.github | ||
docker | ||
docs | ||
examples | ||
llama_cpp | ||
tests | ||
vendor | ||
.dockerignore | ||
.gitignore | ||
.gitmodules | ||
.readthedocs.yaml | ||
CHANGELOG.md | ||
CMakeLists.txt | ||
LICENSE.md | ||
Makefile | ||
mkdocs.yml | ||
pyproject.toml | ||
README.md |
🦙 Python Bindings for llama.cpp
Simple Python bindings for @ggerganov's llama.cpp
library.
This package provides:
- Low-level access to C API via
ctypes
interface. - High-level Python API for text completion
- OpenAI-like API
- LangChain compatibility
Documentation is available at https://llama-cpp-python.readthedocs.io/en/latest.
Warning
Starting with version 0.1.79 the model format has changed from
ggmlv3
togguf
. Old model files can be converted using theconvert-llama-ggmlv3-to-gguf.py
script inllama.cpp
Installation from PyPI
Install from PyPI (requires a c compiler):
pip install llama-cpp-python
The above command will attempt to install the package and build llama.cpp
from source.
This is the recommended installation method as it ensures that llama.cpp
is built with the available optimizations for your system.
If you have previously installed llama-cpp-python
through pip and want to upgrade your version or rebuild the package with different compiler options, please add the following flags to ensure that the package is rebuilt correctly:
pip install llama-cpp-python --force-reinstall --upgrade --no-cache-dir
Note: If you are using Apple Silicon (M1) Mac, make sure you have installed a version of Python that supports arm64 architecture. For example:
wget https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-MacOSX-arm64.sh
bash Miniforge3-MacOSX-arm64.sh
Otherwise, while installing it will build the llama.ccp x86 version which will be 10x slower on Apple Silicon (M1) Mac.
Installation with Hardware Acceleration
llama.cpp
supports multiple BLAS backends for faster processing.
To install with OpenBLAS, set the LLAMA_BLAS and LLAMA_BLAS_VENDOR
environment variables before installing:
CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python
To install with cuBLAS, set the LLAMA_CUBLAS=1
environment variable before installing:
CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python
To install with CLBlast, set the LLAMA_CLBLAST=1
environment variable before installing:
CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python
To install with Metal (MPS), set the LLAMA_METAL=on
environment variable before installing:
CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python
To install with hipBLAS / ROCm support for AMD cards, set the LLAMA_HIPBLAS=on
environment variable before installing:
CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python
Windows remarks
To set the variables CMAKE_ARGS
in PowerShell, follow the next steps (Example using, OpenBLAS):
$env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on"
Then, call pip
after setting the variables:
pip install llama-cpp-python
If you run into issues where it complains it can't find 'nmake'
'?'
or CMAKE_C_COMPILER, you can extract w64devkit as mentioned in llama.cpp repo and add those manually to CMAKE_ARGS before running pip
install:
$env:CMAKE_GENERATOR = "MinGW Makefiles"
$env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on -DCMAKE_C_COMPILER=C:/w64devkit/bin/gcc.exe -DCMAKE_CXX_COMPILER=C:/w64devkit/bin/g++.exe"
See the above instructions and set CMAKE_ARGS
to the BLAS backend you want to use.
MacOS remarks
Detailed MacOS Metal GPU install documentation is available at docs/install/macos.md
High-level API
The high-level API provides a simple managed interface through the Llama
class.
Below is a short example demonstrating how to use the high-level API to generate text:
>>> from llama_cpp import Llama
>>> llm = Llama(model_path="./models/7B/llama-model.gguf")
>>> output = llm("Q: Name the planets in the solar system? A: ", max_tokens=32, stop=["Q:", "\n"], echo=True)
>>> print(output)
{
"id": "cmpl-xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx",
"object": "text_completion",
"created": 1679561337,
"model": "./models/7B/llama-model.gguf",
"choices": [
{
"text": "Q: Name the planets in the solar system? A: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune and Pluto.",
"index": 0,
"logprobs": None,
"finish_reason": "stop"
}
],
"usage": {
"prompt_tokens": 14,
"completion_tokens": 28,
"total_tokens": 42
}
}
Adjusting the Context Window
The context window of the Llama models determines the maximum number of tokens that can be processed at once. By default, this is set to 512 tokens, but can be adjusted based on your requirements.
For instance, if you want to work with larger contexts, you can expand the context window by setting the n_ctx parameter when initializing the Llama object:
llm = Llama(model_path="./models/7B/llama-model.gguf", n_ctx=2048)
Loading llama-2 70b
Llama2 70b must set the n_gqa
parameter (grouped-query attention factor) to 8 when loading:
llm = Llama(model_path="./models/70B/llama-model.gguf", n_gqa=8)
Web Server
llama-cpp-python
offers a web server which aims to act as a drop-in replacement for the OpenAI API.
This allows you to use llama.cpp compatible models with any OpenAI compatible client (language libraries, services, etc).
To install the server package and get started:
pip install llama-cpp-python[server]
python3 -m llama_cpp.server --model models/7B/llama-model.gguf
Similar to Hardware Acceleration section above, you can also install with GPU (cuBLAS) support like this:
CMAKE_ARGS="-DLLAMA_CUBLAS=on" FORCE_CMAKE=1 pip install llama-cpp-python[server]
python3 -m llama_cpp.server --model models/7B/llama-model.gguf --n_gpu_layers 35
Navigate to http://localhost:8000/docs to see the OpenAPI documentation.
Docker image
A Docker image is available on GHCR. To run the server:
docker run --rm -it -p 8000:8000 -v /path/to/models:/models -e MODEL=/models/llama-model.gguf ghcr.io/abetlen/llama-cpp-python:latest
Docker on termux (requires root) is currently the only known way to run this on phones, see termux support issue
Low-level API
The low-level API is a direct ctypes
binding to the C API provided by llama.cpp
.
The entire low-level API can be found in llama_cpp/llama_cpp.py and directly mirrors the C API in llama.h.
Below is a short example demonstrating how to use the low-level API to tokenize a prompt:
>>> import llama_cpp
>>> import ctypes
>>> llama_cpp.llama_backend_init(numa=False) # Must be called once at the start of each program
>>> params = llama_cpp.llama_context_default_params()
# use bytes for char * params
>>> model = llama_cpp.llama_load_model_from_file(b"./models/7b/llama-model.gguf", params)
>>> ctx = llama_cpp.llama_new_context_with_model(model, params)
>>> max_tokens = params.n_ctx
# use ctypes arrays for array params
>>> tokens = (llama_cpp.llama_token * int(max_tokens))()
>>> n_tokens = llama_cpp.llama_tokenize(ctx, b"Q: Name the planets in the solar system? A: ", tokens, max_tokens, add_bos=llama_cpp.c_bool(True))
>>> llama_cpp.llama_free(ctx)
Check out the examples folder for more examples of using the low-level API.
Documentation
Documentation is available at https://abetlen.github.io/llama-cpp-python. If you find any issues with the documentation, please open an issue or submit a PR.
Development
This package is under active development and I welcome any contributions.
To get started, clone the repository and install the package in editable / development mode:
git clone --recurse-submodules https://github.com/abetlen/llama-cpp-python.git
cd llama-cpp-python
# Upgrade pip (required for editable mode)
pip install --upgrade pip
# Install with pip
pip install -e .
# if you want to use the fastapi / openapi server
pip install -e .[server]
# to install all optional dependencies
pip install -e .[all]
# to clear the local build cache
make clean
How does this compare to other Python bindings of llama.cpp
?
I originally wrote this package for my own use with two goals in mind:
- Provide a simple process to install
llama.cpp
and access the full C API inllama.h
from Python - Provide a high-level Python API that can be used as a drop-in replacement for the OpenAI API so existing apps can be easily ported to use
llama.cpp
Any contributions and changes to this package will be made with these goals in mind.
License
This project is licensed under the terms of the MIT license.