com/c/music/music-news/feed/"
}
# Use curses to create a menu of topics
def menu(stdscr):
chosen_topic = get_url_for_topic(stdscr)
url = topic_urls[chosen_topic] if chosen_topic in topic_urls else "Topic not found"
stdscr.addstr(len(topic_urls) + 3, 0, f"Selected URL for {chosen_topic}: {url}")
stdscr.refresh()
return chosen_topic
# You have chosen a topic. Now return the url for that topic
def get_url_for_topic(stdscr):
curses.curs_set(0) # Hide the cursor
stdscr.clear()
stdscr.addstr(0, 0, "Choose a topic using the arrow keys (Press Enter to select):")
# Create a list of topics
topics = list(topic_urls.keys())
current_topic = 0
while True:
for i, topic in enumerate(topics):
if i == current_topic:
stdscr.addstr(i + 2, 2, f"> {topic}")
else:
stdscr.addstr(i + 2, 2, f" {topic}")
stdscr.refresh()
key = stdscr.getch()
if key == curses.KEY_DOWN and current_topic < len(topics) - 1:
current_topic += 1
elif key == curses.KEY_UP and current_topic > 0:
current_topic -= 1
elif key == 10: # Enter key
return topic_urls[topics[current_topic]]
# Get the last N URLs from an RSS feed
def getUrls(feed_url, n=20):
feed = feedparser.parse(feed_url)
entries = feed.entries[-n:]
urls = [entry.link for entry in entries]
return urls
# Often there are a bunch of ads and menus on pages for a news article. This uses newspaper3k to get just the text of just the article.
def getArticleText(url):
article = Article(url)
article.download()
article.parse()
return article.text
def get_summary(text):
systemPrompt = "Write a concise summary of the text, return your responses with 5 lines that cover the key points of the text given."
prompt = text
url = "http://localhost:11434/api/generate"
payload = {
"model": "mistral-openorca",
"prompt": prompt,
"system": systemPrompt,
"stream": False
}
payload_json = json.dumps(payload)
headers = {"Content-Type": "application/json"}
response = requests.post(url, data=payload_json, headers=headers)
return json.loads(response.text)["response"]
# Perform K-nearest neighbors (KNN) search
def knn_search(question_embedding, embeddings, k=5):
X = np.array([item['embedding'] for article in embeddings for item in article['embeddings']])
source_texts = [item['source'] for article in embeddings for item in article['embeddings']]
# Fit a KNN model on the embeddings
knn = NearestNeighbors(n_neighbors=k, metric='cosine')
knn.fit(X)
# Find the indices and distances of the k-nearest neighbors
distances, indices = knn.kneighbors(question_embedding, n_neighbors=k)
# Get the indices and source texts of the best matches
best_matches = [(indices[0][i], source_texts[indices[0][i]]) for i in range(k)]
return best_matches