Re-introduce the `llama` package (#5034)
* Re-introduce the llama package
This PR brings back the llama package, making it possible to call llama.cpp and
ggml APIs from Go directly via CGo. This has a few advantages:
- C APIs can be called directly from Go without needing to use the previous
"server" REST API
- On macOS and for CPU builds on Linux and Windows, Ollama can be built without
a go generate ./... step, making it easy to get up and running to hack on
parts of Ollama that don't require fast inference
- Faster build times for AVX,AVX2,CUDA and ROCM (a full build of all runners
takes <5 min on a fast CPU)
- No git submodule making it easier to clone and build from source
This is a big PR, but much of it is vendor code except for:
- llama.go CGo bindings
- example/: a simple example of running inference
- runner/: a subprocess server designed to replace the llm/ext_server package
- Makefile an as minimal as possible Makefile to build the runner package for
different targets (cpu, avx, avx2, cuda, rocm)
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
* cache: Clear old KV cache entries when evicting a slot
When forking a cache entry, if no empty slots are available we
evict the least recently used one and copy over the KV entries
from the closest match. However, this copy does not overwrite
existing values but only adds new ones. Therefore, we need to
clear the old slot first.
This change fixes two issues:
- The KV cache fills up and runs out of space even though we think
we are managing it correctly
- Performance gets worse over time as we use new cache entries that
are not hot in the processor caches
* doc: explain golang objc linker warning (#6830)
* llama: gather transitive dependencies for rocm for dist packaging (#6848)
* Refine go server makefiles to be more DRY (#6924)
This breaks up the monolithic Makefile for the Go based runners into a
set of utility files as well as recursive Makefiles for the runners.
Files starting with the name "Makefile" are buildable, while files that
end with ".make" are utilities to include in other Makefiles. This
reduces the amount of nearly identical targets and helps set a pattern
for future community contributions for new GPU runner architectures.
When we are ready to switch over to the Go runners, these files should
move to the top of the repo, and we should add targets for the main CLI,
as well as a helper "install" (put all the built binaries on the local
system in a runnable state) and "dist" target (generate the various
tar/zip files for distribution) for local developer use.
* llama: don't create extraneous directories (#6988)
* llama: Exercise the new build in CI (#6989)
Wire up some basic sanity testing in CI for the Go runner. GPU runners are not covered yet.
* llama: Refine developer docs for Go server (#6842)
This enhances the documentation for development focusing on the new Go
server. After we complete the transition further doc refinements
can remove the "transition" discussion.
* runner.go: Allocate batches for all sequences during init
We should tell the model that we could have full batches for all
sequences. We already do this when we allocate the batches but it was
missed during initialization.
* llama.go: Don't return nil from Tokenize on zero length input
Potentially receiving nil in a non-error condition is surprising to
most callers - it's better to return an empty slice.
* runner.go: Remove stop tokens from cache
If the last token is EOG then we don't return this and it isn't
present in the cache (because it was never submitted to Decode).
This works well for extending the cache entry with a new sequence.
However, for multi-token stop sequences, we won't return any of the
tokens but all but the last one will be in the cache. This means
when the conversation continues the cache will contain tokens that
don't overlap with the new prompt.
This works (we will pick up the portion where there is overlap) but
it causes unnecessary cache thrashing because we will fork the original
cache entry as it is not a perfect match.
By trimming the cache to the tokens that we actually return this
issue can be avoided.
* runner.go: Simplify flushing of pending tokens
* runner.go: Update TODOs
* runner.go: Don't panic when processing sequences
If there is an error processing a sequence, we should return a
clean HTTP error back to Ollama rather than panicing. This will
make us more resilient to transient failures.
Panics can still occur during startup as there is no way to serve
requests if that fails.
Co-authored-by: jmorganca <jmorganca@gmail.com>
* runner.go: More accurately capture timings
Currently prompt processing time doesn't capture the that it takes
to tokenize the input, only decoding time. We should capture the
full process to more accurately reflect reality. This is especially
true once we start processing images where the initial processing
can take significant time. This is also more consistent with the
existing C++ runner.
* runner.go: Support for vision models
In addition to bringing feature parity with the C++ runner, this also
incorporates several improvements:
- Cache prompting works with images, avoiding the need to re-decode
embeddings for every message in a conversation
- Parallelism is supported, avoiding the need to restrict to one
sequence at a time. (Though for now Ollama will not schedule
them while we might need to fall back to the old runner.)
Co-authored-by: jmorganca <jmorganca@gmail.com>
* runner.go: Move Unicode checking code and add tests
* runner.go: Export external cache members
Runner and cache are in the same package so the change doesn't
affect anything but it is more internally consistent.
* runner.go: Image embedding cache
Generating embeddings from images can take significant time (on
my machine between 100ms and 8s depending on the model). Although
we already cache the result of decoding these images, the embeddings
need to be regenerated every time. This is not necessary if we get
the same image over and over again, for example, during a conversation.
This currently uses a very small cache with a very simple algorithm
but it is easy to improve as is warranted.
* llama: catch up on patches
Carry forward solar-pro and cli-unicode patches
* runner.go: Don't re-allocate memory for every batch
We can reuse memory allocated from batch to batch since batch
size is fixed. This both saves the cost of reallocation as well
keeps the cache lines hot.
This results in a roughly 1% performance improvement for token
generation with Nvidia GPUs on Linux.
* runner.go: Default to classic input cache policy
The input cache as part of the go runner implemented a cache
policy that aims to maximize hit rate in both single and multi-
user scenarios. When there is a cache hit, the response is
very fast.
However, performance is actually slower when there is an input
cache miss due to worse GPU VRAM locality. This means that
performance is generally better overall for multi-user scenarios
(better input cache hit rate, locality was relatively poor already).
But worse for single users (input cache hit rate is about the same,
locality is now worse).
This defaults the policy back to the old one to avoid a regression
but keeps the new one available through an environment variable
OLLAMA_MULTIUSER_CACHE. This is left undocumented as the goal is
to improve this in the future to get the best of both worlds
without user configuration.
For inputs that result in cache misses, on Nvidia/Linux this
change improves performance by 31% for prompt processing and
13% for token generation.
* runner.go: Increase size of response channel
Generally the CPU can easily keep up with handling reponses that
are generated but there's no reason not to let generation continue
and handle things in larger batches if needed.
* llama: Add CI to verify all vendored changes have patches (#7066)
Make sure we don't accidentally merge changes in the vendored code
that aren't also reflected in the patches.
* llama: adjust clip patch for mingw utf-16 (#7065)
* llama: adjust clip patch for mingw utf-16
* llama: ensure static linking of runtime libs
Avoid runtime dependencies on non-standard libraries
* runner.go: Enable llamafile (all platforms) and BLAS (Mac OS)
These are two features that are shown on llama.cpp's system info
that are currently different between the two runners. On my test
systems the performance difference is very small to negligible
but it is probably still good to equalize the features.
* llm: Don't add BOS/EOS for tokenize requests
This is consistent with what server.cpp currently does. It affects
things like token processing counts for embedding requests.
* runner.go: Don't cache prompts for embeddings
Our integration with server.cpp implicitly disables prompt caching
because it is not part of the JSON object being parsed, this makes
the Go runner behavior similarly.
Prompt caching has been seen to affect the results of text completions
on certain hardware. The results are not wrong either way but they
are non-deterministic. However, embeddings seem to be affected even
on hardware that does not show this behavior for completions. For
now, it is best to maintain consistency with the existing behavior.
* runner.go: Adjust debug log levels
Add system info printed at startup and quiet down noisier logging.
* llama: fix compiler flag differences (#7082)
Adjust the flags for the new Go server to more closely match the
generate flow
* llama: refine developer docs (#7121)
* llama: doc and example clean up (#7122)
* llama: doc and example clean up
* llama: Move new dockerfile into llama dir
Temporary home until we fully transition to the Go server
* llama: runner doc cleanup
* llama.go: Add description for Tokenize error case
---------
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
Co-authored-by: Daniel Hiltgen <dhiltgen@users.noreply.github.com>
2024-10-08 15:53:54 +00:00
/**
2024-10-17 18:59:52 +00:00
* llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
Re-introduce the `llama` package (#5034)
* Re-introduce the llama package
This PR brings back the llama package, making it possible to call llama.cpp and
ggml APIs from Go directly via CGo. This has a few advantages:
- C APIs can be called directly from Go without needing to use the previous
"server" REST API
- On macOS and for CPU builds on Linux and Windows, Ollama can be built without
a go generate ./... step, making it easy to get up and running to hack on
parts of Ollama that don't require fast inference
- Faster build times for AVX,AVX2,CUDA and ROCM (a full build of all runners
takes <5 min on a fast CPU)
- No git submodule making it easier to clone and build from source
This is a big PR, but much of it is vendor code except for:
- llama.go CGo bindings
- example/: a simple example of running inference
- runner/: a subprocess server designed to replace the llm/ext_server package
- Makefile an as minimal as possible Makefile to build the runner package for
different targets (cpu, avx, avx2, cuda, rocm)
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
* cache: Clear old KV cache entries when evicting a slot
When forking a cache entry, if no empty slots are available we
evict the least recently used one and copy over the KV entries
from the closest match. However, this copy does not overwrite
existing values but only adds new ones. Therefore, we need to
clear the old slot first.
This change fixes two issues:
- The KV cache fills up and runs out of space even though we think
we are managing it correctly
- Performance gets worse over time as we use new cache entries that
are not hot in the processor caches
* doc: explain golang objc linker warning (#6830)
* llama: gather transitive dependencies for rocm for dist packaging (#6848)
* Refine go server makefiles to be more DRY (#6924)
This breaks up the monolithic Makefile for the Go based runners into a
set of utility files as well as recursive Makefiles for the runners.
Files starting with the name "Makefile" are buildable, while files that
end with ".make" are utilities to include in other Makefiles. This
reduces the amount of nearly identical targets and helps set a pattern
for future community contributions for new GPU runner architectures.
When we are ready to switch over to the Go runners, these files should
move to the top of the repo, and we should add targets for the main CLI,
as well as a helper "install" (put all the built binaries on the local
system in a runnable state) and "dist" target (generate the various
tar/zip files for distribution) for local developer use.
* llama: don't create extraneous directories (#6988)
* llama: Exercise the new build in CI (#6989)
Wire up some basic sanity testing in CI for the Go runner. GPU runners are not covered yet.
* llama: Refine developer docs for Go server (#6842)
This enhances the documentation for development focusing on the new Go
server. After we complete the transition further doc refinements
can remove the "transition" discussion.
* runner.go: Allocate batches for all sequences during init
We should tell the model that we could have full batches for all
sequences. We already do this when we allocate the batches but it was
missed during initialization.
* llama.go: Don't return nil from Tokenize on zero length input
Potentially receiving nil in a non-error condition is surprising to
most callers - it's better to return an empty slice.
* runner.go: Remove stop tokens from cache
If the last token is EOG then we don't return this and it isn't
present in the cache (because it was never submitted to Decode).
This works well for extending the cache entry with a new sequence.
However, for multi-token stop sequences, we won't return any of the
tokens but all but the last one will be in the cache. This means
when the conversation continues the cache will contain tokens that
don't overlap with the new prompt.
This works (we will pick up the portion where there is overlap) but
it causes unnecessary cache thrashing because we will fork the original
cache entry as it is not a perfect match.
By trimming the cache to the tokens that we actually return this
issue can be avoided.
* runner.go: Simplify flushing of pending tokens
* runner.go: Update TODOs
* runner.go: Don't panic when processing sequences
If there is an error processing a sequence, we should return a
clean HTTP error back to Ollama rather than panicing. This will
make us more resilient to transient failures.
Panics can still occur during startup as there is no way to serve
requests if that fails.
Co-authored-by: jmorganca <jmorganca@gmail.com>
* runner.go: More accurately capture timings
Currently prompt processing time doesn't capture the that it takes
to tokenize the input, only decoding time. We should capture the
full process to more accurately reflect reality. This is especially
true once we start processing images where the initial processing
can take significant time. This is also more consistent with the
existing C++ runner.
* runner.go: Support for vision models
In addition to bringing feature parity with the C++ runner, this also
incorporates several improvements:
- Cache prompting works with images, avoiding the need to re-decode
embeddings for every message in a conversation
- Parallelism is supported, avoiding the need to restrict to one
sequence at a time. (Though for now Ollama will not schedule
them while we might need to fall back to the old runner.)
Co-authored-by: jmorganca <jmorganca@gmail.com>
* runner.go: Move Unicode checking code and add tests
* runner.go: Export external cache members
Runner and cache are in the same package so the change doesn't
affect anything but it is more internally consistent.
* runner.go: Image embedding cache
Generating embeddings from images can take significant time (on
my machine between 100ms and 8s depending on the model). Although
we already cache the result of decoding these images, the embeddings
need to be regenerated every time. This is not necessary if we get
the same image over and over again, for example, during a conversation.
This currently uses a very small cache with a very simple algorithm
but it is easy to improve as is warranted.
* llama: catch up on patches
Carry forward solar-pro and cli-unicode patches
* runner.go: Don't re-allocate memory for every batch
We can reuse memory allocated from batch to batch since batch
size is fixed. This both saves the cost of reallocation as well
keeps the cache lines hot.
This results in a roughly 1% performance improvement for token
generation with Nvidia GPUs on Linux.
* runner.go: Default to classic input cache policy
The input cache as part of the go runner implemented a cache
policy that aims to maximize hit rate in both single and multi-
user scenarios. When there is a cache hit, the response is
very fast.
However, performance is actually slower when there is an input
cache miss due to worse GPU VRAM locality. This means that
performance is generally better overall for multi-user scenarios
(better input cache hit rate, locality was relatively poor already).
But worse for single users (input cache hit rate is about the same,
locality is now worse).
This defaults the policy back to the old one to avoid a regression
but keeps the new one available through an environment variable
OLLAMA_MULTIUSER_CACHE. This is left undocumented as the goal is
to improve this in the future to get the best of both worlds
without user configuration.
For inputs that result in cache misses, on Nvidia/Linux this
change improves performance by 31% for prompt processing and
13% for token generation.
* runner.go: Increase size of response channel
Generally the CPU can easily keep up with handling reponses that
are generated but there's no reason not to let generation continue
and handle things in larger batches if needed.
* llama: Add CI to verify all vendored changes have patches (#7066)
Make sure we don't accidentally merge changes in the vendored code
that aren't also reflected in the patches.
* llama: adjust clip patch for mingw utf-16 (#7065)
* llama: adjust clip patch for mingw utf-16
* llama: ensure static linking of runtime libs
Avoid runtime dependencies on non-standard libraries
* runner.go: Enable llamafile (all platforms) and BLAS (Mac OS)
These are two features that are shown on llama.cpp's system info
that are currently different between the two runners. On my test
systems the performance difference is very small to negligible
but it is probably still good to equalize the features.
* llm: Don't add BOS/EOS for tokenize requests
This is consistent with what server.cpp currently does. It affects
things like token processing counts for embedding requests.
* runner.go: Don't cache prompts for embeddings
Our integration with server.cpp implicitly disables prompt caching
because it is not part of the JSON object being parsed, this makes
the Go runner behavior similarly.
Prompt caching has been seen to affect the results of text completions
on certain hardware. The results are not wrong either way but they
are non-deterministic. However, embeddings seem to be affected even
on hardware that does not show this behavior for completions. For
now, it is best to maintain consistency with the existing behavior.
* runner.go: Adjust debug log levels
Add system info printed at startup and quiet down noisier logging.
* llama: fix compiler flag differences (#7082)
Adjust the flags for the new Go server to more closely match the
generate flow
* llama: refine developer docs (#7121)
* llama: doc and example clean up (#7122)
* llama: doc and example clean up
* llama: Move new dockerfile into llama dir
Temporary home until we fully transition to the Go server
* llama: runner doc cleanup
* llama.go: Add description for Tokenize error case
---------
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
Co-authored-by: Daniel Hiltgen <dhiltgen@users.noreply.github.com>
2024-10-08 15:53:54 +00:00
*
* MIT License
*
* Copyright (c) 2023-2024 The ggml authors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#pragma once
#include "common.cuh"
#include "vecdotq.cuh"
#include "mma.cuh"
#include <climits>
#include <cstdint>
#define MMQ_DP4A_MAX_BATCH_SIZE 64 // Max. batch size to use for dp4a MMQ kernels when FP16 tensor cores are available.
#define MMQ_ITER_K 256
#define MMQ_NWARPS 8
typedef void (*load_tiles_mmq_t)(const char * __restrict__ x, int * x_tile, const int & kbx0, const int & i_max, const int & stride);
typedef void (*vec_dot_mmq_t)(const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00);
typedef void (*mmq_write_back_t)(const float * __restrict__ sum, float * __restrict__ dst, const int & stride, const int & i_max, const int & j_max);
enum mmq_q8_1_ds_layout {
MMQ_Q8_1_DS_LAYOUT_D4,
MMQ_Q8_1_DS_LAYOUT_DS4,
MMQ_Q8_1_DS_LAYOUT_D2S6,
};
struct block_q8_1_mmq {
// The y float data is converted to a data layout that can simply be copied to shared memory as a contiguous block.
// The y float data is first grouped as blocks of 128 values.
// These blocks are then treated as individual data values and transposed.
//
// To avoid shared memory bank conflicts each block is padded with 16 bytes.
// This padding is also used to store block scales/partial sums.
// The scales multiplied with the quantized data are equal to the unquantized values.
// The partial sums are obtained by summing up a subgroup of the contained values (prior to quantization)
// and are only needed for performance reasons.
//
// The exact data stored depends on the x data type.
union {
float d4[4]; // 1 32 bit scale per 32 values, stored as d0,d1,d2,d3
half2 ds4[4]; // 1 16 bit scale + 1 16 bit partial sum per 32 values, stored as d0,s0,d1,s1,d2,s2,d3,s3
half d2s6[8]; // 1 16 bit scale per 64 values + 1 16 bit partial sum per 16 values for the first 96 values,
// stored as d0,d1,s1,s2,s3,s4,s5
};
int8_t qs[4*QK8_1]; // 128 values quantized to 8 bit each
};
static_assert(sizeof(block_q8_1_mmq) == 4*QK8_1 + 4*sizeof(half2), "Unexpected block_q8_1_mmq size");
static_assert(sizeof(block_q8_1_mmq) == 4*sizeof(block_q8_1), "Unexpected block_q8_1_mmq size");
static mmq_q8_1_ds_layout mmq_get_q8_1_ds_layout(const ggml_type type_x) {
switch (type_x) {
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
return MMQ_Q8_1_DS_LAYOUT_DS4;
case GGML_TYPE_Q5_0:
return MMQ_Q8_1_DS_LAYOUT_D4;
case GGML_TYPE_Q5_1:
return MMQ_Q8_1_DS_LAYOUT_DS4;
case GGML_TYPE_Q8_0:
return MMQ_Q8_1_DS_LAYOUT_D4;
case GGML_TYPE_Q2_K:
return MMQ_Q8_1_DS_LAYOUT_D2S6;
case GGML_TYPE_Q3_K:
return MMQ_Q8_1_DS_LAYOUT_D4;
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
return MMQ_Q8_1_DS_LAYOUT_DS4;
case GGML_TYPE_Q6_K:
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ2_S:
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ3_S:
return MMQ_Q8_1_DS_LAYOUT_D4;
case GGML_TYPE_IQ1_S:
return MMQ_Q8_1_DS_LAYOUT_DS4;
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ4_NL:
return MMQ_Q8_1_DS_LAYOUT_D4;
default:
GGML_ABORT("fatal error");
break;
}
}
struct tile_x_sizes {
int qs;
int dm;
int sc;
};
static constexpr int get_mmq_x_max_host(const int cc) {
return int8_mma_available(cc) ? 128 :
#ifdef GGML_CUDA_FORCE_MMQ
cc >= CC_VOLTA && cc < CC_OFFSET_AMD ? 128 : 64;
#else
cc >= CC_VOLTA && cc < CC_OFFSET_AMD ? MMQ_DP4A_MAX_BATCH_SIZE : 64;
#endif // GGML_CUDA_FORCE_MMQ
}
static constexpr __device__ int get_mmq_x_max_device() {
#ifdef INT8_MMA_AVAILABLE
return 128;
#else // INT8_MMA_AVAILABLE
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
return 128;
#else // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
#if __CUDA_ARCH__ >= CC_VOLTA
#ifdef GGML_CUDA_FORCE_MMQ
return MMQ_DP4A_MAX_BATCH_SIZE;
#else // GGML_CUDA_FORCE_MMQ
return 128;
#endif // GGML_CUDA_FORCE_MMQ
#else // __CUDA_ARCH__ >= CC_VOLTA
return 64;
#endif // __CUDA_ARCH__ >= CC_VOLTA
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
#endif // INT8_MMA_AVAILABLE
}
static constexpr int get_mmq_y_host(const int cc) {
return cc >= CC_OFFSET_AMD ? (cc == CC_RDNA1 ? 64 : 128) : (cc >= CC_VOLTA ? 128 : 64);
}
static constexpr __device__ int get_mmq_y_device() {
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
#if defined(RDNA1)
return 64;
#else
return 128;
#endif // defined RDNA1
#else
#if __CUDA_ARCH__ >= CC_VOLTA
return 128;
#else
return 64;
#endif // __CUDA_ARCH__ >= CC_VOLTA
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
}
#define MMQ_DP4A_TXS_Q4_0 tile_x_sizes{mmq_y*WARP_SIZE + mmq_y, mmq_y*WARP_SIZE/QI4_0 + mmq_y/QI4_0, 0}
#define MMQ_DP4A_TXS_Q4_1 tile_x_sizes{mmq_y*WARP_SIZE + mmq_y, mmq_y*WARP_SIZE/QI4_1 + mmq_y/QI4_1, 0}
#define MMQ_DP4A_TXS_Q8_0 tile_x_sizes{mmq_y*WARP_SIZE*2 + mmq_y, mmq_y*WARP_SIZE*2/QI8_0 + mmq_y/(QI8_0/2), 0}
#define MMQ_DP4A_TXS_Q8_0_16 tile_x_sizes{mmq_y*WARP_SIZE*2 + mmq_y, mmq_y*WARP_SIZE*4/QI8_0 + mmq_y/(QI8_0/4), 0}
#define MMQ_DP4A_TXS_Q8_1 tile_x_sizes{mmq_y*WARP_SIZE*2 + mmq_y, mmq_y*WARP_SIZE*2/QI8_1 + mmq_y/(QI8_1/2), 0}
#define MMQ_DP4A_TXS_Q2_K tile_x_sizes{mmq_y*WARP_SIZE*2 + mmq_y, mmq_y*WARP_SIZE + mmq_y, 0}
#define MMQ_DP4A_TXS_Q3_K tile_x_sizes{mmq_y*WARP_SIZE*2 + mmq_y, mmq_y, mmq_y*WARP_SIZE/8 + mmq_y/8}
#define MMQ_DP4A_TXS_Q4_K tile_x_sizes{mmq_y*WARP_SIZE + mmq_y, mmq_y*WARP_SIZE/QI4_K, mmq_y*WARP_SIZE/8 + mmq_y/8}
#define MMQ_DP4A_TXS_Q5_K tile_x_sizes{mmq_y*WARP_SIZE*2 + mmq_y, mmq_y*WARP_SIZE/QI5_K + mmq_y/QI5_K, mmq_y*WARP_SIZE/8 + mmq_y/8}
#define MMQ_DP4A_TXS_Q6_K tile_x_sizes{mmq_y*WARP_SIZE*2 + mmq_y, mmq_y*WARP_SIZE/QI6_K + mmq_y/QI6_K, mmq_y*WARP_SIZE/8 + mmq_y/8}
static constexpr __host__ __device__ tile_x_sizes mmq_get_dp4a_tile_x_sizes(ggml_type type, int mmq_y) {
return type == GGML_TYPE_Q4_0 ? MMQ_DP4A_TXS_Q4_0 :
type == GGML_TYPE_Q4_1 ? MMQ_DP4A_TXS_Q4_1 :
type == GGML_TYPE_Q5_0 ? MMQ_DP4A_TXS_Q8_0 :
type == GGML_TYPE_Q5_1 ? MMQ_DP4A_TXS_Q8_1 :
type == GGML_TYPE_Q8_0 ? MMQ_DP4A_TXS_Q8_0 :
type == GGML_TYPE_Q2_K ? MMQ_DP4A_TXS_Q2_K :
type == GGML_TYPE_Q3_K ? MMQ_DP4A_TXS_Q3_K :
type == GGML_TYPE_Q4_K ? MMQ_DP4A_TXS_Q4_K :
type == GGML_TYPE_Q5_K ? MMQ_DP4A_TXS_Q5_K :
type == GGML_TYPE_Q6_K ? MMQ_DP4A_TXS_Q6_K :
type == GGML_TYPE_IQ2_XXS ? MMQ_DP4A_TXS_Q8_0 :
type == GGML_TYPE_IQ2_XS ? MMQ_DP4A_TXS_Q8_0_16 :
type == GGML_TYPE_IQ2_S ? MMQ_DP4A_TXS_Q8_0_16 :
type == GGML_TYPE_IQ3_XXS ? MMQ_DP4A_TXS_Q8_0 :
type == GGML_TYPE_IQ3_S ? MMQ_DP4A_TXS_Q8_0 :
type == GGML_TYPE_IQ1_S ? MMQ_DP4A_TXS_Q8_0 :
type == GGML_TYPE_IQ4_XS ? MMQ_DP4A_TXS_Q8_0 :
type == GGML_TYPE_IQ4_NL ? MMQ_DP4A_TXS_Q8_0 :
tile_x_sizes{0, 0, 0};
}
#define MMQ_MMA_TILE_X_K_Q8_0 (2*WARP_SIZE + 2*WARP_SIZE/QI8_0 + 4)
#define MMQ_MMA_TILE_X_K_Q8_1 (2*WARP_SIZE + 2*WARP_SIZE/QI8_0 + 4)
#define MMQ_MMA_TILE_X_K_Q2_K (2*WARP_SIZE + WARP_SIZE + 4)
#define MMQ_MMA_TILE_X_K_Q3_K (2*WARP_SIZE + WARP_SIZE/2 + 4)
#define MMQ_MMA_TILE_X_K_Q6_K (2*WARP_SIZE + WARP_SIZE/QI6_K + WARP_SIZE/8 + 7)
static_assert(MMQ_MMA_TILE_X_K_Q8_0 % 8 == 4, "Wrong padding.");
static_assert(MMQ_MMA_TILE_X_K_Q8_1 % 8 == 4, "Wrong padding.");
static_assert(MMQ_MMA_TILE_X_K_Q2_K % 8 == 4, "Wrong padding.");
static_assert(MMQ_MMA_TILE_X_K_Q3_K % 8 == 4, "Wrong padding.");
static_assert(MMQ_MMA_TILE_X_K_Q6_K % 8 == 4, "Wrong padding.");
static constexpr __host__ __device__ int mmq_get_mma_tile_x_k(ggml_type type) {
return type == GGML_TYPE_Q4_0 ? MMQ_MMA_TILE_X_K_Q8_0 :
type == GGML_TYPE_Q4_1 ? MMQ_MMA_TILE_X_K_Q8_1 :
type == GGML_TYPE_Q5_0 ? MMQ_MMA_TILE_X_K_Q8_0 :
type == GGML_TYPE_Q5_1 ? MMQ_MMA_TILE_X_K_Q8_1 :
type == GGML_TYPE_Q8_0 ? MMQ_MMA_TILE_X_K_Q8_0 :
type == GGML_TYPE_Q2_K ? MMQ_MMA_TILE_X_K_Q2_K :
type == GGML_TYPE_Q3_K ? MMQ_MMA_TILE_X_K_Q3_K :
type == GGML_TYPE_Q4_K ? MMQ_MMA_TILE_X_K_Q8_1 :
type == GGML_TYPE_Q5_K ? MMQ_MMA_TILE_X_K_Q8_1 :
type == GGML_TYPE_Q6_K ? MMQ_MMA_TILE_X_K_Q6_K :
type == GGML_TYPE_IQ2_XXS ? MMQ_MMA_TILE_X_K_Q8_0 :
type == GGML_TYPE_IQ2_XS ? MMQ_MMA_TILE_X_K_Q3_K :
type == GGML_TYPE_IQ2_S ? MMQ_MMA_TILE_X_K_Q3_K :
type == GGML_TYPE_IQ3_XXS ? MMQ_MMA_TILE_X_K_Q8_0 :
type == GGML_TYPE_IQ3_S ? MMQ_MMA_TILE_X_K_Q8_0 :
type == GGML_TYPE_IQ1_S ? MMQ_MMA_TILE_X_K_Q8_0 :
type == GGML_TYPE_IQ4_XS ? MMQ_MMA_TILE_X_K_Q8_0 :
type == GGML_TYPE_IQ4_NL ? MMQ_MMA_TILE_X_K_Q8_0 :
0;
}
#define MMQ_TILE_Y_K (WARP_SIZE + WARP_SIZE/QI8_1)
static int mmq_get_granularity_host(const int mmq_x, const int cc) {
return int8_mma_available(cc) && mmq_x >= 48 ? 16 : 8;
}
#ifdef INT8_MMA_AVAILABLE
static constexpr __device__ int mmq_get_granularity_device(const int mmq_x) {
return mmq_x >= 48 ? 16 : 8;
}
#else
static constexpr __device__ int mmq_get_granularity_device(const int /* mmq_x */) {
return 8;
}
#endif // INT8_MMA_AVAILABLE
// ------------------------------------------------------------
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_0(
const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) {
#ifdef INT8_MMA_AVAILABLE
int * x_qs = (int *) x_tile;
float * x_df = (float *) (x_qs + 2*WARP_SIZE);
#else
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q4_0, mmq_y);
int * x_qs = (int *) x_tile;
float * x_df = (float *) (x_qs + txs.qs);
#endif // INT8_MMA_AVAILABLE
const int kbx = threadIdx.x / QI4_0;
const int kqsx = threadIdx.x % QI4_0;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
int i = i0 + threadIdx.y;
if (need_check) {
i = min(i, i_max);
}
const block_q4_0 * bxi = (const block_q4_0 *) x + kbx0 + i*stride + kbx;
const int qs0 = get_int_b2(bxi->qs, kqsx);
#ifdef INT8_MMA_AVAILABLE
x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + kbx*(2*QI4_0) + kqsx + 0] = __vsubss4((qs0 >> 0) & 0x0F0F0F0F, 0x08080808);
x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + kbx*(2*QI4_0) + kqsx + QI4_0] = __vsubss4((qs0 >> 4) & 0x0F0F0F0F, 0x08080808);
#else
x_qs[i*(WARP_SIZE + 1) + threadIdx.x] = qs0;
#endif // INT8_MMA_AVAILABLE
}
const int blocks_per_tile_x_row = WARP_SIZE / QI4_0;
const int kbxd = threadIdx.x % blocks_per_tile_x_row;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_0) {
int i = i0 + threadIdx.y * QI4_0 + threadIdx.x / blocks_per_tile_x_row;
if (need_check) {
i = min(i, i_max);
}
const block_q4_0 * bxi = (const block_q4_0 *) x + kbx0 + i*stride + kbxd;
#ifdef INT8_MMA_AVAILABLE
x_df[i*MMQ_MMA_TILE_X_K_Q8_0 + kbxd] = bxi->d;
#else
x_df[i*(WARP_SIZE/QI4_0) + i/QI4_0 + kbxd] = bxi->d;
#endif // INT8_MMA_AVAILABLE
}
}
template <int mmq_x, int mmq_y, int nwarps>
static __device__ __forceinline__ void vec_dot_q4_0_q8_1_dp4a(
const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) {
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q4_0, mmq_y);
const int * x_qs = (const int *) x;
const float * x_df = (const float *) x_qs + txs.qs;
const int * y_qs = (const int *) y + 4;
const half2 * y_ds = (const half2 *) y;
// #pragma unroll
for (int k01 = 0; k01 < WARP_SIZE; k01 += QR4_0*VDR_Q4_0_Q8_1_MMQ) {
const int k0 = k00 + k01;
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
const int j = j0 + threadIdx.y;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
const int kyqs = QI8_1 * ((k01/2) / (QI8_1/2)) + (k01/2) % (QI8_1/2);
int u[2*VDR_Q4_0_Q8_1_MMQ];
#pragma unroll
for (int l = 0; l < VDR_Q4_0_Q8_1_MMQ; ++l) {
u[2*l+0] = y_qs[j*MMQ_TILE_Y_K + kyqs + l];
u[2*l+1] = y_qs[j*MMQ_TILE_Y_K + kyqs + (l + QI4_0)];
}
sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMQ>
(&x_qs[i*(WARP_SIZE + 1) + k0/QR4_0], u,
x_df[i*(WARP_SIZE/QI4_0) + i/QI4_0 + k0/(QR4_0*QI4_0)], y_ds[j*MMQ_TILE_Y_K + k01/QI8_1]);
}
}
}
}
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_1(
const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) {
#ifdef INT8_MMA_AVAILABLE
int * x_qs = (int *) x_tile;
half2 * x_dm = (half2 *) (x_qs + 2*WARP_SIZE);
#else
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q4_1, mmq_y);
int * x_qs = (int *) x_tile;
half2 * x_dm = (half2 *) (x_qs + txs.qs);
#endif // INT8_MMA_AVAILABLE
const int kbx = threadIdx.x / QI4_1;
const int kqsx = threadIdx.x % QI4_1;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
int i = i0 + threadIdx.y;
if (need_check) {
i = min(i, i_max);
}
const block_q4_1 * bxi = (const block_q4_1 *) x + kbx0 + i*stride + kbx;
const int qs0 = get_int_b4(bxi->qs, kqsx);
#ifdef INT8_MMA_AVAILABLE
x_qs[i*MMQ_MMA_TILE_X_K_Q8_1 + kbx*(2*QI4_1) + kqsx + 0] = (qs0 >> 0) & 0x0F0F0F0F;
x_qs[i*MMQ_MMA_TILE_X_K_Q8_1 + kbx*(2*QI4_1) + kqsx + QI4_1] = (qs0 >> 4) & 0x0F0F0F0F;
#else
x_qs[i*(WARP_SIZE + 1) + threadIdx.x] = qs0;
#endif // INT8_MMA_AVAILABLE
}
const int blocks_per_tile_x_row = WARP_SIZE / QI4_1;
const int kbxd = threadIdx.x % blocks_per_tile_x_row;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_1) {
int i = i0 + threadIdx.y * QI4_1 + threadIdx.x / blocks_per_tile_x_row;
if (need_check) {
i = min(i, i_max);
}
const block_q4_1 * bxi = (const block_q4_1 *) x + kbx0 + i*stride + kbxd;
#ifdef INT8_MMA_AVAILABLE
x_dm[i*MMQ_MMA_TILE_X_K_Q8_1 + kbxd] = bxi->dm;
#else
x_dm[i*(WARP_SIZE/QI4_1) + i/QI4_1 + kbxd] = bxi->dm;
#endif // INT8_MMA_AVAILABLE
}
}
template <int mmq_x, int mmq_y, int nwarps>
static __device__ __forceinline__ void vec_dot_q4_1_q8_1_dp4a(
const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) {
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q4_1, mmq_y);
const int * x_qs = (const int *) x;
const half2 * x_dm = (const half2 *) x_qs + txs.qs;
const int * y_qs = (const int *) y + 4;
const half2 * y_ds = (const half2 *) y;
// #pragma unroll
for (int k01 = 0; k01 < WARP_SIZE; k01 += QR4_1*VDR_Q4_1_Q8_1_MMQ) {
const int k0 = k00 + k01;
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
const int j = j0 + threadIdx.y;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
const int kyqs = QI8_1 * ((k01/2) / (QI8_1/2)) + (k01/2) % (QI8_1/2);
int u[2*VDR_Q4_1_Q8_1_MMQ];
#pragma unroll
for (int l = 0; l < VDR_Q4_1_Q8_1_MMQ; ++l) {
u[2*l+0] = y_qs[j*MMQ_TILE_Y_K + kyqs + l];
u[2*l+1] = y_qs[j*MMQ_TILE_Y_K + kyqs + (l + QI4_1)];
}
sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMQ>
(&x_qs[i*(WARP_SIZE + 1) + k0/QR4_1], u,
x_dm[i*(WARP_SIZE/QI4_1) + i/QI4_1 + k0/(QR4_1*QI4_1)], y_ds[j*MMQ_TILE_Y_K + k01/QI8_1]);
}
}
}
}
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_0(
const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) {
#ifdef INT8_MMA_AVAILABLE
int * x_qs = (int *) x_tile;
float * x_df = (float *) (x_qs + WARP_SIZE*2);
#else
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q5_0, mmq_y);
int * x_qs = (int *) x_tile;
float * x_df = (float *) (x_qs + txs.qs);
#endif // INT8_MMA_AVAILABLE
const int kbx = threadIdx.x / QI5_0;
const int kqsx = threadIdx.x % QI5_0;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
int i = i0 + threadIdx.y;
if (need_check) {
i = min(i, i_max);
}
const block_q5_0 * bxi = (const block_q5_0 *) x + kbx0 + i*stride + kbx;
const int ql = get_int_b2(bxi->qs, kqsx);
const int qh = get_int_b2(bxi->qh, 0) >> (4 * (threadIdx.x % QI5_0));
int qs0 = (ql >> 0) & 0x0F0F0F0F;
qs0 |= (qh << 4) & 0x00000010; // 0 -> 4
qs0 |= (qh << 11) & 0x00001000; // 1 -> 12
qs0 |= (qh << 18) & 0x00100000; // 2 -> 20
qs0 |= (qh << 25) & 0x10000000; // 3 -> 28
qs0 = __vsubss4(qs0, 0x10101010); // subtract 16
int qs1 = (ql >> 4) & 0x0F0F0F0F;
qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4
qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12
qs1 |= (qh << 2) & 0x00100000; // 18 -> 20
qs1 |= (qh << 9) & 0x10000000; // 19 -> 28
qs1 = __vsubss4(qs1, 0x10101010); // subtract 16
#ifdef INT8_MMA_AVAILABLE
x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + kbx*(2*QI5_0) + kqsx + 0] = qs0;
x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + kbx*(2*QI5_0) + kqsx + QI5_0] = qs1;
#else
x_qs[i*(2*WARP_SIZE + 1) + kbx*(2*QI5_0) + kqsx + 0] = qs0;
x_qs[i*(2*WARP_SIZE + 1) + kbx*(2*QI5_0) + kqsx + QI5_0] = qs1;
#endif // INT8_MMA_AVAILABLE
}
const int blocks_per_tile_x_row = WARP_SIZE / QI5_0;
const int kbxd = threadIdx.x % blocks_per_tile_x_row;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_0) {
int i = i0 + threadIdx.y * QI5_0 + threadIdx.x / blocks_per_tile_x_row;
if (need_check) {
i = min(i, i_max);
}
const block_q5_0 * bxi = (const block_q5_0 *) x + kbx0 + i*stride + kbxd;
#ifdef INT8_MMA_AVAILABLE
x_df[i*MMQ_MMA_TILE_X_K_Q8_0 + kbxd] = bxi->d;
#else
x_df[i*(WARP_SIZE/QI5_0) + i/QI5_0 + kbxd] = bxi->d;
#endif // INT8_MMA_AVAILABLE
}
}
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_1(
const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) {
#ifdef INT8_MMA_AVAILABLE
int * x_qs = (int *) x_tile;
half2 * x_dm = (half2 *) (x_qs + 2*WARP_SIZE);
#else
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q5_1, mmq_y);
int * x_qs = (int *) x_tile;
half2 * x_dm = (half2 *) (x_qs + txs.qs);
#endif // INT8_MMA_AVAILABLE
const int kbx = threadIdx.x / QI5_1;
const int kqsx = threadIdx.x % QI5_1;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
int i = i0 + threadIdx.y;
if (need_check) {
i = min(i, i_max);
}
const block_q5_1 * bxi = (const block_q5_1 *) x + kbx0 + i*stride + kbx;
const int ql = get_int_b4(bxi->qs, kqsx);
const int qh = get_int_b4(bxi->qh, 0) >> (4 * (threadIdx.x % QI5_1));
int qs0 = (ql >> 0) & 0x0F0F0F0F;
qs0 |= (qh << 4) & 0x00000010; // 0 -> 4
qs0 |= (qh << 11) & 0x00001000; // 1 -> 12
qs0 |= (qh << 18) & 0x00100000; // 2 -> 20
qs0 |= (qh << 25) & 0x10000000; // 3 -> 28
int qs1 = (ql >> 4) & 0x0F0F0F0F;
qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4
qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12
qs1 |= (qh << 2) & 0x00100000; // 18 -> 20
qs1 |= (qh << 9) & 0x10000000; // 19 -> 28
#ifdef INT8_MMA_AVAILABLE
x_qs[i*MMQ_MMA_TILE_X_K_Q8_1 + kbx*(2*QI5_1) + kqsx + 0] = qs0;
x_qs[i*MMQ_MMA_TILE_X_K_Q8_1 + kbx*(2*QI5_1) + kqsx + QI5_1] = qs1;
#else
x_qs[i*(2*WARP_SIZE + 1) + kbx*(2*QI5_1) + kqsx + 0] = qs0;
x_qs[i*(2*WARP_SIZE + 1) + kbx*(2*QI5_1) + kqsx + QI5_1] = qs1;
#endif // INT8_MMA_AVAILABLE
}
const int blocks_per_tile_x_row = WARP_SIZE / QI5_1;
const int kbxd = threadIdx.x % blocks_per_tile_x_row;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_1) {
int i = i0 + threadIdx.y * QI5_1 + threadIdx.x / blocks_per_tile_x_row;
if (need_check) {
i = min(i, i_max);
}
const block_q5_1 * bxi = (const block_q5_1 *) x + kbx0 + i*stride + kbxd;
#ifdef INT8_MMA_AVAILABLE
x_dm[i*MMQ_MMA_TILE_X_K_Q8_1 + kbxd] = bxi->dm;
#else
x_dm[i*(WARP_SIZE/QI5_1) + i/QI5_1 + kbxd] = bxi->dm;
#endif // INT8_MMA_AVAILABLE
}
}
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q8_0(
const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) {
#ifdef INT8_MMA_AVAILABLE
int * x_qs = (int *) x_tile;
float * x_df = (float *) (x_tile + 2*WARP_SIZE);
#else
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q8_0, mmq_y);
int * x_qs = (int *) x_tile;
float * x_df = (float *) (x_qs + txs.qs);
#endif // INT8_MMA_AVAILABLE
const int kbx = threadIdx.x / QI8_0;
const int kqsx = threadIdx.x % QI8_0;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
int i = i0 + threadIdx.y;
if (need_check) {
i = min(i, i_max);
}
const block_q8_0 * bxi = (const block_q8_0 *) x + kbx0 + i*stride + kbx;
#ifdef INT8_MMA_AVAILABLE
x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + 0 + threadIdx.x] = get_int_b2(bxi[0].qs, kqsx);
x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + WARP_SIZE + threadIdx.x] = get_int_b2(bxi[WARP_SIZE/QI8_0].qs, kqsx);
#else
x_qs[i*(2*WARP_SIZE + 1) + 0 + threadIdx.x] = get_int_b2(bxi[0].qs, kqsx);
x_qs[i*(2*WARP_SIZE + 1) + WARP_SIZE + threadIdx.x] = get_int_b2(bxi[WARP_SIZE/QI8_0].qs, kqsx);
#endif // INT8_MMA_AVAILABLE
}
const int blocks_per_tile_x_row = 2*WARP_SIZE / QI8_0;
const int kbxd = threadIdx.x % blocks_per_tile_x_row;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI8_0/2) {
int i = i0 + threadIdx.y * (QI8_0/2) + threadIdx.x / blocks_per_tile_x_row;
if (need_check) {
i = min(i, i_max);
}
const block_q8_0 * bxi = (const block_q8_0 *) x + kbx0 + i*stride + kbxd;
#ifdef INT8_MMA_AVAILABLE
x_df[i*MMQ_MMA_TILE_X_K_Q8_0 + kbxd] = bxi->d;
#else
x_df[i*(2*WARP_SIZE/QI8_0) + i/(QI8_0/2) + kbxd] = bxi->d;
#endif // INT8_MMA_AVAILABLE
}
}
template <int mmq_x, int mmq_y, int nwarps>
static __device__ __forceinline__ void vec_dot_q8_0_q8_1_dp4a(
const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) {
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q8_0, mmq_y);
const int * x_qs = (const int *) x;
const float * x_df = (const float *) x_qs + txs.qs;
const int * y_qs = (const int *) y + 4;
const float * y_df = (const float *) y;
// #pragma unroll
for (int k01 = 0; k01 < WARP_SIZE; k01 += VDR_Q8_0_Q8_1_MMQ) {
const int k0 = k00 + k01;
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
const int j = j0 + threadIdx.y;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q8_0_q8_1_impl<float, VDR_Q8_0_Q8_1_MMQ>
(&x_qs[i*(2*WARP_SIZE + 1) + k0], &y_qs[j*MMQ_TILE_Y_K + k0 % WARP_SIZE],
x_df[i*(2*WARP_SIZE/QI8_0) + i/(QI8_0/2) + k0/QI8_0], y_df[j*MMQ_TILE_Y_K + (k0/QI8_1) % (WARP_SIZE/QI8_1)]);
}
}
}
}
template <int mmq_x, int mmq_y, int nwarps, mmq_q8_1_ds_layout ds_layout>
static __device__ __forceinline__ void vec_dot_q8_0_q8_1_mma(
const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) {
typedef mma_int_A_I16K8 mma_A;
typedef mma_int_B_J8K8 mma_B;
typedef mma_int_C_I16J8 mma_C;
constexpr int granularity = mmq_get_granularity_device(mmq_x);
constexpr int rows_per_warp = 2 * granularity;
constexpr int ntx = rows_per_warp/mma_C::I; // Number of x minitiles per warp.
y += (threadIdx.y % ntx) * (mma_B::J*MMQ_TILE_Y_K);
const int * x_qs = (const int *) x;
const float * x_df = (const float *) x_qs + 2*WARP_SIZE;
const int * y_qs = (const int *) y + 4;
const float * y_df = (const float *) y;
const half2 * y_ds = (const half2 *) y;
mma_A A[ntx][WARP_SIZE/QI8_0];
float dA[ntx][mma_C::ne/2][WARP_SIZE/QI8_0];
const int i0 = (threadIdx.y/ntx)*rows_per_warp;
#pragma unroll
for (int n = 0; n < ntx; ++n) {
#pragma unroll
for (int k01 = 0; k01 < WARP_SIZE; k01 += QI8_0) {
const int k0 = k00 + k01;
A[n][k01/QI8_0].load(x_qs + (i0 + n*mma_A::I)*MMQ_MMA_TILE_X_K_Q8_0 + k0, MMQ_MMA_TILE_X_K_Q8_0);
}
#pragma unroll
for (int l = 0; l < mma_C::ne/2; ++l) {
const int i = i0 + n*mma_A::I + mma_C::get_i(2*l);
#pragma unroll
for (int k01 = 0; k01 < WARP_SIZE; k01 += QI8_0) {
const int k0 = k00 + k01;
dA[n][l][k01/QI8_0] = x_df[i*MMQ_MMA_TILE_X_K_Q8_0 + k0/QI8_0];
}
}
}
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += ntx*mma_C::J) {
#pragma unroll
for (int k01 = 0; k01 < WARP_SIZE; k01 += QI8_0) {
mma_B B;
float dB[mma_C::ne/2];
B.load(y_qs + j0*MMQ_TILE_Y_K + k01, MMQ_TILE_Y_K);
#pragma unroll
for (int l = 0; l < mma_C::ne/2; ++l) {
const int j = j0 + mma_C::get_j(l);
if (ds_layout == MMQ_Q8_1_DS_LAYOUT_D4) {
dB[l] = y_df[j*MMQ_TILE_Y_K + k01/QI8_1];
} else {
dB[l] = __low2float(y_ds[j*MMQ_TILE_Y_K + k01/QI8_1]);
}
}
#pragma unroll
for (int n = 0; n < ntx; ++n) {
mma_C C;
C.mma_K8(A[n][k01/QI8_0], B);
#pragma unroll
for (int l = 0; l < mma_C::ne; ++l) {
sum[(j0/mma_C::J + n)*mma_C::ne + l] += C.x[l]*dA[n][l/2][k01/QI8_0]*dB[l%2];
}
}
}
}
}
template <int mmq_x, int mmq_y, int nwarps>
static __device__ __forceinline__ void vec_dot_q8_1_q8_1_dp4a(
const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) {
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q5_1, mmq_y);
const int * x_qs = (const int *) x;
const half2 * x_dm = (const half2 *) x_qs + txs.qs;
const int * y_qs = (const int *) y + 4;
const half2 * y_ds = (const half2 *) y;
// #pragma unroll
for (int k01 = 0; k01 < WARP_SIZE; k01 += VDR_Q8_0_Q8_1_MMQ) {
const int k0 = k00 + k01;
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
const int j = j0 + threadIdx.y;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q8_1_q8_1_impl<QR5_1*VDR_Q5_1_Q8_1_MMQ>
(&x_qs[i*(2*WARP_SIZE + 1) + k0], &y_qs[j*MMQ_TILE_Y_K + k01],
x_dm[i*(WARP_SIZE/QI5_1) + i/QI5_1 + k0/QI8_1], y_ds[j*MMQ_TILE_Y_K + k01/QI8_1]);
}
}
}
}
template <int mmq_x, int mmq_y, int nwarps>
static __device__ __forceinline__ void vec_dot_q8_1_q8_1_mma(
const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) {
typedef mma_int_A_I16K8 mma_A;
typedef mma_int_B_J8K8 mma_B;
typedef mma_int_C_I16J8 mma_C;
constexpr int granularity = mmq_get_granularity_device(mmq_x);
constexpr int rows_per_warp = 2 * granularity;
constexpr int ntx = rows_per_warp/mma_C::I; // Number of x minitiles per warp.
y += (threadIdx.y % ntx) * (mma_B::J*MMQ_TILE_Y_K);
const int * x_qs = (const int *) x;
const half2 * x_dm = (const half2 *) x_qs + 2*WARP_SIZE;
const int * y_qs = (const int *) y + 4;
const half2 * y_dm = (const half2 *) y;
mma_A A[ntx][WARP_SIZE/QI8_1];
float2 dmA[ntx][mma_C::ne/2][WARP_SIZE/QI8_1];
const int i0 = (threadIdx.y/ntx)*rows_per_warp;
#pragma unroll
for (int n = 0; n < ntx; ++n) {
#pragma unroll
for (int k01 = 0; k01 < WARP_SIZE; k01 += QI8_1) {
const int k0 = k00 + k01;
A[n][k01/QI8_1].load(x_qs + (i0 + n*mma_A::I)*MMQ_MMA_TILE_X_K_Q8_1 + k0, MMQ_MMA_TILE_X_K_Q8_1);
}
#pragma unroll
for (int l = 0; l < mma_C::ne/2; ++l) {
const int i = i0 + n*mma_A::I + mma_C::get_i(2*l);
#pragma unroll
for (int k01 = 0; k01 < WARP_SIZE; k01 += QI8_1) {
const int k0 = k00 + k01;
dmA[n][l][k01/QI8_1] = __half22float2(x_dm[i*MMQ_MMA_TILE_X_K_Q8_1 + k0/QI8_1]);
}
}
}
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += ntx*mma_C::J) {
#pragma unroll
for (int k01 = 0; k01 < WARP_SIZE; k01 += QI8_1) {
mma_B B;
float2 dsB[mma_C::ne/2];
B.load(y_qs + j0*MMQ_TILE_Y_K + k01, MMQ_TILE_Y_K);
#pragma unroll
for (int l = 0; l < mma_C::ne/2; ++l) {
const int j = j0 + mma_C::get_j(l);
dsB[l] = __half22float2(y_dm[j*MMQ_TILE_Y_K + k01/QI8_1]);
}
#pragma unroll
for (int n = 0; n < ntx; ++n) {
mma_C C;
C.mma_K8(A[n][k01/QI8_1], B);
#pragma unroll
for (int l = 0; l < mma_C::ne; ++l) {
sum[(j0/mma_C::J + n)*mma_C::ne + l] += dmA[n][l/2][k01/QI8_1].x*dsB[l%2].x*C.x[l];
sum[(j0/mma_C::J + n)*mma_C::ne + l] += dmA[n][l/2][k01/QI8_1].y*dsB[l%2].y;
}
}
}
}
}
template <int mmq_x, int mmq_y, int nwarps>
static __device__ __forceinline__ void vec_dot_q8_0_16_q8_1_dp4a(
const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) {
constexpr tile_x_sizes txs = MMQ_DP4A_TXS_Q8_0_16;
const int * x_qs = (const int *) x;
const float * x_df = (const float *) x_qs + txs.qs;
const int * y_qs = (const int *) y + 4;
const float * y_df = (const float *) y;
// #pragma unroll
for (int k01 = 0; k01 < WARP_SIZE; k01 += QI8_0) {
const int k0 = k00 + k01;
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
const int j = j0 + threadIdx.y;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q8_0_16_q8_1_impl<QI8_0>(
&x_qs[i*(2*WARP_SIZE + 1) + k0],
&y_qs[j*MMQ_TILE_Y_K + k01],
&x_df[i*(2*WARP_SIZE*2/QI8_0) + i/(QI8_0/4) + k0/(QI8_0/2)],
y_df[j*MMQ_TILE_Y_K + k01/QI8_1]);
}
}
}
}
template <int mmq_x, int mmq_y, int nwarps>
static __device__ __forceinline__ void vec_dot_q8_0_16_q8_1_mma(
const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) {
#ifdef INT8_MMA_AVAILABLE
typedef mma_int_A_I16K4 mma_A;
typedef mma_int_A_I16K8 mma_A_K8;
typedef mma_int_B_J8K4 mma_B;
typedef mma_int_C_I16J8 mma_C;
constexpr int granularity = mmq_get_granularity_device(mmq_x);
constexpr int rows_per_warp = 2 * granularity;
constexpr int ntx = rows_per_warp/mma_C::I; // Number of x minitiles per warp.
y += (threadIdx.y % ntx) * (mma_B::J*MMQ_TILE_Y_K);
const int * x_qs = (const int *) x;
const float * x_df = (const float *) x_qs + WARP_SIZE*2;
const int * y_qs = (const int *) y + 4;
const float * y_df = (const float *) y;
const int i0 = (threadIdx.y / ntx) * (ntx*mma_A::I);
mma_A A[ntx][8];
float dA[ntx][mma_C::ne/2][8];
#pragma unroll
for (int n = 0; n < ntx; ++n) {
#pragma unroll
for (int k01 = 0; k01 < WARP_SIZE; k01 += 8) {
const int k0 = k00 + k01;
((mma_A_K8 *) A[n])[k01/8].load(x_qs + (i0 + n*mma_A::I)*MMQ_MMA_TILE_X_K_Q3_K + k0, MMQ_MMA_TILE_X_K_Q3_K);
}
#pragma unroll
for (int l = 0; l < mma_C::ne/2; ++l) {
const int i = i0 + n*mma_C::I + mma_C::get_i(2*l);
#pragma unroll
for (int k01 = 0; k01 < WARP_SIZE; k01 += 4) {
const int k0 = k00 + k01;
dA[n][l][k01/4] = x_df[i*MMQ_MMA_TILE_X_K_Q3_K + k0/4];
}
}
}
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += ntx*mma_C::J) {
#pragma unroll
for (int k01 = 0; k01 < WARP_SIZE; k01 += QR3_K*VDR_Q3_K_Q8_1_MMQ) {
mma_B B[2];
float dB[mma_C::ne/2];
B[0].load(y_qs + j0*MMQ_TILE_Y_K + (k01 + 0), MMQ_TILE_Y_K);
B[1].load(y_qs + j0*MMQ_TILE_Y_K + (k01 + mma_B::K), MMQ_TILE_Y_K);
#pragma unroll
for (int l = 0; l < mma_C::ne/2; ++l) {
const int j = j0 + mma_C::get_j(l);
dB[l] = y_df[j*MMQ_TILE_Y_K + k01/QI8_1];
}
#pragma unroll
for (int n = 0; n < ntx; ++n) {
mma_C C[2];
C[0].mma_K4(A[n][k01/4 + 0], B[0]);
C[1].mma_K4(A[n][k01/4 + 1], B[1]);
#pragma unroll
for (int l = 0; l < mma_C::ne; ++l) {
sum[(j0/mma_C::J + n)*mma_C::ne + l] += dB[l%2]*(C[0].x[l]*dA[n][l/2][k01/4 + 0] + C[1].x[l]*dA[n][l/2][k01/4 + 1]);
}
}
}
}
#else
GGML_UNUSED(x); GGML_UNUSED(y); GGML_UNUSED(sum);
NO_DEVICE_CODE;
#endif // INT8_MMA_AVAILABLE
}
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q2_K(
const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) {
#ifdef INT8_MMA_AVAILABLE
int * x_qs = (int *) x_tile;
half2 * x_dm = (half2 *) (x_qs + 2*WARP_SIZE);
#else
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q2_K, mmq_y);
int * x_qs = (int *) x_tile;
half2 * x_dm = (half2 *) (x_qs + txs.qs);
#endif // INT8_MMA_AVAILABLE
const int kqsx = threadIdx.x % QI2_K;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * WARP_SIZE/QI2_K) {
int i = i0 + threadIdx.y*(WARP_SIZE/QI2_K) + threadIdx.x/QI2_K;
if (need_check) {
i = min(i, i_max);
}
const block_q2_K * bxi = (const block_q2_K *) x + kbx0 + i*stride;
const int x_ql_0 = get_int_b2(bxi->qs, kqsx);
#pragma unroll
for (int l = 0; l < QR2_K; ++l) {
const int k = (kqsx/8)*32 + l*8 + kqsx % 8;
const int x_qs_k = (x_ql_0 >> (2*l)) & 0x03030303;
#ifdef INT8_MMA_AVAILABLE
x_qs[i*MMQ_MMA_TILE_X_K_Q2_K + k] = x_qs_k;
#else
x_qs[i*(2*WARP_SIZE + 1) + k] = x_qs_k;
#endif // INT8_MMA_AVAILABLE
}
const int sc_m = bxi->scales[kqsx];
#ifdef FAST_FP16_AVAILABLE
const half2 x_dm_ik = __hmul2(bxi->dm, make_half2(sc_m & 0x0F, sc_m >> 4));
#else
const float2 bxi_dmf = __half22float2(bxi->dm);
const half2 x_dm_ik = make_half2(bxi_dmf.x*(sc_m & 0x0F), bxi_dmf.y*(sc_m >> 4));
#endif // FAST_FP16_AVAILABLE
#ifdef INT8_MMA_AVAILABLE
x_dm[i*MMQ_MMA_TILE_X_K_Q2_K + kqsx] = x_dm_ik;
#else
x_dm[i*(WARP_SIZE + 1) + kqsx] = x_dm_ik;
#endif // INT8_MMA_AVAILABLE
}
}
template <int mmq_x, int mmq_y, int nwarps>
static __device__ __forceinline__ void vec_dot_q2_K_q8_1_dp4a(
const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) {
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q2_K, mmq_y);
const int * x_qs = (const int *) x;
const half2 * x_dm = (const half2 *) x_qs + txs.qs;
const int * y_qs = (const int *) y + 4;
const half2 * y_ds = (const half2 *) y;
float2 y_df[mmq_x/nwarps];
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
const int j = j0 + threadIdx.y;
y_df[j0/nwarps] = __half22float2(y_ds[j*MMQ_TILE_Y_K]);
}
#pragma unroll
for (int k01 = 0; k01 < WARP_SIZE; k01 += QR2_K*VDR_Q2_K_Q8_1_MMQ) {
const int k0 = k00 + k01;
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
const int j = j0 + threadIdx.y;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
if (k01 < WARP_SIZE/2) {
constexpr int ns = 2;
sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q2_K_q8_1_impl_mmq<ns>(
&x_qs[i*(2*WARP_SIZE + 1) + k0], &y_qs[j*MMQ_TILE_Y_K + k01],
&x_dm[i*(WARP_SIZE + 1) + k0/4], k01 < WARP_SIZE/2 ? y_df[j0/nwarps].x : y_df[j0/nwarps].y,
&y_ds[j*MMQ_TILE_Y_K + (1 + k01/QI8_1)]);
} else {
constexpr int ns = 1;
sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q2_K_q8_1_impl_mmq<ns>(
&x_qs[i*(2*WARP_SIZE + 1) + k0], &y_qs[j*MMQ_TILE_Y_K + k01],
&x_dm[i*(WARP_SIZE + 1) + k0/4], k01 < WARP_SIZE/2 ? y_df[j0/nwarps].x : y_df[j0/nwarps].y,
&y_ds[j*MMQ_TILE_Y_K + (1 + k01/QI8_1)]);
}
}
}
}
}
template <int mmq_x, int mmq_y, int nwarps>
static __device__ __forceinline__ void vec_dot_q2_K_q8_1_mma(
const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) {
#ifdef INT8_MMA_AVAILABLE
typedef mma_int_A_I16K4 mma_A;
typedef mma_int_A_I16K8 mma_A_K8;
typedef mma_int_B_J8K4 mma_B;
typedef mma_int_C_I16J8 mma_C;
constexpr int granularity = mmq_get_granularity_device(mmq_x);
constexpr int rows_per_warp = 2 * granularity;
constexpr int ntx = rows_per_warp/mma_C::I; // Number of x minitiles per warp.
y += (threadIdx.y % ntx) * (mma_B::J*MMQ_TILE_Y_K);
const int * x_qs = (const int *) x;
const half2 * x_dm = (const half2 *) x_qs + WARP_SIZE*2;
const int * y_qs = (const int *) y + 4;
const half2 * y_ds = (const half2 *) y;
const int i0 = (threadIdx.y / ntx) * (ntx*mma_A::I);
mma_A A[ntx][8];
float dA[ntx][mma_C::ne/2][8];
float mA[ntx][mma_C::ne/2][8];
#pragma unroll
for (int n = 0; n < ntx; ++n) {
#pragma unroll
for (int k01 = 0; k01 < WARP_SIZE; k01 += QI8_1) {
const int k0 = k00 + k01;
((mma_A_K8 *) A[n])[k01/QI8_1].load(x_qs + (i0 + n*mma_A::I)*MMQ_MMA_TILE_X_K_Q2_K + k0, MMQ_MMA_TILE_X_K_Q2_K);
}
}
#pragma unroll
for (int n = 0; n < ntx; ++n) {
#pragma unroll
for (int l = 0; l < mma_C::ne/2; ++l) {
const int i = i0 + n*mma_C::I + mma_C::get_i(2*l);
#pragma unroll
for (int k01 = 0; k01 < WARP_SIZE; k01 += QI8_1/2) {
const int k0 = k00 + k01;
const float2 dm = __half22float2(x_dm[i*MMQ_MMA_TILE_X_K_Q2_K + k0/(QI8_1/2)]);
dA[n][l][k01/(QI8_1/2)] = dm.x;
mA[n][l][k01/(QI8_1/2)] = dm.y;
}
}
}
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += ntx*mma_C::J) {
float2 dB[mma_C::ne/2];
#pragma unroll
for (int l = 0; l < mma_C::ne/2; ++l) {
const int j = j0 + mma_C::get_j(l);
dB[l] = __half22float2(y_ds[j*MMQ_TILE_Y_K]);
}
#pragma unroll
for (int k01 = 0; k01 < WARP_SIZE; k01 += QI8_1) {
mma_B B[2];
B[0].load(y_qs + j0*MMQ_TILE_Y_K + (k01 + 0), MMQ_TILE_Y_K);
B[1].load(y_qs + j0*MMQ_TILE_Y_K + (k01 + mma_B::K), MMQ_TILE_Y_K);
mma_C Cm[2];
if (k01 >= WARP_SIZE * 3/4) {
mma_A A1;
A1.x[0] = 0x01010101;
A1.x[1] = 0x01010101;
Cm[0].mma_K4(A1, B[0]);
Cm[1].mma_K4(A1, B[1]);
}
#pragma unroll
for (int n = 0; n < ntx; ++n) {
mma_C Cd[2];
Cd[0].mma_K4(A[n][k01/4 + 0], B[0]);
Cd[1].mma_K4(A[n][k01/4 + 1], B[1]);
#pragma unroll
for (int l = 0; l < mma_C::ne; ++l) {
float tmp = Cd[0].x[l]*dA[n][l/2][k01/4 + 0] + Cd[1].x[l]*dA[n][l/2][k01/4 + 1];
if (k01 >= WARP_SIZE * 3/4) {
tmp -= Cm[0].x[l]*mA[n][l/2][k01/4 + 0] + Cm[1].x[l]*mA[n][l/2][k01/4 + 1];
}
sum[(j0/mma_C::J + n)*mma_C::ne + l] += tmp*(k01 < WARP_SIZE/2 ? dB[l%2].x : dB[l%2].y);
}
}
}
#pragma unroll
for (int k01 = 0; k01 < WARP_SIZE * 3/4; k01 += QI8_1) {
float2 sB[mma_C::ne/2];
#pragma unroll
for (int l = 0; l < mma_C::ne/2; ++l) {
const int j = j0 + mma_C::get_j(l);
sB[l] = __half22float2(y_ds[j*MMQ_TILE_Y_K + (1 + k01/QI8_1)]);
}
#pragma unroll
for (int n = 0; n < ntx; ++n) {
#pragma unroll
for (int l = 0; l < mma_C::ne; ++l) {
sum[(j0/mma_C::J + n)*mma_C::ne + l] -= mA[n][l/2][k01/4 + 0]*sB[l%2].x;
sum[(j0/mma_C::J + n)*mma_C::ne + l] -= mA[n][l/2][k01/4 + 1]*sB[l%2].y;
}
}
}
}
#else
GGML_UNUSED(x); GGML_UNUSED(y); GGML_UNUSED(sum);
NO_DEVICE_CODE;
#endif // INT8_MMA_AVAILABLE
}
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q3_K(
const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) {
#ifdef INT8_MMA_AVAILABLE
int * x_qs = (int *) x_tile;
float * x_df = (float *) (x_qs + WARP_SIZE*2);
#else
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q3_K, mmq_y);
int * x_qs = (int *) x_tile;
float * x_df = (float *) (x_qs + txs.qs);
int * x_sc = (int *) (x_df + txs.dm);
#endif // INT8_MMA_AVAILABLE
const int kqsx = threadIdx.x % QI3_K;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * WARP_SIZE/QI3_K) {
int i = i0 + threadIdx.y * (WARP_SIZE/QI3_K) + threadIdx.x / QI3_K;
if (need_check) {
i = min(i, i_max);
}
const block_q3_K * bxi = (const block_q3_K *) x + kbx0 + i*stride;
const int x_ql_0 = get_int_b2(bxi->qs, kqsx);
const int x_qh_0 = get_int_b2(bxi->hmask, kqsx % (QI3_K/2)) >> (4 * (kqsx / (QI3_K/2)));
#pragma unroll
for (int l = 0; l < QR3_K; ++l) {
const int k = (kqsx/8)*32 + l*8 + kqsx % 8;
const int x_ql_k = (x_ql_0 >> (2*l)) & 0x03030303;
const int x_qh_k = ((x_qh_0 >> l) << 2) & 0x04040404;
const int x_qs_k = __vsubss4(x_ql_k | x_qh_k, 0x04040404);
#ifdef INT8_MMA_AVAILABLE
x_qs[i*MMQ_MMA_TILE_X_K_Q3_K + k] = x_qs_k;
#else
x_qs[i*(2*WARP_SIZE + 1) + k] = x_qs_k;
#endif // INT8_MMA_AVAILABLE
}
}
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps*8) {
int i = i0 + threadIdx.y*8 + threadIdx.x/(WARP_SIZE/8);
if (need_check) {
i = min(i, i_max);
}
const block_q3_K * bxi = (const block_q3_K *) x + kbx0 + i*stride;
const int ksc = threadIdx.x % (WARP_SIZE/8);
const int ksc_low = ksc % (QI3_K/8);
const int shift_low = 4 * (ksc / (QI3_K/8));
const int sc_low = (get_int_b2(bxi->scales, ksc_low) >> shift_low) & 0x0F0F0F0F;
const int ksc_high = QI3_K/8;
const int shift_high = 2 * ksc;
const int sc_high = ((get_int_b2(bxi->scales, ksc_high) >> shift_high) << 4) & 0x30303030;
const int sc = __vsubss4(sc_low | sc_high, 0x20202020);
#ifdef INT8_MMA_AVAILABLE
const int8_t * sc8 = (const int8_t *) ≻
const float d = bxi->d;
#pragma unroll
for (int l = 0; l < sizeof(int); ++l) {
x_df[i*MMQ_MMA_TILE_X_K_Q3_K + sizeof(int)*(threadIdx.x % (WARP_SIZE/8)) + l] = d*sc8[l];
}
#else
x_sc[i*(WARP_SIZE/8) + i/8 + threadIdx.x % (WARP_SIZE/8)] = sc;
#endif // INT8_MMA_AVAILABLE
}
#ifndef INT8_MMA_AVAILABLE
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps*WARP_SIZE) {
int i = (i0 + threadIdx.y*WARP_SIZE + threadIdx.x) % mmq_y;
if (need_check) {
i = min(i, i_max);
}
const block_q3_K * bxi = (const block_q3_K *) x + kbx0 + i*stride;
x_df[i] = bxi->d;
}
#endif // INT8_MMA_AVAILABLE
}
template <int mmq_x, int mmq_y, int nwarps>
static __device__ __forceinline__ void vec_dot_q3_K_q8_1_dp4a(
const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) {
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q3_K, mmq_y);
const int * x_qs = (const int *) x;
const float * x_df = (const float *) x_qs + txs.qs;
const int * x_sc = (const int *) x_df + txs.dm;
const int * y_qs = (const int *) y + 4;
const float * y_df = (const float *) y;
// #pragma unroll
for (int k01 = 0; k01 < WARP_SIZE; k01 += QR3_K*VDR_Q3_K_Q8_1_MMQ) {
const int k0 = k00 + k01;
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
const int j = j0 + threadIdx.y;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
const int8_t * scales = ((const int8_t *) (x_sc + i*(WARP_SIZE/8) + i/8)) + k0/4;
sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q3_K_q8_1_impl_mmq(
&x_qs[i*(2*WARP_SIZE + 1) + k0], &y_qs[j*MMQ_TILE_Y_K + k01], scales,
x_df[i], y_df[j*MMQ_TILE_Y_K + k01/QI8_1]);
}
}
}
}
static __device__ __forceinline__ int unpack_scales_q45_K(const int * scales, const int ksc) {
// scale arrangement after the following two lines:
// - ksc == 0: sc0, sc1, sc2, sc3
// - ksc == 1: sc4, sc5, sc6, sc7
// - ksc == 2: m0, m1, m2, m3
// - ksc == 3: m4, m5, m6, m7
return ((scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F) | // lower 4 bits
((scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030); // upper 2 bits
}
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_K(
const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) {
#ifdef INT8_MMA_AVAILABLE
int * x_qs = (int *) x_tile;
half2 * x_dm = (half2 *) (x_qs + 2*WARP_SIZE);
#else
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q4_K, mmq_y);
int * x_qs = (int *) x_tile;
half2 * x_dm = (half2 *) (x_qs + txs.qs);
int * x_sc = (int *) (x_dm + txs.dm);
#endif // INT8_MMA_AVAILABLE
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
int i = i0 + threadIdx.y;
if (need_check) {
i = min(i, i_max);
}
const block_q4_K * bxi = (const block_q4_K *) x + kbx0 + i*stride;
const int qs0 = get_int_b4(bxi->qs, threadIdx.x);
#ifdef INT8_MMA_AVAILABLE
x_qs[i*MMQ_MMA_TILE_X_K_Q8_1 + 16*(threadIdx.x/8) + threadIdx.x % 8 + 0] = (qs0 >> 0) & 0x0F0F0F0F;
x_qs[i*MMQ_MMA_TILE_X_K_Q8_1 + 16*(threadIdx.x/8) + threadIdx.x % 8 + 8] = (qs0 >> 4) & 0x0F0F0F0F;
#else
x_qs[i*(WARP_SIZE + 1) + threadIdx.x] = qs0;
#endif // INT8_MMA_AVAILABLE
}
#ifdef INT8_MMA_AVAILABLE
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps*16) {
int i = (i0 + threadIdx.y*16 + threadIdx.x/(WARP_SIZE/16)) % mmq_y;
if (need_check) {
i = min(i, i_max);
}
const block_q4_K * bxi = (const block_q4_K *) x + kbx0 + i*stride;
const int * scales = (const int *) bxi->scales;
const int ksc = threadIdx.x % (WARP_SIZE/16);
const int sc32 = unpack_scales_q45_K(scales, ksc + 0);
const int m32 = unpack_scales_q45_K(scales, ksc + 2);
const uint8_t * sc8 = (const uint8_t *) &sc32;
const uint8_t * m8 = (const uint8_t *) &m32;
const half2 dm = bxi->dm * make_half2(1.0f, -1.0f);
#pragma unroll
for (int l = 0; l < sizeof(int); ++l) {
x_dm[i*MMQ_MMA_TILE_X_K_Q8_1 + sizeof(int)*ksc + l] = dm*make_half2(sc8[l], m8[l]);
}
}
#else
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps*QI4_K) {
int i = (i0 + threadIdx.y*QI4_K + threadIdx.x) % mmq_y;
if (need_check) {
i = min(i, i_max);
}
const block_q4_K * bxi = (const block_q4_K *) x + kbx0 + i*stride;
x_dm[i] = bxi->dm;
}
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
int i = (i0 + threadIdx.y * 8 + threadIdx.x / (WARP_SIZE/8)) % mmq_y;
if (need_check) {
i = min(i, i_max);
}
const block_q4_K * bxi = (const block_q4_K *) x + kbx0 + i*stride + (threadIdx.x % (WARP_SIZE/8)) / (QI4_K/8);
const int * scales = (const int *) bxi->scales;
const int ksc = threadIdx.x % (WARP_SIZE/8);
const int scales8 = unpack_scales_q45_K(scales, ksc);
x_sc[i*(WARP_SIZE/8) + i/8 + ksc] = scales8;
}
#endif // INT8_MMA_AVAILABLE
}
template <int mmq_x, int mmq_y, int nwarps>
static __device__ __forceinline__ void vec_dot_q4_K_q8_1_dp4a(
const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) {
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q4_K, mmq_y);
const int * x_qs = (const int *) x;
const half2 * x_dm = (const half2 *) x_qs + txs.qs;
const int * x_sc = (const int *) x_dm + txs.dm;
const int * y_qs = (const int *) y + 4;
const half2 * y_ds = (const half2 *) y;
// #pragma unroll
for (int k01 = 0; k01 < WARP_SIZE; k01 += QR4_K*VDR_Q4_K_Q8_1_MMQ) {
const int k0 = k00 + k01;
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
const int j = j0 + threadIdx.y;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
const uint8_t * sc = (const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k0/32] + 2*(k01/16);
sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q4_K_q8_1_impl_mmq(
&x_qs[i*(WARP_SIZE + 1) + k0/2], &y_qs[j*MMQ_TILE_Y_K + k01], sc, sc+8,
x_dm[i], &y_ds[j*MMQ_TILE_Y_K + k01/QI8_1]);
}
}
}
}
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_K(
const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) {
#ifdef INT8_MMA_AVAILABLE
int * x_qs = (int *) x_tile;
half2 * x_dm = (half2 *) (x_qs + WARP_SIZE*2);
#else
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q5_K, mmq_y);
int * x_qs = (int *) x_tile;
half2 * x_dm = (half2 *) (x_qs + txs.qs);
int * x_sc = (int *) (x_dm + txs.dm);
#endif // INT8_MMA_AVAILABLE
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
int i = i0 + threadIdx.y;
if (need_check) {
i = min(i, i_max);
}
const block_q5_K * bxi = (const block_q5_K *) x + kbx0 + i*stride;
const int ky = QR5_K*threadIdx.x;
const int ql = get_int_b4(bxi->qs, threadIdx.x);
const int ql0 = (ql >> 0) & 0x0F0F0F0F;
const int ql1 = (ql >> 4) & 0x0F0F0F0F;
const int qh = get_int_b4(bxi->qh, threadIdx.x % (QI5_K/4));
const int qh0 = ((qh >> (2 * (threadIdx.x / (QI5_K/4)) + 0)) << 4) & 0x10101010;
const int qh1 = ((qh >> (2 * (threadIdx.x / (QI5_K/4)) + 1)) << 4) & 0x10101010;
const int kq0 = ky - ky % (QI5_K/2) + threadIdx.x % (QI5_K/4) + 0;
const int kq1 = ky - ky % (QI5_K/2) + threadIdx.x % (QI5_K/4) + QI5_K/4;
#ifdef INT8_MMA_AVAILABLE
x_qs[i*MMQ_MMA_TILE_X_K_Q8_1 + kq0] = ql0 | qh0;
x_qs[i*MMQ_MMA_TILE_X_K_Q8_1 + kq1] = ql1 | qh1;
#else
x_qs[i*(2*WARP_SIZE + 1) + kq0] = ql0 | qh0;
x_qs[i*(2*WARP_SIZE + 1) + kq1] = ql1 | qh1;
#endif // INT8_MMA_AVAILABLE
}
#ifdef INT8_MMA_AVAILABLE
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps*16) {
int i = (i0 + threadIdx.y*16 + threadIdx.x/(WARP_SIZE/16)) % mmq_y;
if (need_check) {
i = min(i, i_max);
}
const block_q5_K * bxi = (const block_q5_K *) x + kbx0 + i*stride;
const int * scales = (const int *) bxi->scales;
const int ksc = threadIdx.x % (WARP_SIZE/16);
const int sc32 = unpack_scales_q45_K(scales, ksc + 0);
const int m32 = unpack_scales_q45_K(scales, ksc + 2);
const uint8_t * sc8 = (const uint8_t *) &sc32;
const uint8_t * m8 = (const uint8_t *) &m32;
const half2 dm = bxi->dm * make_half2(1.0f, -1.0f);
#pragma unroll
for (int l = 0; l < sizeof(int); ++l) {
x_dm[i*MMQ_MMA_TILE_X_K_Q8_1 + sizeof(int)*ksc + l] = dm*make_half2(sc8[l], m8[l]);
}
}
#else
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps*QI5_K) {
int i = (i0 + threadIdx.y*QI5_K + threadIdx.x) % mmq_y;
if (need_check) {
i = min(i, i_max);
}
const block_q5_K * bxi = (const block_q5_K *) x + kbx0 + i*stride;
x_dm[i] = bxi->dm;
}
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps*8) {
int i = (i0 + threadIdx.y*8 + threadIdx.x/(WARP_SIZE/8)) % mmq_y;
if (need_check) {
i = min(i, i_max);
}
const block_q5_K * bxi = (const block_q5_K *) x + kbx0 + i*stride;
const int * scales = (const int *) bxi->scales;
const int ksc = threadIdx.x % (WARP_SIZE/8);
const int scales8 = unpack_scales_q45_K(scales, ksc);
x_sc[i*(WARP_SIZE/8) + i/8 + ksc] = scales8;
}
#endif // INT8_MMA_AVAILABLE
}
template <int mmq_x, int mmq_y, int nwarps>
static __device__ __forceinline__ void vec_dot_q5_K_q8_1_dp4a(
const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) {
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q5_K, mmq_y);
const int * x_qs = (const int *) x;
const half2 * x_dm = (const half2 *) x_qs + txs.qs;
const int * x_sc = (const int *) x_dm + txs.dm;
const int * y_qs = (const int *) y + 4;
const half2 * y_ds = (const half2 *) y;
// #pragma unroll
for (int k01 = 0; k01 < WARP_SIZE; k01 += QR5_K*VDR_Q5_K_Q8_1_MMQ) {
const int k0 = k00 + k01;
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
const int j = j0 + threadIdx.y;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k00/32]) + 2*(k01/16);
sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q5_K_q8_1_impl_mmq(
&x_qs[i*(QR5_K*WARP_SIZE + 1) + k0], &y_qs[j*MMQ_TILE_Y_K + k01], sc, sc+8,
x_dm[i], &y_ds[j*MMQ_TILE_Y_K + k01/QI8_1]);
}
}
}
}
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q6_K(
const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) {
#ifdef INT8_MMA_AVAILABLE
int * x_qs = (int *) x_tile;
float * x_df = (float *) (x_qs + WARP_SIZE*2);
int * x_sc = (int *) (x_df + WARP_SIZE/QI6_K);
#else
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q6_K, mmq_y);
int * x_qs = (int *) x_tile;
float * x_df = (float *) (x_qs + txs.qs);
int * x_sc = (int *) (x_df + txs.dm);
#endif // INT8_MMA_AVAILABLE
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
int i = i0 + threadIdx.y;
if (need_check) {
i = min(i, i_max);
}
const block_q6_K * bxi = (const block_q6_K *) x + kbx0 + i*stride;
const int ql = get_int_b2(bxi->ql, threadIdx.x);
const int ql0 = (ql >> 0) & 0x0F0F0F0F;
const int ql1 = (ql >> 4) & 0x0F0F0F0F;
const int qh = get_int_b2(bxi->qh, (QI6_K/4) * (threadIdx.x / (QI6_K/2)) + threadIdx.x % (QI6_K/4));
const int qh0 = ((qh >> ((threadIdx.x & 0x08) >> 2)) << 4) & 0x30303030;
const int qh1 = (qh >> ((threadIdx.x & 0x08) >> 2)) & 0x30303030;
const int kq0 = 2*threadIdx.x - threadIdx.x % (QI6_K/2) + 0;
const int kq1 = 2*threadIdx.x - threadIdx.x % (QI6_K/2) + QI6_K/2;
#ifdef INT8_MMA_AVAILABLE
x_qs[i*MMQ_MMA_TILE_X_K_Q6_K + kq0] = __vsubss4(ql0 | qh0, 0x20202020);
x_qs[i*MMQ_MMA_TILE_X_K_Q6_K + kq1] = __vsubss4(ql1 | qh1, 0x20202020);
#else
x_qs[i*(2*WARP_SIZE + 1) + kq0] = __vsubss4(ql0 | qh0, 0x20202020);
x_qs[i*(2*WARP_SIZE + 1) + kq1] = __vsubss4(ql1 | qh1, 0x20202020);
#endif // INT8_MMA_AVAILABLE
}
const int blocks_per_tile_x_row = WARP_SIZE / QI6_K; // == 1 if QK_K == 256
const int kbxd = threadIdx.x % blocks_per_tile_x_row; // == 0 if QK_K == 256
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI6_K) {
int i = (i0 + threadIdx.y * QI6_K + threadIdx.x / blocks_per_tile_x_row) % mmq_y;
if (need_check) {
i = min(i, i_max);
}
const block_q6_K * bxi = (const block_q6_K *) x + kbx0 + i*stride + kbxd;
#ifdef INT8_MMA_AVAILABLE
x_df[i*MMQ_MMA_TILE_X_K_Q6_K + kbxd] = bxi->d;
#else
x_df[i*(WARP_SIZE/QI6_K) + i/QI6_K + kbxd] = bxi->d;
#endif // INT8_MMA_AVAILABLE
}
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
int i = (i0 + threadIdx.y * 8 + threadIdx.x / (WARP_SIZE/8)) % mmq_y;
if (need_check) {
i = min(i, i_max);
}
const block_q6_K * bxi = (const block_q6_K *) x + kbx0 + i*stride + (threadIdx.x % (WARP_SIZE/8)) / 4;
#ifdef INT8_MMA_AVAILABLE
x_sc[i*MMQ_MMA_TILE_X_K_Q6_K + threadIdx.x % (WARP_SIZE/8)] = get_int_b2(bxi->scales, threadIdx.x % (QI6_K/8));
#else
x_sc[i*(WARP_SIZE/8) + i/8 + threadIdx.x % (WARP_SIZE/8)] = get_int_b2(bxi->scales, threadIdx.x % (QI6_K/8));
#endif // INT8_MMA_AVAILABLE
}
}
template <int mmq_x, int mmq_y, int nwarps>
static __device__ __forceinline__ void vec_dot_q6_K_q8_1_dp4a(
const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) {
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q6_K, mmq_y);
const int * x_qs = (const int *) x;
const float * x_df = (const float *) x_qs + txs.qs;
const int * x_sc = (const int *) x_df + txs.dm;
const int * y_qs = (const int *) y + 4;
const float * y_df = (const float *) y;
// #pragma unroll
for (int k01 = 0; k01 < WARP_SIZE; k01 += QR6_K*VDR_Q6_K_Q8_1_MMQ) {
const int k0 = k00 + k01;
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
const int j = j0 + threadIdx.y;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
const int8_t * sc = ((const int8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k0/16]);
sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q6_K_q8_1_impl_mmq(
&x_qs[i*(QR6_K*WARP_SIZE + 1) + k0], &y_qs[j*MMQ_TILE_Y_K + k01], sc,
x_df[i*(WARP_SIZE/QI6_K) + i/QI6_K], &y_df[j*MMQ_TILE_Y_K + k01/QI8_1]);
}
}
}
}
template <int mmq_x, int mmq_y, int nwarps>
static __device__ __forceinline__ void vec_dot_q6_K_q8_1_mma(
const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) {
#ifdef INT8_MMA_AVAILABLE
typedef mma_int_A_I16K4 mma_A;
typedef mma_int_B_J8K4 mma_B;
typedef mma_int_C_I16J8 mma_C;
constexpr int granularity = mmq_get_granularity_device(mmq_x);
constexpr int rows_per_warp = 2 * granularity;
constexpr int ntx = rows_per_warp/mma_C::I; // Number of x minitiles per warp.
y += (threadIdx.y % ntx) * (mma_B::J*MMQ_TILE_Y_K);
const int * x_qs = (const int *) x;
const float * x_df = (const float *) x_qs + WARP_SIZE*2;
const int * x_sc = (const int *) x_df + WARP_SIZE/QI6_K;
const int * y_qs = (const int *) y + 4;
const float * y_df = (const float *) y;
const int i0 = (threadIdx.y / ntx) * (ntx*mma_A::I);
mma_A A[ntx][8];
int scA[ntx][mma_C::ne/2][8];
float dA[ntx][mma_C::ne/2];
#pragma unroll
for (int n = 0; n < ntx; ++n) {
#pragma unroll
for (int k01 = 0; k01 < WARP_SIZE; k01 += 8) {
const int k0 = k00 + k01;
A[n][k01/4 + 0].load(x_qs + (i0 + n*mma_A::I)*MMQ_MMA_TILE_X_K_Q6_K + (k0 + 0), MMQ_MMA_TILE_X_K_Q6_K);
A[n][k01/4 + 1].load(x_qs + (i0 + n*mma_A::I)*MMQ_MMA_TILE_X_K_Q6_K + (k0 + mma_A::K), MMQ_MMA_TILE_X_K_Q6_K);
}
#pragma unroll
for (int k01 = 0; k01 < WARP_SIZE; k01 += 16) {
const int k0 = k00 + k01;
#pragma unroll
for (int l = 0; l < mma_C::ne/2; ++l) {
const int i = i0 + n*mma_C::I + mma_C::get_i(2*l);
const int sc_packed = x_sc[i*MMQ_MMA_TILE_X_K_Q6_K + k0/16];
const int8_t * sc = (const int8_t *) &sc_packed;
#pragma unroll
for (int ksc = 0; ksc < sizeof(int); ++ksc) {
scA[n][l][k01/4 + ksc] = sc[ksc];
}
}
}
#pragma unroll
for (int l = 0; l < mma_C::ne/2; ++l) {
const int i = i0 + n*mma_C::I + mma_C::get_i(2*l);
dA[n][l] = x_df[i*MMQ_MMA_TILE_X_K_Q6_K];
}
}
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += ntx*mma_C::J) {
float tmp[ntx][mma_C::ne] = {{0.0f}};
#pragma unroll
for (int k01 = 0; k01 < WARP_SIZE; k01 += 8) {
mma_B B[2];
float dB[mma_C::ne/2];
B[0].load(y_qs + j0*MMQ_TILE_Y_K + 0 + k01, MMQ_TILE_Y_K);
B[1].load(y_qs + j0*MMQ_TILE_Y_K + mma_B::K + k01, MMQ_TILE_Y_K);
#pragma unroll
for (int l = 0; l < mma_C::ne/2; ++l) {
const int j = j0 + mma_C::get_j(l);
dB[l] = y_df[j*MMQ_TILE_Y_K + k01/QI8_1];
}
#pragma unroll
for (int n = 0; n < ntx; ++n) {
mma_C C[2];
C[0].mma_K4(A[n][k01/4 + 0], B[0]);
C[1].mma_K4(A[n][k01/4 + 1], B[1]);
#pragma unroll
for (int l = 0; l < mma_C::ne; ++l) {
tmp[n][l] += (C[0].x[l]*scA[n][l/2][k01/4 + 0] + C[1].x[l]*scA[n][l/2][k01/4 + 1])*dB[l%2];
}
}
}
#pragma unroll
for (int n = 0; n < ntx; ++n) {
#pragma unroll
for (int l = 0; l < mma_C::ne; ++l) {
sum[(j0/mma_C::J + n)*mma_C::ne + l] += tmp[n][l]*dA[n][l/2];
}
}
}
#else
GGML_UNUSED(x); GGML_UNUSED(y); GGML_UNUSED(sum);
NO_DEVICE_CODE;
#endif // INT8_MMA_AVAILABLE
}
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_iq4_nl(
const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) {
#ifdef INT8_MMA_AVAILABLE
int * x_qs = (int *) x_tile;
float * x_df = (float *) (x_qs + WARP_SIZE*2);
#else
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_IQ4_NL, mmq_y);
int * x_qs = (int *) x_tile;
float * x_df = (float *) (x_qs + txs.qs);
#endif // INT8_MMA_AVAILABLE
const int kbx = threadIdx.x / QI4_NL;
const int kqsx = threadIdx.x % QI4_NL;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
int i = i0 + threadIdx.y;
if (need_check) {
i = min(i, i_max);
}
const block_iq4_nl * bxi = (const block_iq4_nl *) x + kbx0 + i*stride + kbx;
const int aux_q4 = get_int_b2(bxi->qs, kqsx);
const int2 v = get_int_from_table_16(aux_q4);
const int k0 = 8 * (threadIdx.x / 4) + threadIdx.x % 4;
#ifdef INT8_MMA_AVAILABLE
x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + k0 + 0] = v.x;
x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + k0 + 4] = v.y;
#else
x_qs[i*(2*WARP_SIZE + 1) + k0 + 0] = v.x;
x_qs[i*(2*WARP_SIZE + 1) + k0 + 4] = v.y;
#endif // INT8_MMA_AVAILABLE
}
const int blocks_per_tile_x_row = WARP_SIZE / QI4_NL;
const int kbxd = threadIdx.x % blocks_per_tile_x_row;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_NL) {
int i = i0 + threadIdx.y * QI4_NL + threadIdx.x / blocks_per_tile_x_row;
if (need_check) {
i = min(i, i_max);
}
const block_iq4_nl * bxi = (const block_iq4_nl *) x + kbx0 + i*stride + kbxd;
#ifdef INT8_MMA_AVAILABLE
x_df[i*MMQ_MMA_TILE_X_K_Q8_0 + kbxd] = __half2float(bxi->d);
#else
x_df[i*(WARP_SIZE/4) + i/4 + kbxd] = __half2float(bxi->d);
#endif // INT8_MMA_AVAILABLE
}
}
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_iq2_xxs(
const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) {
#ifdef INT8_MMA_AVAILABLE
int * x_qs = (int *) x_tile;
float * x_df = (float *) (x_qs + WARP_SIZE*2);
#else
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_IQ2_XXS, mmq_y);
int * x_qs = (int *) x_tile;
float * x_df = (float *) (x_qs + txs.qs);
#endif // INT8_MMA_AVAILABLE
const int kqsx = threadIdx.x % (QI2_XXS/2);
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * WARP_SIZE/(QI2_XXS/2)) {
int i = i0 + threadIdx.y*(2*WARP_SIZE/QI2_XXS) + threadIdx.x/(QI2_XXS/2);
if (need_check) {
i = min(i, i_max);
}
const block_iq2_xxs * bxi = (const block_iq2_xxs *) x + kbx0 + i*stride;
const int q2 = get_int_b2(bxi->qs, 2*kqsx+0);
const uint8_t * aux8 = (const uint8_t *) &q2;
const uint32_t aux32 = get_int_b2(bxi->qs, 2*kqsx+1);
#pragma unroll
for (int l = 0; l < QR2_XXS; ++l) {
const int * grid_pos = (const int *) (iq2xxs_grid + aux8[l]);
const int signs_packed = ksigns_iq2xs[(aux32 >> (7*l)) & 0x7F];
const int signs0 = __vcmpne4(((signs_packed & 0x03) << 7) | ((signs_packed & 0x0C) << 21), 0x00000000);
const int grid0 = __vsub4(grid_pos[0] ^ signs0, signs0);
const int signs1 = __vcmpne4(((signs_packed & 0x30) << 3) | ((signs_packed & 0xC0) << 17), 0x00000000);
const int grid1 = __vsub4(grid_pos[1] ^ signs1, signs1);
#ifdef INT8_MMA_AVAILABLE
x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + 8*kqsx + (2*l + 0)] = grid0;
x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + 8*kqsx + (2*l + 1)] = grid1;
#else
x_qs[i*(2*WARP_SIZE + 1) + 8*kqsx + (2*l + 0)] = grid0;
x_qs[i*(2*WARP_SIZE + 1) + 8*kqsx + (2*l + 1)] = grid1;
#endif // INT8_MMA_AVAILABLE
}
const int ls = aux32 >> 28;
const float d = bxi->d;
#ifdef INT8_MMA_AVAILABLE
x_df[i*MMQ_MMA_TILE_X_K_Q8_0 + kqsx] = (ls*d + d/2)/4;
#else
x_df[i*(WARP_SIZE/4) + i/4 + kqsx] = (ls*d + d/2)/4;
#endif // INT8_MMA_AVAILABLE
}
}
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_iq2_xs(
const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) {
#ifdef INT8_MMA_AVAILABLE
int * x_qs = (int *) x_tile;
float * x_df = (float *) (x_qs + WARP_SIZE*2);
#else
constexpr tile_x_sizes txs = MMQ_DP4A_TXS_Q8_0_16;
int * x_qs = (int *) x_tile;
float * x_df = (float *) (x_qs + txs.qs);
#endif // INT8_MMA_AVAILABLE
const int kqsx = threadIdx.x % (QI2_XS/2);
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * WARP_SIZE/(QI2_XS/2)) {
int i = i0 + threadIdx.y*(2*WARP_SIZE/QI2_XS) + threadIdx.x/(QI2_XS/2);
if (need_check) {
i = min(i, i_max);
}
const block_iq2_xs * bxi = (const block_iq2_xs *) x + kbx0 + i*stride;
const int2 q2_packed = make_int2(get_int_b2(bxi->qs, 2*kqsx+0), get_int_b2(bxi->qs, 2*kqsx+1));
const uint16_t * q2 = (const uint16_t *) &q2_packed;
#pragma unroll
for (int l = 0; l < QR2_XS; ++l) {
const uint32_t * grid_pos = (const uint32_t *)(iq2xs_grid + (q2[l] & 0x000001FF));
const uint32_t * signs = (const uint32_t *)(ksigns64 + (q2[l] >> 9));
const int grid_l = __vsub4(grid_pos[0] ^ signs[0], signs[0]);
const int grid_h = __vsub4(grid_pos[1] ^ signs[1], signs[1]);
#ifdef INT8_MMA_AVAILABLE
x_qs[i*MMQ_MMA_TILE_X_K_Q3_K + 8*kqsx + (2*l + 0)] = grid_l;
x_qs[i*MMQ_MMA_TILE_X_K_Q3_K + 8*kqsx + (2*l + 1)] = grid_h;
#else
x_qs[i*(2*WARP_SIZE + 1) + 8*kqsx + (2*l + 0)] = grid_l;
x_qs[i*(2*WARP_SIZE + 1) + 8*kqsx + (2*l + 1)] = grid_h;
#endif // INT8_MMA_AVAILABLE
}
const int ls = bxi->scales[kqsx];
const float d = bxi->d;
#ifdef INT8_MMA_AVAILABLE
x_df[i*MMQ_MMA_TILE_X_K_Q3_K + 2*kqsx+0] = ((ls & 0x0F)*d + d/2)/4;
x_df[i*MMQ_MMA_TILE_X_K_Q3_K + 2*kqsx+1] = ((ls >> 4)*d + d/2)/4;
#else
x_df[i*(2*WARP_SIZE*2/QI8_0) + i/(QI8_0/4) + 2*kqsx+0] = ((ls & 0x0F)*d + d/2)/4;
x_df[i*(2*WARP_SIZE*2/QI8_0) + i/(QI8_0/4) + 2*kqsx+1] = ((ls >> 4)*d + d/2)/4;
#endif // INT8_MMA_AVAILABLE
}
}
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_iq2_s(
const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) {
#ifdef INT8_MMA_AVAILABLE
int * x_qs = (int *) x_tile;
float * x_df = (float *) (x_qs + WARP_SIZE*2);
#else
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_IQ2_S, mmq_y);
int * x_qs = (int *) x_tile;
float * x_df = (float *) (x_qs + txs.qs);
#endif // INT8_MMA_AVAILABLE
const int kqsx = threadIdx.x % (QI2_S/2);
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * WARP_SIZE/(QI2_S/2)) {
int i = i0 + threadIdx.y*(2*WARP_SIZE/QI2_S) + threadIdx.x/(QI2_S/2);
if (need_check) {
i = min(i, i_max);
}
const block_iq2_s * bxi = (const block_iq2_s *) x + kbx0 + i*stride;
const int qs_packed = get_int_b2(bxi->qs, kqsx);
const uint8_t * qs = (const uint8_t *) &qs_packed;
const int qh = bxi->qh[kqsx];
const int signs_packed_32 = get_int_b2(bxi->qs, QK_K/32 + kqsx);
const uint8_t * signs_packed_8 = (const uint8_t *) &signs_packed_32;
#pragma unroll
for (int l = 0; l < QR2_S; ++l) {
const int * grid_pos = (const int *)(iq2s_grid + (qs[l] | ((qh << (8-2*l)) & 0x300)));
const int signs0 = __vcmpne4(((signs_packed_8[l] & 0x03) << 7) | ((signs_packed_8[l] & 0x0C) << 21), 0x00000000);
const int signs1 = __vcmpne4(((signs_packed_8[l] & 0x30) << 3) | ((signs_packed_8[l] & 0xC0) << 17), 0x00000000);
const int grid_l = __vsub4(grid_pos[0] ^ signs0, signs0);
const int grid_h = __vsub4(grid_pos[1] ^ signs1, signs1);
#ifdef INT8_MMA_AVAILABLE
x_qs[i*MMQ_MMA_TILE_X_K_Q3_K + 8*kqsx + (2*l + 0)] = grid_l;
x_qs[i*MMQ_MMA_TILE_X_K_Q3_K + 8*kqsx + (2*l + 1)] = grid_h;
#else
x_qs[i*(2*WARP_SIZE + 1) + 8*kqsx + (2*l + 0)] = grid_l;
x_qs[i*(2*WARP_SIZE + 1) + 8*kqsx + (2*l + 1)] = grid_h;
#endif // INT8_MMA_AVAILABLE
}
const int ls = bxi->scales[kqsx];
const float d = bxi->d;
#ifdef INT8_MMA_AVAILABLE
x_df[i*MMQ_MMA_TILE_X_K_Q3_K + 2*kqsx+0] = ((ls & 0x0F)*d + d/2)/4;
x_df[i*MMQ_MMA_TILE_X_K_Q3_K + 2*kqsx+1] = ((ls >> 4)*d + d/2)/4;
#else
x_df[i*(2*WARP_SIZE*2/QI8_0) + i/(QI8_0/4) + 2*kqsx+0] = ((ls & 0x0F)*d + d/2)/4;
x_df[i*(2*WARP_SIZE*2/QI8_0) + i/(QI8_0/4) + 2*kqsx+1] = ((ls >> 4)*d + d/2)/4;
#endif // INT8_MMA_AVAILABLE
}
}
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_iq3_xxs(
const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) {
#ifdef INT8_MMA_AVAILABLE
int * x_qs = (int *) x_tile;
float * x_df = (float *) (x_qs + WARP_SIZE*2);
#else
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_IQ3_XXS, mmq_y);
int * x_qs = (int *) x_tile;
float * x_df = (float *) (x_qs + txs.qs);
#endif // INT8_MMA_AVAILABLE
const int kqsx = threadIdx.x % (QI3_XXS/2);
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * WARP_SIZE/(QI3_XXS/2)) {
int i = i0 + threadIdx.y*(2*WARP_SIZE/QI3_XXS) + threadIdx.x/(QI3_XXS/2);
if (need_check) {
i = min(i, i_max);
}
const block_iq3_xxs * bxi = (const block_iq3_xxs *) x + kbx0 + i*stride;
const int2 q3_packed = make_int2(get_int_b2(bxi->qs, 2*kqsx+0), get_int_b2(bxi->qs, 2*kqsx+1));
const uint8_t * q3 = (const uint8_t *) &q3_packed;
const uint32_t aux32 = get_int_b2(bxi->qs, QK_K/16 + kqsx);
#pragma unroll
for (int l = 0; l < QR3_XXS; ++l) {
const int2 grid_pos = make_int2(iq3xxs_grid[q3[2*l+0]], iq3xxs_grid[q3[2*l+1]]);
const int * signs = (const int *)(ksigns64 + ((aux32 >> (7*l)) & 0x7F));
const int grid_l = __vsub4(grid_pos.x ^ signs[0], signs[0]);
const int grid_h = __vsub4(grid_pos.y ^ signs[1], signs[1]);
#ifdef INT8_MMA_AVAILABLE
x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + 8*kqsx + (2*l + 0)] = grid_l;
x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + 8*kqsx + (2*l + 1)] = grid_h;
#else
x_qs[i*(2*WARP_SIZE + 1) + 8*kqsx + (2*l + 0)] = grid_l;
x_qs[i*(2*WARP_SIZE + 1) + 8*kqsx + (2*l + 1)] = grid_h;
#endif // INT8_MMA_AVAILABLE
}
const int ls = aux32 >> 28;
const float d = bxi->d;
#ifdef INT8_MMA_AVAILABLE
x_df[i*MMQ_MMA_TILE_X_K_Q8_0 + kqsx] = (ls*d + d/2)/2;
#else
x_df[i*(WARP_SIZE/4) + i/4 + kqsx] = (ls*d + d/2)/2;
#endif // INT8_MMA_AVAILABLE
}
}
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_iq3_s(
const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) {
#ifdef INT8_MMA_AVAILABLE
int * x_qs = (int *) x_tile;
float * x_df = (float *) (x_qs + WARP_SIZE*2);
#else
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_IQ3_S, mmq_y);
int * x_qs = (int *) x_tile;
float * x_df = (float *) (x_qs + txs.qs);
#endif // INT8_MMA_AVAILABLE
const int kqsx = threadIdx.x % (QI3_S/2);
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * WARP_SIZE/(QI3_S/2)) {
int i = i0 + threadIdx.y*(2*WARP_SIZE/QI3_S) + threadIdx.x/(QI3_S/2);
if (need_check) {
i = min(i, i_max);
}
const block_iq3_s * bxi = (const block_iq3_s *) x + kbx0 + i*stride;
const int2 qs_packed = make_int2(get_int_b2(bxi->qs, 2*kqsx+0), get_int_b2(bxi->qs, 2*kqsx+1));
const uint8_t * qs = (const uint8_t *) &qs_packed;
const int qh = bxi->qh[kqsx];
const int signs_packed_32 = get_int_b2(bxi->signs, kqsx);
const uint8_t * signs_packed_8 = (const uint8_t *) &signs_packed_32;
#pragma unroll
for (int l = 0; l < QR3_S; ++l) {
const int2 grid_pos = make_int2(
iq3s_grid[qs[2*l+0] | ((qh << (8 - 2*l)) & 0x100)],
iq3s_grid[qs[2*l+1] | ((qh << (7 - 2*l)) & 0x100)]);
const int signs0 = __vcmpne4(((signs_packed_8[l] & 0x03) << 7) | ((signs_packed_8[l] & 0x0C) << 21), 0x00000000);
const int signs1 = __vcmpne4(((signs_packed_8[l] & 0x30) << 3) | ((signs_packed_8[l] & 0xC0) << 17), 0x00000000);
const int grid_l = __vsub4(grid_pos.x ^ signs0, signs0);
const int grid_h = __vsub4(grid_pos.y ^ signs1, signs1);
#ifdef INT8_MMA_AVAILABLE
x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + 8*kqsx + (2*l+0)] = grid_l;
x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + 8*kqsx + (2*l+1)] = grid_h;
#else
x_qs[i*(2*WARP_SIZE + 1) + 8*kqsx + (2*l+0)] = grid_l;
x_qs[i*(2*WARP_SIZE + 1) + 8*kqsx + (2*l+1)] = grid_h;
#endif // INT8_MMA_AVAILABLE
}
const int ls = 1 + 2*((bxi->scales[kqsx/2] >> (((2*kqsx) << 1) & 0x04)) & 0x0F);
const float d = bxi->d;
#ifdef INT8_MMA_AVAILABLE
x_df[i*MMQ_MMA_TILE_X_K_Q8_0 + kqsx] = ls*d;
#else
x_df[i*(WARP_SIZE/4) + i/4 + kqsx] = ls*d;
#endif // INT8_MMA_AVAILABLE
}
}
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_iq1_s(
const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) {
#ifdef INT8_MMA_AVAILABLE
int * x_qs = (int *) x_tile;
half2 * x_ds = (half2 *) (x_qs + WARP_SIZE*2);
#else
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_IQ3_S, mmq_y);
int * x_qs = (int *) x_tile;
half2 * x_ds = (half2 *) (x_qs + txs.qs);
#endif // INT8_MMA_AVAILABLE
const int kqsx = threadIdx.x % QI1_S;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * WARP_SIZE/QI1_S) {
int i = i0 + threadIdx.y*(WARP_SIZE/QI1_S) + threadIdx.x/QI1_S;
if (need_check) {
i = min(i, i_max);
}
const block_iq1_s * bxi = (const block_iq1_s *) x + kbx0 + i*stride;
const int qs_packed = get_int_b2(bxi->qs, kqsx);
const uint8_t * qs = (const uint8_t *) &qs_packed;
const int qh = bxi->qh[kqsx];
#pragma unroll
for (int l = 0; l < QR1_S/2; ++l) {
const int grid = iq1s_grid_gpu[qs[l] | (((qh >> (3*l)) & 0x07) << 8)];
const int grid0 = (grid >> 0) & 0x0F0F0F0F;
const int grid1 = (grid >> 4) & 0x0F0F0F0F;
#ifdef INT8_MMA_AVAILABLE
x_qs[i*MMQ_MMA_TILE_X_K_Q8_1 + 8*kqsx + (2*l+0)] = grid0;
x_qs[i*MMQ_MMA_TILE_X_K_Q8_1 + 8*kqsx + (2*l+1)] = grid1;
#else
x_qs[i*(2*WARP_SIZE + 1) + 8*kqsx + (2*l+0)] = grid0;
x_qs[i*(2*WARP_SIZE + 1) + 8*kqsx + (2*l+1)] = grid1;
#endif // INT8_MMA_AVAILABLE
}
const float d1q = __half2float(bxi->d) * (((qh >> 11) & 0x0E) + 1);
const float delta = -1.0f + IQ1S_DELTA - (qh & 0x8000) * (2.0f*IQ1S_DELTA/0x8000);
#ifdef INT8_MMA_AVAILABLE
x_ds[i*MMQ_MMA_TILE_X_K_Q8_1 + kqsx] = make_half2(d1q, d1q*delta);
#else
x_ds[i*(WARP_SIZE/4) + i/4 + kqsx] = make_half2(d1q, d1q*delta);
#endif // INT8_MMA_AVAILABLE
}
}
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_iq4_xs(
const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) {
#ifdef INT8_MMA_AVAILABLE
int * x_qs = (int *) x_tile;
float * x_df = (float *) (x_qs + WARP_SIZE*2);
#else
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_IQ4_XS, mmq_y);
int * x_qs = (int *) x_tile;
float * x_df = (float *) (x_qs + txs.qs);
#endif // INT8_MMA_AVAILABLE
const int kbx = 0; // threadIdx.x / QI4_XS
const int kqsx = threadIdx.x; // threadIdx.x % QI4_XS
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
int i = i0 + threadIdx.y;
if (need_check) {
i = min(i, i_max);
}
const block_iq4_xs * bxi = (const block_iq4_xs *) x + kbx0 + i*stride + kbx;
const int aux_q4 = get_int_b4(bxi->qs, kqsx);
const int2 v = get_int_from_table_16(aux_q4);
const int k0 = 8 * (threadIdx.x / 4) + threadIdx.x % 4;
#ifdef INT8_MMA_AVAILABLE
x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + k0 + 0] = v.x;
x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + k0 + 4] = v.y;
#else
x_qs[i*(2*WARP_SIZE + 1) + k0 + 0] = v.x;
x_qs[i*(2*WARP_SIZE + 1) + k0 + 4] = v.y;
#endif // INT8_MMA_AVAILABLE
}
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
int i = i0 + threadIdx.y * 4 + threadIdx.x / (WARP_SIZE/4);
if (need_check) {
i = min(i, i_max);
}
const block_iq4_xs * bxi = (const block_iq4_xs *) x + kbx0 + i*stride;
const float d = __half2float(bxi->d);
const int ls = ((bxi->scales_l[(threadIdx.x % 8)/2] >> (4*(threadIdx.x % 2))) & 0x0F)
| (((bxi->scales_h >> (2*(threadIdx.x % 8))) & 0x03) << 4);
#ifdef INT8_MMA_AVAILABLE
x_df[i*MMQ_MMA_TILE_X_K_Q8_0 + threadIdx.x % 8] = d * (ls - 32);
#else
x_df[i*(WARP_SIZE/4) + i/4 + threadIdx.x % 8] = d * (ls - 32);
#endif // INT8_MMA_AVAILABLE
}
}
template<int mmq_x, int mmq_y, int nwarps, bool need_check>
static __device__ __forceinline__ void mmq_write_back_dp4a(
const float * __restrict__ sum, float * __restrict__ dst, const int & stride, const int & i_max, const int & j_max) {
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
const int j = j0 + threadIdx.y;
if (j > j_max) {
return;
}
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
if (need_check && i > i_max) {
continue;
}
dst[j*stride + i] = sum[(j0/nwarps) * (mmq_y/WARP_SIZE) + i0/WARP_SIZE];
}
}
}
template<int mmq_x, int mmq_y, int nwarps, bool need_check>
static __device__ __forceinline__ void mmq_write_back_mma(
const float * __restrict__ sum, float * __restrict__ dst, const int & stride, const int & i_max, const int & j_max) {
typedef mma_int_C_I16J8 mma_C;
constexpr int granularity = mmq_get_granularity_device(mmq_x);
constexpr int rows_per_warp = 2 * granularity;
constexpr int ntx = rows_per_warp/mma_C::I; // Number of x minitiles per warp.
const int i0 = (threadIdx.y / ntx) * (ntx*mma_C::I);
#ifdef INT8_MMA_AVAILABLE
static_assert(nwarps*mma_C::I == mmq_y, "nwarps*mma_C::I != mmq_y");
#endif // INT8_MMA_AVAILABLE
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += ntx*mma_C::J) {
#pragma unroll
for (int n = 0; n < ntx; ++n) {
#pragma unroll
for (int l = 0; l < mma_C::ne; ++l) {
const int j = j0 + (threadIdx.y % ntx) * mma_C::J + mma_C::get_j(l);
if (j > j_max) {
continue;
}
const int i = i0 + n*mma_C::I + mma_C::get_i(l);
if (need_check && i > i_max) {
continue;
}
dst[j*stride + i] = sum[(j0/mma_C::J + n)*mma_C::ne + l];
}
}
}
}
// -------------------------------------------------------------------------------------------------------------------------------------
template <int mmq_x, int mmq_y, int nwarps, bool need_check, ggml_type type>
struct mmq_type_traits;
template <int mmq_x, int mmq_y, int nwarps, bool need_check>
struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_Q4_0> {
static constexpr int vdr = VDR_Q4_0_Q8_1_MMQ;
static constexpr load_tiles_mmq_t load_tiles = load_tiles_q4_0<mmq_y, nwarps, need_check>;
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_q8_1_mma<mmq_x, mmq_y, nwarps, MMQ_Q8_1_DS_LAYOUT_DS4>;
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q4_0_q8_1_dp4a<mmq_x, mmq_y, nwarps>;
};
template <int mmq_x, int mmq_y, int nwarps, bool need_check>
struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_Q4_1> {
static constexpr int vdr = VDR_Q4_1_Q8_1_MMQ;
static constexpr load_tiles_mmq_t load_tiles = load_tiles_q4_1<mmq_y, nwarps, need_check>;
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_1_q8_1_mma<mmq_x, mmq_y, nwarps>;
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q4_1_q8_1_dp4a<mmq_x, mmq_y, nwarps>;
};
template <int mmq_x, int mmq_y, int nwarps, bool need_check>
struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_Q5_0> {
static constexpr int vdr = VDR_Q5_0_Q8_1_MMQ;
static constexpr load_tiles_mmq_t load_tiles = load_tiles_q5_0<mmq_y, nwarps, need_check>;
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_q8_1_mma<mmq_x, mmq_y, nwarps, MMQ_Q8_1_DS_LAYOUT_D4>;
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_0_q8_1_dp4a<mmq_x, mmq_y, nwarps>;
};
template <int mmq_x, int mmq_y, int nwarps, bool need_check>
struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_Q5_1> {
static constexpr int vdr = VDR_Q5_1_Q8_1_MMQ;
static constexpr load_tiles_mmq_t load_tiles = load_tiles_q5_1<mmq_y, nwarps, need_check>;
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_1_q8_1_mma<mmq_x, mmq_y, nwarps>;
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_1_q8_1_dp4a<mmq_x, mmq_y, nwarps>;
};
template <int mmq_x, int mmq_y, int nwarps, bool need_check>
struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_Q8_0> {
static constexpr int vdr = VDR_Q8_0_Q8_1_MMQ;
static constexpr load_tiles_mmq_t load_tiles = load_tiles_q8_0<mmq_y, nwarps, need_check>;
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_q8_1_mma<mmq_x, mmq_y, nwarps, MMQ_Q8_1_DS_LAYOUT_D4>;
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_0_q8_1_dp4a<mmq_x, mmq_y, nwarps>;
};
template <int mmq_x, int mmq_y, int nwarps, bool need_check>
struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_Q2_K> {
static constexpr int vdr = VDR_Q2_K_Q8_1_MMQ;
static constexpr load_tiles_mmq_t load_tiles = load_tiles_q2_K<mmq_y, nwarps, need_check>;
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q2_K_q8_1_mma<mmq_x, mmq_y, nwarps>;
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q2_K_q8_1_dp4a<mmq_x, mmq_y, nwarps>;
};
template <int mmq_x, int mmq_y, int nwarps, bool need_check>
struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_Q3_K> {
static constexpr int vdr = VDR_Q3_K_Q8_1_MMQ;
static constexpr load_tiles_mmq_t load_tiles = load_tiles_q3_K<mmq_y, nwarps, need_check>;
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_16_q8_1_mma<mmq_x, mmq_y, nwarps>;
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q3_K_q8_1_dp4a<mmq_x, mmq_y, nwarps>;
};
template <int mmq_x, int mmq_y, int nwarps, bool need_check>
struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_Q4_K> {
static constexpr int vdr = VDR_Q4_K_Q8_1_MMQ;
static constexpr load_tiles_mmq_t load_tiles = load_tiles_q4_K<mmq_y, nwarps, need_check>;
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_1_q8_1_mma<mmq_x, mmq_y, nwarps>;
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q4_K_q8_1_dp4a<mmq_x, mmq_y, nwarps>;
};
template <int mmq_x, int mmq_y, int nwarps, bool need_check>
struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_Q5_K> {
static constexpr int vdr = VDR_Q5_K_Q8_1_MMQ;
static constexpr load_tiles_mmq_t load_tiles = load_tiles_q5_K<mmq_y, nwarps, need_check>;
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_1_q8_1_mma<mmq_x, mmq_y, nwarps>;
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q5_K_q8_1_dp4a<mmq_x, mmq_y, nwarps>;
};
template <int mmq_x, int mmq_y, int nwarps, bool need_check>
struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_Q6_K> {
static constexpr int vdr = VDR_Q6_K_Q8_1_MMQ;
static constexpr load_tiles_mmq_t load_tiles = load_tiles_q6_K<mmq_y, nwarps, need_check>;
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q6_K_q8_1_mma<mmq_x, mmq_y, nwarps>;
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q6_K_q8_1_dp4a<mmq_x, mmq_y, nwarps>;
};
template <int mmq_x, int mmq_y, int nwarps, bool need_check>
struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_IQ2_XXS> {
static constexpr int vdr = VDR_IQ2_XXS_Q8_1_MMQ;
static constexpr load_tiles_mmq_t load_tiles = load_tiles_iq2_xxs<mmq_y, nwarps, need_check>;
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_q8_1_mma<mmq_x, mmq_y, nwarps, MMQ_Q8_1_DS_LAYOUT_D4>;
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_0_q8_1_dp4a<mmq_x, mmq_y, nwarps>;
};
template <int mmq_x, int mmq_y, int nwarps, bool need_check>
struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_IQ2_XS> {
static constexpr int vdr = VDR_IQ2_XS_Q8_1_MMQ;
static constexpr load_tiles_mmq_t load_tiles = load_tiles_iq2_xs<mmq_y, nwarps, need_check>;
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_16_q8_1_mma<mmq_x, mmq_y, nwarps>;
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_0_16_q8_1_dp4a<mmq_x, mmq_y, nwarps>;
};
template <int mmq_x, int mmq_y, int nwarps, bool need_check>
struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_IQ2_S> {
static constexpr int vdr = VDR_IQ2_S_Q8_1_MMQ;
static constexpr load_tiles_mmq_t load_tiles = load_tiles_iq2_s<mmq_y, nwarps, need_check>;
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_16_q8_1_mma<mmq_x, mmq_y, nwarps>;
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_0_16_q8_1_dp4a<mmq_x, mmq_y, nwarps>;
};
template <int mmq_x, int mmq_y, int nwarps, bool need_check>
struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_IQ3_XXS> {
static constexpr int vdr = VDR_IQ3_XXS_Q8_1_MMQ;
static constexpr load_tiles_mmq_t load_tiles = load_tiles_iq3_xxs<mmq_y, nwarps, need_check>;
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_q8_1_mma<mmq_x, mmq_y, nwarps, MMQ_Q8_1_DS_LAYOUT_D4>;
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_0_q8_1_dp4a<mmq_x, mmq_y, nwarps>;
};
template <int mmq_x, int mmq_y, int nwarps, bool need_check>
struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_IQ3_S> {
static constexpr int vdr = VDR_IQ3_S_Q8_1_MMQ;
static constexpr load_tiles_mmq_t load_tiles = load_tiles_iq3_s<mmq_y, nwarps, need_check>;
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_q8_1_mma<mmq_x, mmq_y, nwarps, MMQ_Q8_1_DS_LAYOUT_D4>;
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_0_q8_1_dp4a<mmq_x, mmq_y, nwarps>;
};
template <int mmq_x, int mmq_y, int nwarps, bool need_check>
struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_IQ1_S> {
static constexpr int vdr = VDR_IQ1_S_Q8_1_MMQ;
static constexpr load_tiles_mmq_t load_tiles = load_tiles_iq1_s<mmq_y, nwarps, need_check>;
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_1_q8_1_mma<mmq_x, mmq_y, nwarps>;
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_1_q8_1_dp4a<mmq_x, mmq_y, nwarps>;
};
template <int mmq_x, int mmq_y, int nwarps, bool need_check>
struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_IQ4_NL> {
static constexpr int vdr = VDR_IQ4_NL_Q8_1_MMQ;
static constexpr load_tiles_mmq_t load_tiles = load_tiles_iq4_nl<mmq_y, nwarps, need_check>;
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_q8_1_mma<mmq_x, mmq_y, nwarps, MMQ_Q8_1_DS_LAYOUT_D4>;
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_0_q8_1_dp4a<mmq_x, mmq_y, nwarps>;
};
template <int mmq_x, int mmq_y, int nwarps, bool need_check>
struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_IQ4_XS> {
static constexpr int vdr = VDR_IQ4_XS_Q8_1_MMQ;
static constexpr load_tiles_mmq_t load_tiles = load_tiles_iq4_xs<mmq_y, nwarps, need_check>;
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_q8_1_mma<mmq_x, mmq_y, nwarps, MMQ_Q8_1_DS_LAYOUT_D4>;
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_0_q8_1_dp4a<mmq_x, mmq_y, nwarps>;
};
template <ggml_type type, int mmq_x, int nwarps, bool need_check, bool fixup>
static __device__ void mul_mat_q_process_tile(
const char * __restrict__ x, const char * __restrict__ yc, float * __restrict__ dst, float * __restrict__ tmp_fixup,
const int & ne00, const int & ne01, const int & stride01, const int & ne10, const int & ne11, const int & stride11, const int & ne0,
const int & it, const int & jt, const int & kb0_start, const int & kb0_stop) {
constexpr int qk = ggml_cuda_type_traits<type>::qk;
constexpr int mmq_y = get_mmq_y_device();
constexpr load_tiles_mmq_t load_tiles = mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, type>::load_tiles;
extern __shared__ char data_mul_mat_q[];
int * tile_y = (int *) data_mul_mat_q;
int * tile_x = tile_y + GGML_PAD(mmq_x*(WARP_SIZE + WARP_SIZE/QI8_1), nwarps*WARP_SIZE);
#ifdef INT8_MMA_AVAILABLE
constexpr vec_dot_mmq_t vec_dot = mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, type>::vec_dot_mma;
constexpr mmq_write_back_t write_back = mmq_write_back_mma<mmq_x, mmq_y, nwarps, need_check>;
#else
constexpr vec_dot_mmq_t vec_dot = mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, type>::vec_dot_dp4a;
constexpr mmq_write_back_t write_back = mmq_write_back_dp4a<mmq_x, mmq_y, nwarps, need_check>;
#endif // INT8_MMA_AVAILABLE
constexpr int blocks_per_iter = MMQ_ITER_K / qk;
float sum[mmq_x*mmq_y / (nwarps*WARP_SIZE)] = {0.0f};
const int tile_x_max_i = ne01 - it*mmq_y - 1;
const int tile_y_max_j = ne11 - jt*mmq_x - 1;
const int * y = (const int *) yc + jt*(mmq_x*sizeof(block_q8_1_mmq)/sizeof(int));
for (int kb0 = kb0_start; kb0 < kb0_stop; kb0 += blocks_per_iter) {
load_tiles(x, tile_x, stride01*it*mmq_y + kb0, tile_x_max_i, stride01);
{
const int * by0 = y + stride11*(kb0*(qk*sizeof(block_q8_1_mmq) / (4*QK8_1*sizeof(int))) + 0*sizeof(block_q8_1_mmq)/sizeof(int));
#pragma unroll
for (int l0 = 0; l0 < mmq_x*MMQ_TILE_Y_K; l0 += nwarps*WARP_SIZE) {
int l = l0 + threadIdx.y*WARP_SIZE + threadIdx.x;
tile_y[l] = by0[l];
}
}
__syncthreads();
vec_dot(tile_x, tile_y, sum, 0);
__syncthreads();
{
const int * by0 = y + stride11*(kb0*(qk*sizeof(block_q8_1_mmq) / (4*QK8_1*sizeof(int))) + 1*sizeof(block_q8_1_mmq)/sizeof(int));
#pragma unroll
for (int l0 = 0; l0 < mmq_x*MMQ_TILE_Y_K; l0 += nwarps*WARP_SIZE) {
int l = l0 + threadIdx.y*WARP_SIZE + threadIdx.x;
tile_y[l] = by0[l];
}
}
__syncthreads();
vec_dot(tile_x, tile_y, sum, WARP_SIZE);
__syncthreads();
}
if (fixup) {
write_back(sum, tmp_fixup + blockIdx.x*(mmq_x*mmq_y), mmq_y, mmq_y, mmq_x);
} else {
write_back(sum, dst + jt*mmq_x*ne0 + it*mmq_y, ne0, tile_x_max_i, tile_y_max_j);
}
}
// The mul_mat_q kernel implements "stream-k" work partitioning as described in https://arxiv.org/abs/2301.03598
template <ggml_type type, int mmq_x, int nwarps, bool need_check>
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
#if defined(RDNA3) || defined(RDNA2)
__launch_bounds__(WARP_SIZE*nwarps, 2)
#endif // defined(RDNA3) || defined(RDNA2)
#else
#if __CUDA_ARCH__ >= CC_VOLTA
__launch_bounds__(WARP_SIZE*nwarps, 1)
#else
__launch_bounds__(WARP_SIZE*nwarps, 2)
#endif // __CUDA_ARCH__ >= CC_VOLTA
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
static __global__ void mul_mat_q(
const char * __restrict__ x, const char * __restrict__ yc, float * __restrict__ dst, float * __restrict__ tmp_fixup,
const int ne00, const int ne01, const int stride01, const int ne10, const int ne11, const int stride11, const int ne0) {
// Skip unused template specializations for faster compilation:
if (mmq_x > get_mmq_x_max_device() || mmq_x % mmq_get_granularity_device(mmq_x) != 0) {
NO_DEVICE_CODE;
return;
}
constexpr int qk = ggml_cuda_type_traits<type>::qk;
constexpr int mmq_y = get_mmq_y_device();
// On AMD or old CUDA the performance with stream-k was worse, use conventional tiling instead:
#if (defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ < CC_VOLTA
{
constexpr bool fixup = false;
mul_mat_q_process_tile<type, mmq_x, nwarps, need_check, fixup>
(x, yc, dst, tmp_fixup, ne00, ne01, stride01, ne10, ne11, stride11, ne0,
blockIdx.x, blockIdx.y, 0, ne00/qk);
return;
}
#endif // (defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ < CC_VOLTA
const int64_t blocks_per_ne00 = ne00 / qk;
constexpr int blocks_per_iter = MMQ_ITER_K / qk;
const int ntx = (ne11 + mmq_x - 1) / mmq_x; // Number of tiles x
const int nty = (ne01 + mmq_y - 1) / mmq_y; // Number of tiles y
// kbc == k block continuous, current index in continuous ijk space.
int64_t kbc = (int64_t) blockIdx.x *blocks_per_ne00*ntx*nty / gridDim.x;
int64_t kbc_stop = (int64_t)(blockIdx.x + 1)*blocks_per_ne00*ntx*nty / gridDim.x;
kbc -= (kbc % blocks_per_ne00) % blocks_per_iter;
kbc_stop -= (kbc_stop % blocks_per_ne00) % blocks_per_iter;
// kb0 == k index when doing the matrix multiplication for an output tile.
int kb0_start = kbc % blocks_per_ne00;
int kb0_stop = min(blocks_per_ne00, kb0_start + kbc_stop - kbc);
while (kbc < kbc_stop && kb0_stop == blocks_per_ne00) {
const int jt = kbc / (blocks_per_ne00*nty); // j index of current tile.
const int it = (kbc - jt*(blocks_per_ne00*nty)) / blocks_per_ne00; // i index of current tile.
constexpr bool fixup = false; // All but (potentially) the last iterations write their data to dst rather than the fixup buffer.
mul_mat_q_process_tile<type, mmq_x, nwarps, need_check, fixup>
(x, yc, dst, tmp_fixup, ne00, ne01, stride01, ne10, ne11, stride11, ne0,
it, jt, kb0_start, kb0_stop);
kbc += blocks_per_ne00;
kbc -= kbc % blocks_per_ne00;
kb0_start = 0;
kb0_stop = min(blocks_per_ne00, kbc_stop - kbc);
}
if (kbc >= kbc_stop) {
return;
}
const int jt = kbc / (blocks_per_ne00*nty);
const int it = (kbc - jt*(blocks_per_ne00*nty)) / blocks_per_ne00;
constexpr bool fixup = true; // Last index writes it data to fixup buffer to avoid data races with other blocks.
mul_mat_q_process_tile<type, mmq_x, nwarps, need_check, fixup>
(x, yc, dst, tmp_fixup, ne00, ne01, stride01, ne10, ne11, stride11, ne0,
it, jt, kb0_start, kb0_stop);
}
template <ggml_type type, int mmq_x, int nwarps, bool need_check>
static __global__ void mul_mat_q_stream_k_fixup(
float * __restrict__ dst, const float * __restrict__ tmp_last_tile, const int ne00, const int ne01, const int ne11, const int ne0, const int block_num_mmq) {
constexpr int mmq_y = get_mmq_y_device();
constexpr int qk = ggml_cuda_type_traits<type>::qk;
constexpr int blocks_per_iter = MMQ_ITER_K / qk;
const int64_t blocks_per_ne00 = ne00 / qk;
float sum[mmq_x*mmq_y / (nwarps*WARP_SIZE)] = {0.0f};
const int ntx = (ne11 + mmq_x - 1) / mmq_x;
const int nty = (ne01 + mmq_y - 1) / mmq_y;
bool any_fixup = false;
const int bidx_start = ((blockIdx.y*nty + blockIdx.x) * block_num_mmq) / (gridDim.y*gridDim.x);
const int bidx_stop = ((blockIdx.y*nty + blockIdx.x + 1) * block_num_mmq + gridDim.y*gridDim.x - 1) / (gridDim.y*gridDim.x);
int64_t kbc_0;
int64_t kbc_stop_0 = (int64_t) bidx_start*blocks_per_ne00*ntx*nty / block_num_mmq;
for (int bidx = bidx_start; bidx < bidx_stop; ++bidx) {
kbc_0 = kbc_stop_0;
kbc_stop_0 = (int64_t) (bidx + 1)*blocks_per_ne00*ntx*nty / block_num_mmq;
const int64_t kbc = kbc_0 - (kbc_0 % blocks_per_ne00) % blocks_per_iter;
const int64_t kbc_stop = kbc_stop_0 - (kbc_stop_0 % blocks_per_ne00) % blocks_per_iter;
// Skip fixup tile if the MMQ CUDA block never wrote anything to it:
if (kbc == kbc_stop || kbc_stop % blocks_per_ne00 == 0) {
continue;
}
const int jt = kbc_stop / (blocks_per_ne00*nty);
const int it = (kbc_stop - jt*(blocks_per_ne00*nty)) / blocks_per_ne00;
// Skip fixup tile if it's unrelated to the output tile assigned to this CUDA block:
if (it != blockIdx.x || jt != blockIdx.y) {
continue;
}
any_fixup = true;
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
const int j = j0 + threadIdx.y;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
sum[(j0/nwarps) * (mmq_y/WARP_SIZE) + i0/WARP_SIZE] += tmp_last_tile[bidx*(mmq_x*mmq_y) + j*mmq_y + i];
}
}
}
if (!any_fixup) {
return;
}
dst += blockIdx.y*mmq_x*ne0 + blockIdx.x*mmq_y;
const int i_max = ne01 - blockIdx.x*mmq_y - 1;
const int j_max = ne11 - blockIdx.y*mmq_x - 1;
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
const int j = j0 + threadIdx.y;
if (j > j_max) {
return;
}
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
if (need_check && i > i_max) {
continue;
}
dst[j*ne0 + i] += sum[(j0/nwarps) * (mmq_y/WARP_SIZE) + i0/WARP_SIZE];
}
}
}
struct mmq_args {
const char * x; const char * y; float * dst;
int64_t ne00; int64_t ne01; int64_t stride01;
int64_t ne10; int64_t ne11; int64_t stride11;
int64_t ne0;
2024-10-17 18:59:52 +00:00
bool use_stream_k;
Re-introduce the `llama` package (#5034)
* Re-introduce the llama package
This PR brings back the llama package, making it possible to call llama.cpp and
ggml APIs from Go directly via CGo. This has a few advantages:
- C APIs can be called directly from Go without needing to use the previous
"server" REST API
- On macOS and for CPU builds on Linux and Windows, Ollama can be built without
a go generate ./... step, making it easy to get up and running to hack on
parts of Ollama that don't require fast inference
- Faster build times for AVX,AVX2,CUDA and ROCM (a full build of all runners
takes <5 min on a fast CPU)
- No git submodule making it easier to clone and build from source
This is a big PR, but much of it is vendor code except for:
- llama.go CGo bindings
- example/: a simple example of running inference
- runner/: a subprocess server designed to replace the llm/ext_server package
- Makefile an as minimal as possible Makefile to build the runner package for
different targets (cpu, avx, avx2, cuda, rocm)
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
* cache: Clear old KV cache entries when evicting a slot
When forking a cache entry, if no empty slots are available we
evict the least recently used one and copy over the KV entries
from the closest match. However, this copy does not overwrite
existing values but only adds new ones. Therefore, we need to
clear the old slot first.
This change fixes two issues:
- The KV cache fills up and runs out of space even though we think
we are managing it correctly
- Performance gets worse over time as we use new cache entries that
are not hot in the processor caches
* doc: explain golang objc linker warning (#6830)
* llama: gather transitive dependencies for rocm for dist packaging (#6848)
* Refine go server makefiles to be more DRY (#6924)
This breaks up the monolithic Makefile for the Go based runners into a
set of utility files as well as recursive Makefiles for the runners.
Files starting with the name "Makefile" are buildable, while files that
end with ".make" are utilities to include in other Makefiles. This
reduces the amount of nearly identical targets and helps set a pattern
for future community contributions for new GPU runner architectures.
When we are ready to switch over to the Go runners, these files should
move to the top of the repo, and we should add targets for the main CLI,
as well as a helper "install" (put all the built binaries on the local
system in a runnable state) and "dist" target (generate the various
tar/zip files for distribution) for local developer use.
* llama: don't create extraneous directories (#6988)
* llama: Exercise the new build in CI (#6989)
Wire up some basic sanity testing in CI for the Go runner. GPU runners are not covered yet.
* llama: Refine developer docs for Go server (#6842)
This enhances the documentation for development focusing on the new Go
server. After we complete the transition further doc refinements
can remove the "transition" discussion.
* runner.go: Allocate batches for all sequences during init
We should tell the model that we could have full batches for all
sequences. We already do this when we allocate the batches but it was
missed during initialization.
* llama.go: Don't return nil from Tokenize on zero length input
Potentially receiving nil in a non-error condition is surprising to
most callers - it's better to return an empty slice.
* runner.go: Remove stop tokens from cache
If the last token is EOG then we don't return this and it isn't
present in the cache (because it was never submitted to Decode).
This works well for extending the cache entry with a new sequence.
However, for multi-token stop sequences, we won't return any of the
tokens but all but the last one will be in the cache. This means
when the conversation continues the cache will contain tokens that
don't overlap with the new prompt.
This works (we will pick up the portion where there is overlap) but
it causes unnecessary cache thrashing because we will fork the original
cache entry as it is not a perfect match.
By trimming the cache to the tokens that we actually return this
issue can be avoided.
* runner.go: Simplify flushing of pending tokens
* runner.go: Update TODOs
* runner.go: Don't panic when processing sequences
If there is an error processing a sequence, we should return a
clean HTTP error back to Ollama rather than panicing. This will
make us more resilient to transient failures.
Panics can still occur during startup as there is no way to serve
requests if that fails.
Co-authored-by: jmorganca <jmorganca@gmail.com>
* runner.go: More accurately capture timings
Currently prompt processing time doesn't capture the that it takes
to tokenize the input, only decoding time. We should capture the
full process to more accurately reflect reality. This is especially
true once we start processing images where the initial processing
can take significant time. This is also more consistent with the
existing C++ runner.
* runner.go: Support for vision models
In addition to bringing feature parity with the C++ runner, this also
incorporates several improvements:
- Cache prompting works with images, avoiding the need to re-decode
embeddings for every message in a conversation
- Parallelism is supported, avoiding the need to restrict to one
sequence at a time. (Though for now Ollama will not schedule
them while we might need to fall back to the old runner.)
Co-authored-by: jmorganca <jmorganca@gmail.com>
* runner.go: Move Unicode checking code and add tests
* runner.go: Export external cache members
Runner and cache are in the same package so the change doesn't
affect anything but it is more internally consistent.
* runner.go: Image embedding cache
Generating embeddings from images can take significant time (on
my machine between 100ms and 8s depending on the model). Although
we already cache the result of decoding these images, the embeddings
need to be regenerated every time. This is not necessary if we get
the same image over and over again, for example, during a conversation.
This currently uses a very small cache with a very simple algorithm
but it is easy to improve as is warranted.
* llama: catch up on patches
Carry forward solar-pro and cli-unicode patches
* runner.go: Don't re-allocate memory for every batch
We can reuse memory allocated from batch to batch since batch
size is fixed. This both saves the cost of reallocation as well
keeps the cache lines hot.
This results in a roughly 1% performance improvement for token
generation with Nvidia GPUs on Linux.
* runner.go: Default to classic input cache policy
The input cache as part of the go runner implemented a cache
policy that aims to maximize hit rate in both single and multi-
user scenarios. When there is a cache hit, the response is
very fast.
However, performance is actually slower when there is an input
cache miss due to worse GPU VRAM locality. This means that
performance is generally better overall for multi-user scenarios
(better input cache hit rate, locality was relatively poor already).
But worse for single users (input cache hit rate is about the same,
locality is now worse).
This defaults the policy back to the old one to avoid a regression
but keeps the new one available through an environment variable
OLLAMA_MULTIUSER_CACHE. This is left undocumented as the goal is
to improve this in the future to get the best of both worlds
without user configuration.
For inputs that result in cache misses, on Nvidia/Linux this
change improves performance by 31% for prompt processing and
13% for token generation.
* runner.go: Increase size of response channel
Generally the CPU can easily keep up with handling reponses that
are generated but there's no reason not to let generation continue
and handle things in larger batches if needed.
* llama: Add CI to verify all vendored changes have patches (#7066)
Make sure we don't accidentally merge changes in the vendored code
that aren't also reflected in the patches.
* llama: adjust clip patch for mingw utf-16 (#7065)
* llama: adjust clip patch for mingw utf-16
* llama: ensure static linking of runtime libs
Avoid runtime dependencies on non-standard libraries
* runner.go: Enable llamafile (all platforms) and BLAS (Mac OS)
These are two features that are shown on llama.cpp's system info
that are currently different between the two runners. On my test
systems the performance difference is very small to negligible
but it is probably still good to equalize the features.
* llm: Don't add BOS/EOS for tokenize requests
This is consistent with what server.cpp currently does. It affects
things like token processing counts for embedding requests.
* runner.go: Don't cache prompts for embeddings
Our integration with server.cpp implicitly disables prompt caching
because it is not part of the JSON object being parsed, this makes
the Go runner behavior similarly.
Prompt caching has been seen to affect the results of text completions
on certain hardware. The results are not wrong either way but they
are non-deterministic. However, embeddings seem to be affected even
on hardware that does not show this behavior for completions. For
now, it is best to maintain consistency with the existing behavior.
* runner.go: Adjust debug log levels
Add system info printed at startup and quiet down noisier logging.
* llama: fix compiler flag differences (#7082)
Adjust the flags for the new Go server to more closely match the
generate flow
* llama: refine developer docs (#7121)
* llama: doc and example clean up (#7122)
* llama: doc and example clean up
* llama: Move new dockerfile into llama dir
Temporary home until we fully transition to the Go server
* llama: runner doc cleanup
* llama.go: Add description for Tokenize error case
---------
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
Co-authored-by: Daniel Hiltgen <dhiltgen@users.noreply.github.com>
2024-10-08 15:53:54 +00:00
};
template<ggml_type type>
static int mmq_get_shmem(const int mmq_x, const int mmq_y, const int cc) {
const tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(type, mmq_y);
const int mmq_tile_x_k = mmq_get_mma_tile_x_k(type);
const int shmem_x = int8_mma_available(cc) ? mmq_y*mmq_tile_x_k*sizeof(int) : txs.qs*sizeof(int) + txs.dm*sizeof(half2) + txs.sc*sizeof(int);
const int shmem_y = mmq_x*sizeof(block_q8_1_mmq);
return shmem_x + GGML_PAD(shmem_y, MMQ_NWARPS*WARP_SIZE*sizeof(int));
}
template <ggml_type type, int mmq_x>
static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & args, cudaStream_t stream) {
const int id = ggml_cuda_get_device();
const int cc = ggml_cuda_info().devices[id].cc;
const int nsm = ggml_cuda_info().devices[id].nsm;
const int mmq_y = get_mmq_y_host(cc);
const dim3 block_dims(WARP_SIZE, MMQ_NWARPS, 1);
const int shmem = mmq_get_shmem<type>(mmq_x, mmq_y, cc);
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
static bool shmem_limit_raised[GGML_CUDA_MAX_DEVICES] = {false};
if (!shmem_limit_raised[id]) {
CUDA_CHECK(cudaFuncSetAttribute(mul_mat_q<type, mmq_x, MMQ_NWARPS, false>, cudaFuncAttributeMaxDynamicSharedMemorySize, shmem));
CUDA_CHECK(cudaFuncSetAttribute(mul_mat_q<type, mmq_x, MMQ_NWARPS, true>, cudaFuncAttributeMaxDynamicSharedMemorySize, shmem));
shmem_limit_raised[id] = true;
}
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
const int nty = (args.ne01 + mmq_y - 1) / mmq_y;
const int ntx = (args.ne11 + mmq_x - 1) / mmq_x;
const dim3 block_nums_xy_tiling(nty, ntx, 1);
2024-10-17 18:59:52 +00:00
if (!args.use_stream_k) {
Re-introduce the `llama` package (#5034)
* Re-introduce the llama package
This PR brings back the llama package, making it possible to call llama.cpp and
ggml APIs from Go directly via CGo. This has a few advantages:
- C APIs can be called directly from Go without needing to use the previous
"server" REST API
- On macOS and for CPU builds on Linux and Windows, Ollama can be built without
a go generate ./... step, making it easy to get up and running to hack on
parts of Ollama that don't require fast inference
- Faster build times for AVX,AVX2,CUDA and ROCM (a full build of all runners
takes <5 min on a fast CPU)
- No git submodule making it easier to clone and build from source
This is a big PR, but much of it is vendor code except for:
- llama.go CGo bindings
- example/: a simple example of running inference
- runner/: a subprocess server designed to replace the llm/ext_server package
- Makefile an as minimal as possible Makefile to build the runner package for
different targets (cpu, avx, avx2, cuda, rocm)
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
* cache: Clear old KV cache entries when evicting a slot
When forking a cache entry, if no empty slots are available we
evict the least recently used one and copy over the KV entries
from the closest match. However, this copy does not overwrite
existing values but only adds new ones. Therefore, we need to
clear the old slot first.
This change fixes two issues:
- The KV cache fills up and runs out of space even though we think
we are managing it correctly
- Performance gets worse over time as we use new cache entries that
are not hot in the processor caches
* doc: explain golang objc linker warning (#6830)
* llama: gather transitive dependencies for rocm for dist packaging (#6848)
* Refine go server makefiles to be more DRY (#6924)
This breaks up the monolithic Makefile for the Go based runners into a
set of utility files as well as recursive Makefiles for the runners.
Files starting with the name "Makefile" are buildable, while files that
end with ".make" are utilities to include in other Makefiles. This
reduces the amount of nearly identical targets and helps set a pattern
for future community contributions for new GPU runner architectures.
When we are ready to switch over to the Go runners, these files should
move to the top of the repo, and we should add targets for the main CLI,
as well as a helper "install" (put all the built binaries on the local
system in a runnable state) and "dist" target (generate the various
tar/zip files for distribution) for local developer use.
* llama: don't create extraneous directories (#6988)
* llama: Exercise the new build in CI (#6989)
Wire up some basic sanity testing in CI for the Go runner. GPU runners are not covered yet.
* llama: Refine developer docs for Go server (#6842)
This enhances the documentation for development focusing on the new Go
server. After we complete the transition further doc refinements
can remove the "transition" discussion.
* runner.go: Allocate batches for all sequences during init
We should tell the model that we could have full batches for all
sequences. We already do this when we allocate the batches but it was
missed during initialization.
* llama.go: Don't return nil from Tokenize on zero length input
Potentially receiving nil in a non-error condition is surprising to
most callers - it's better to return an empty slice.
* runner.go: Remove stop tokens from cache
If the last token is EOG then we don't return this and it isn't
present in the cache (because it was never submitted to Decode).
This works well for extending the cache entry with a new sequence.
However, for multi-token stop sequences, we won't return any of the
tokens but all but the last one will be in the cache. This means
when the conversation continues the cache will contain tokens that
don't overlap with the new prompt.
This works (we will pick up the portion where there is overlap) but
it causes unnecessary cache thrashing because we will fork the original
cache entry as it is not a perfect match.
By trimming the cache to the tokens that we actually return this
issue can be avoided.
* runner.go: Simplify flushing of pending tokens
* runner.go: Update TODOs
* runner.go: Don't panic when processing sequences
If there is an error processing a sequence, we should return a
clean HTTP error back to Ollama rather than panicing. This will
make us more resilient to transient failures.
Panics can still occur during startup as there is no way to serve
requests if that fails.
Co-authored-by: jmorganca <jmorganca@gmail.com>
* runner.go: More accurately capture timings
Currently prompt processing time doesn't capture the that it takes
to tokenize the input, only decoding time. We should capture the
full process to more accurately reflect reality. This is especially
true once we start processing images where the initial processing
can take significant time. This is also more consistent with the
existing C++ runner.
* runner.go: Support for vision models
In addition to bringing feature parity with the C++ runner, this also
incorporates several improvements:
- Cache prompting works with images, avoiding the need to re-decode
embeddings for every message in a conversation
- Parallelism is supported, avoiding the need to restrict to one
sequence at a time. (Though for now Ollama will not schedule
them while we might need to fall back to the old runner.)
Co-authored-by: jmorganca <jmorganca@gmail.com>
* runner.go: Move Unicode checking code and add tests
* runner.go: Export external cache members
Runner and cache are in the same package so the change doesn't
affect anything but it is more internally consistent.
* runner.go: Image embedding cache
Generating embeddings from images can take significant time (on
my machine between 100ms and 8s depending on the model). Although
we already cache the result of decoding these images, the embeddings
need to be regenerated every time. This is not necessary if we get
the same image over and over again, for example, during a conversation.
This currently uses a very small cache with a very simple algorithm
but it is easy to improve as is warranted.
* llama: catch up on patches
Carry forward solar-pro and cli-unicode patches
* runner.go: Don't re-allocate memory for every batch
We can reuse memory allocated from batch to batch since batch
size is fixed. This both saves the cost of reallocation as well
keeps the cache lines hot.
This results in a roughly 1% performance improvement for token
generation with Nvidia GPUs on Linux.
* runner.go: Default to classic input cache policy
The input cache as part of the go runner implemented a cache
policy that aims to maximize hit rate in both single and multi-
user scenarios. When there is a cache hit, the response is
very fast.
However, performance is actually slower when there is an input
cache miss due to worse GPU VRAM locality. This means that
performance is generally better overall for multi-user scenarios
(better input cache hit rate, locality was relatively poor already).
But worse for single users (input cache hit rate is about the same,
locality is now worse).
This defaults the policy back to the old one to avoid a regression
but keeps the new one available through an environment variable
OLLAMA_MULTIUSER_CACHE. This is left undocumented as the goal is
to improve this in the future to get the best of both worlds
without user configuration.
For inputs that result in cache misses, on Nvidia/Linux this
change improves performance by 31% for prompt processing and
13% for token generation.
* runner.go: Increase size of response channel
Generally the CPU can easily keep up with handling reponses that
are generated but there's no reason not to let generation continue
and handle things in larger batches if needed.
* llama: Add CI to verify all vendored changes have patches (#7066)
Make sure we don't accidentally merge changes in the vendored code
that aren't also reflected in the patches.
* llama: adjust clip patch for mingw utf-16 (#7065)
* llama: adjust clip patch for mingw utf-16
* llama: ensure static linking of runtime libs
Avoid runtime dependencies on non-standard libraries
* runner.go: Enable llamafile (all platforms) and BLAS (Mac OS)
These are two features that are shown on llama.cpp's system info
that are currently different between the two runners. On my test
systems the performance difference is very small to negligible
but it is probably still good to equalize the features.
* llm: Don't add BOS/EOS for tokenize requests
This is consistent with what server.cpp currently does. It affects
things like token processing counts for embedding requests.
* runner.go: Don't cache prompts for embeddings
Our integration with server.cpp implicitly disables prompt caching
because it is not part of the JSON object being parsed, this makes
the Go runner behavior similarly.
Prompt caching has been seen to affect the results of text completions
on certain hardware. The results are not wrong either way but they
are non-deterministic. However, embeddings seem to be affected even
on hardware that does not show this behavior for completions. For
now, it is best to maintain consistency with the existing behavior.
* runner.go: Adjust debug log levels
Add system info printed at startup and quiet down noisier logging.
* llama: fix compiler flag differences (#7082)
Adjust the flags for the new Go server to more closely match the
generate flow
* llama: refine developer docs (#7121)
* llama: doc and example clean up (#7122)
* llama: doc and example clean up
* llama: Move new dockerfile into llama dir
Temporary home until we fully transition to the Go server
* llama: runner doc cleanup
* llama.go: Add description for Tokenize error case
---------
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
Co-authored-by: Daniel Hiltgen <dhiltgen@users.noreply.github.com>
2024-10-08 15:53:54 +00:00
if (args.ne01 % mmq_y == 0) {
constexpr bool need_check = false;
mul_mat_q<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_xy_tiling, block_dims, shmem, stream>>>
(args.x, args.y, args.dst, nullptr, args.ne00, args.ne01, args.stride01, args.ne10, args.ne11, args.stride11, args.ne0);
} else {
constexpr bool need_check = true;
mul_mat_q<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_xy_tiling, block_dims, shmem, stream>>>
(args.x, args.y, args.dst, nullptr, args.ne00, args.ne01, args.stride01, args.ne10, args.ne11, args.stride11, args.ne0);
}
return;
}
const dim3 block_nums_mmq(nsm, 1, 1);
ggml_cuda_pool & pool = ctx.pool(id);
ggml_cuda_pool_alloc<float> tmp_fixup(pool, block_nums_mmq.x * mmq_x*mmq_y);
if (args.ne01 % mmq_y == 0) {
constexpr bool need_check = false;
mul_mat_q<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_mmq, block_dims, shmem, stream>>>
(args.x, args.y, args.dst, tmp_fixup.ptr, args.ne00, args.ne01, args.stride01, args.ne10, args.ne11, args.stride11, args.ne0);
mul_mat_q_stream_k_fixup<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_xy_tiling, block_dims, 0, stream>>>
(args.dst, tmp_fixup.ptr, args.ne00, args.ne01, args.ne11, args.ne0, block_nums_mmq.x);
} else {
constexpr bool need_check = true;
mul_mat_q<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_mmq, block_dims, shmem, stream>>>
(args.x, args.y, args.dst, tmp_fixup.ptr, args.ne00, args.ne01, args.stride01, args.ne10, args.ne11, args.stride11, args.ne0);
mul_mat_q_stream_k_fixup<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_xy_tiling, block_dims, 0, stream>>>
(args.dst, tmp_fixup.ptr, args.ne00, args.ne01, args.ne11, args.ne0, block_nums_mmq.x);
}
}
template <ggml_type type>
void mul_mat_q_case(ggml_backend_cuda_context & ctx, const mmq_args & args, cudaStream_t stream) {
const int id = ggml_cuda_get_device();
const int nsm = ggml_cuda_info().devices[id].nsm;
const int cc = ggml_cuda_info().devices[id].cc;
const int smpbo = ggml_cuda_info().devices[id].smpbo;
const int mmq_x_max = get_mmq_x_max_host(cc);
const int mmq_y = get_mmq_y_host(cc);
const int block_num_y = (args.ne01 + mmq_y - 1) / mmq_y;
const bool use_stream_k = cc >= CC_VOLTA && cc < CC_OFFSET_AMD;
int mmq_x_best = 0;
int nparts_best = INT_MAX;
for (int mmq_x = 8; mmq_x <= mmq_x_max && nparts_best > 1; mmq_x += 8) {
const int granularity = mmq_get_granularity_host(mmq_x, cc);
if (mmq_x % granularity != 0 || mmq_get_shmem<type>(mmq_x, mmq_y, cc) > smpbo) {
continue;
}
const int ntiles_x = (args.ne11 + mmq_x - 1) / mmq_x;
const int nwaves_xy_tiling = ntiles_x*block_num_y;
const int nparts = use_stream_k ? ntiles_x : nwaves_xy_tiling;
if (nparts < nparts_best) {
mmq_x_best = mmq_x;
nparts_best = nparts;
}
}
switch (mmq_x_best) {
case 8:
launch_mul_mat_q<type, 8>(ctx, args, stream);
break;
case 16:
launch_mul_mat_q<type, 16>(ctx, args, stream);
break;
case 24:
launch_mul_mat_q<type, 24>(ctx, args, stream);
break;
case 32:
launch_mul_mat_q<type, 32>(ctx, args, stream);
break;
case 40:
launch_mul_mat_q<type, 40>(ctx, args, stream);
break;
case 48:
launch_mul_mat_q<type, 48>(ctx, args, stream);
break;
case 56:
launch_mul_mat_q<type, 56>(ctx, args, stream);
break;
case 64:
launch_mul_mat_q<type, 64>(ctx, args, stream);
break;
case 72:
launch_mul_mat_q<type, 72>(ctx, args, stream);
break;
case 80:
launch_mul_mat_q<type, 80>(ctx, args, stream);
break;
case 88:
launch_mul_mat_q<type, 88>(ctx, args, stream);
break;
case 96:
launch_mul_mat_q<type, 96>(ctx, args, stream);
break;
case 104:
launch_mul_mat_q<type, 104>(ctx, args, stream);
break;
case 112:
launch_mul_mat_q<type, 112>(ctx, args, stream);
break;
case 120:
launch_mul_mat_q<type, 120>(ctx, args, stream);
break;
case 128:
launch_mul_mat_q<type, 128>(ctx, args, stream);
break;
default:
fprintf(stderr, "mmq_x_best=%d\n", mmq_x_best);
GGML_ABORT("fatal error");
break;
}
}
#define DECL_MMQ_CASE(type) \
template void mul_mat_q_case<type>(ggml_backend_cuda_context & ctx, const mmq_args & args, cudaStream_t stream) \
extern DECL_MMQ_CASE(GGML_TYPE_Q4_0);
extern DECL_MMQ_CASE(GGML_TYPE_Q4_1);
extern DECL_MMQ_CASE(GGML_TYPE_Q5_0);
extern DECL_MMQ_CASE(GGML_TYPE_Q5_1);
extern DECL_MMQ_CASE(GGML_TYPE_Q8_0);
extern DECL_MMQ_CASE(GGML_TYPE_Q2_K);
extern DECL_MMQ_CASE(GGML_TYPE_Q3_K);
extern DECL_MMQ_CASE(GGML_TYPE_Q4_K);
extern DECL_MMQ_CASE(GGML_TYPE_Q5_K);
extern DECL_MMQ_CASE(GGML_TYPE_Q6_K);
extern DECL_MMQ_CASE(GGML_TYPE_IQ2_XXS);
extern DECL_MMQ_CASE(GGML_TYPE_IQ2_XS);
extern DECL_MMQ_CASE(GGML_TYPE_IQ2_S);
extern DECL_MMQ_CASE(GGML_TYPE_IQ3_XXS);
extern DECL_MMQ_CASE(GGML_TYPE_IQ3_S);
extern DECL_MMQ_CASE(GGML_TYPE_IQ1_S);
extern DECL_MMQ_CASE(GGML_TYPE_IQ4_NL);
extern DECL_MMQ_CASE(GGML_TYPE_IQ4_XS);
// -------------------------------------------------------------------------------------------------------------------------
void ggml_cuda_op_mul_mat_q(
ggml_backend_cuda_context & ctx,
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
const int64_t src1_padded_row_size, cudaStream_t stream);
bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11);