387 lines
13 KiB
Python
387 lines
13 KiB
Python
import json
|
|
import multiprocessing
|
|
from threading import Lock
|
|
from typing import List, Optional, Union, Iterator, Dict
|
|
from typing_extensions import TypedDict, Literal
|
|
|
|
import llama_cpp
|
|
|
|
from fastapi import Depends, FastAPI, APIRouter
|
|
from fastapi.middleware.cors import CORSMiddleware
|
|
from pydantic import BaseModel, BaseSettings, Field, create_model_from_typeddict
|
|
from sse_starlette.sse import EventSourceResponse
|
|
|
|
|
|
class Settings(BaseSettings):
|
|
model: str = Field(
|
|
description="The path to the model to use for generating completions."
|
|
)
|
|
n_ctx: int = Field(default=2048, ge=1, description="The context size.")
|
|
n_batch: int = Field(
|
|
default=512, ge=1, description="The batch size to use per eval."
|
|
)
|
|
n_threads: int = Field(
|
|
default=max(multiprocessing.cpu_count() // 2, 1),
|
|
ge=1,
|
|
description="The number of threads to use.",
|
|
)
|
|
f16_kv: bool = Field(default=True, description="Whether to use f16 key/value.")
|
|
use_mlock: bool = Field(
|
|
default=llama_cpp.llama_mlock_supported(),
|
|
description="Use mlock.",
|
|
)
|
|
use_mmap: bool = Field(
|
|
default=llama_cpp.llama_mmap_supported(),
|
|
description="Use mmap.",
|
|
)
|
|
embedding: bool = Field(default=True, description="Whether to use embeddings.")
|
|
last_n_tokens_size: int = Field(
|
|
default=64,
|
|
ge=0,
|
|
description="Last n tokens to keep for repeat penalty calculation.",
|
|
)
|
|
logits_all: bool = Field(default=True, description="Whether to return logits.")
|
|
cache: bool = Field(
|
|
default=False,
|
|
description="Use a cache to reduce processing times for evaluated prompts.",
|
|
)
|
|
cache_size: int = Field(
|
|
default=2 << 30,
|
|
description="The size of the cache in bytes. Only used if cache is True.",
|
|
)
|
|
vocab_only: bool = Field(
|
|
default=False, description="Whether to only return the vocabulary."
|
|
)
|
|
verbose: bool = Field(
|
|
default=True, description="Whether to print debug information."
|
|
)
|
|
|
|
|
|
router = APIRouter()
|
|
|
|
llama: Optional[llama_cpp.Llama] = None
|
|
|
|
|
|
def create_app(settings: Optional[Settings] = None):
|
|
if settings is None:
|
|
settings = Settings()
|
|
app = FastAPI(
|
|
title="🦙 llama.cpp Python API",
|
|
version="0.0.1",
|
|
)
|
|
app.add_middleware(
|
|
CORSMiddleware,
|
|
allow_origins=["*"],
|
|
allow_credentials=True,
|
|
allow_methods=["*"],
|
|
allow_headers=["*"],
|
|
)
|
|
app.include_router(router)
|
|
global llama
|
|
llama = llama_cpp.Llama(
|
|
model_path=settings.model,
|
|
f16_kv=settings.f16_kv,
|
|
use_mlock=settings.use_mlock,
|
|
use_mmap=settings.use_mmap,
|
|
embedding=settings.embedding,
|
|
logits_all=settings.logits_all,
|
|
n_threads=settings.n_threads,
|
|
n_batch=settings.n_batch,
|
|
n_ctx=settings.n_ctx,
|
|
last_n_tokens_size=settings.last_n_tokens_size,
|
|
vocab_only=settings.vocab_only,
|
|
verbose=settings.verbose,
|
|
)
|
|
if settings.cache:
|
|
cache = llama_cpp.LlamaCache(capacity_bytes=settings.cache_size)
|
|
llama.set_cache(cache)
|
|
return app
|
|
|
|
|
|
llama_lock = Lock()
|
|
|
|
|
|
def get_llama():
|
|
with llama_lock:
|
|
yield llama
|
|
|
|
|
|
model_field = Field(description="The model to use for generating completions.")
|
|
|
|
max_tokens_field = Field(
|
|
default=16, ge=1, le=2048, description="The maximum number of tokens to generate."
|
|
)
|
|
|
|
temperature_field = Field(
|
|
default=0.8,
|
|
ge=0.0,
|
|
le=2.0,
|
|
description="Adjust the randomness of the generated text.\n\n"
|
|
+ "Temperature is a hyperparameter that controls the randomness of the generated text. It affects the probability distribution of the model's output tokens. A higher temperature (e.g., 1.5) makes the output more random and creative, while a lower temperature (e.g., 0.5) makes the output more focused, deterministic, and conservative. The default value is 0.8, which provides a balance between randomness and determinism. At the extreme, a temperature of 0 will always pick the most likely next token, leading to identical outputs in each run.",
|
|
)
|
|
|
|
top_p_field = Field(
|
|
default=0.95,
|
|
ge=0.0,
|
|
le=1.0,
|
|
description="Limit the next token selection to a subset of tokens with a cumulative probability above a threshold P.\n\n"
|
|
+ "Top-p sampling, also known as nucleus sampling, is another text generation method that selects the next token from a subset of tokens that together have a cumulative probability of at least p. This method provides a balance between diversity and quality by considering both the probabilities of tokens and the number of tokens to sample from. A higher value for top_p (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text.",
|
|
)
|
|
|
|
stop_field = Field(
|
|
default=None,
|
|
description="A list of tokens at which to stop generation. If None, no stop tokens are used.",
|
|
)
|
|
|
|
stream_field = Field(
|
|
default=False,
|
|
description="Whether to stream the results as they are generated. Useful for chatbots.",
|
|
)
|
|
|
|
top_k_field = Field(
|
|
default=40,
|
|
ge=0,
|
|
description="Limit the next token selection to the K most probable tokens.\n\n"
|
|
+ "Top-k sampling is a text generation method that selects the next token only from the top k most likely tokens predicted by the model. It helps reduce the risk of generating low-probability or nonsensical tokens, but it may also limit the diversity of the output. A higher value for top_k (e.g., 100) will consider more tokens and lead to more diverse text, while a lower value (e.g., 10) will focus on the most probable tokens and generate more conservative text.",
|
|
)
|
|
|
|
repeat_penalty_field = Field(
|
|
default=1.1,
|
|
ge=0.0,
|
|
description="A penalty applied to each token that is already generated. This helps prevent the model from repeating itself.\n\n"
|
|
+ "Repeat penalty is a hyperparameter used to penalize the repetition of token sequences during text generation. It helps prevent the model from generating repetitive or monotonous text. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient.",
|
|
)
|
|
|
|
presence_penalty_field = Field(
|
|
default=0.0,
|
|
ge=-2.0,
|
|
le=2.0,
|
|
description="Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics.",
|
|
)
|
|
|
|
frequency_penalty_field = Field(
|
|
default=0.0,
|
|
ge=-2.0,
|
|
le=2.0,
|
|
description="Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim.",
|
|
)
|
|
|
|
|
|
class CreateCompletionRequest(BaseModel):
|
|
prompt: Union[str, List[str]] = Field(
|
|
default="", description="The prompt to generate completions for."
|
|
)
|
|
suffix: Optional[str] = Field(
|
|
default=None,
|
|
description="A suffix to append to the generated text. If None, no suffix is appended. Useful for chatbots.",
|
|
)
|
|
max_tokens: int = max_tokens_field
|
|
temperature: float = temperature_field
|
|
top_p: float = top_p_field
|
|
echo: bool = Field(
|
|
default=False,
|
|
description="Whether to echo the prompt in the generated text. Useful for chatbots.",
|
|
)
|
|
stop: Optional[List[str]] = stop_field
|
|
stream: bool = stream_field
|
|
logprobs: Optional[int] = Field(
|
|
default=None,
|
|
ge=0,
|
|
description="The number of logprobs to generate. If None, no logprobs are generated.",
|
|
)
|
|
presence_penalty: Optional[float] = presence_penalty_field
|
|
frequency_penalty: Optional[float] = frequency_penalty_field
|
|
|
|
# ignored or currently unsupported
|
|
model: Optional[str] = model_field
|
|
n: Optional[int] = 1
|
|
logprobs: Optional[int] = Field(None)
|
|
best_of: Optional[int] = 1
|
|
logit_bias: Optional[Dict[str, float]] = Field(None)
|
|
user: Optional[str] = Field(None)
|
|
|
|
# llama.cpp specific parameters
|
|
top_k: int = top_k_field
|
|
repeat_penalty: float = repeat_penalty_field
|
|
|
|
class Config:
|
|
schema_extra = {
|
|
"example": {
|
|
"prompt": "\n\n### Instructions:\nWhat is the capital of France?\n\n### Response:\n",
|
|
"stop": ["\n", "###"],
|
|
}
|
|
}
|
|
|
|
|
|
CreateCompletionResponse = create_model_from_typeddict(llama_cpp.Completion)
|
|
|
|
|
|
@router.post(
|
|
"/v1/completions",
|
|
response_model=CreateCompletionResponse,
|
|
)
|
|
def create_completion(
|
|
request: CreateCompletionRequest, llama: llama_cpp.Llama = Depends(get_llama)
|
|
):
|
|
if isinstance(request.prompt, list):
|
|
assert len(request.prompt) <= 1
|
|
request.prompt = request.prompt[0] if len(request.prompt) > 0 else ""
|
|
|
|
completion_or_chunks = llama(
|
|
**request.dict(
|
|
exclude={
|
|
"model",
|
|
"n",
|
|
"best_of",
|
|
"logit_bias",
|
|
"user",
|
|
}
|
|
)
|
|
)
|
|
if request.stream:
|
|
chunks: Iterator[llama_cpp.CompletionChunk] = completion_or_chunks # type: ignore
|
|
return EventSourceResponse(dict(data=json.dumps(chunk)) for chunk in chunks)
|
|
completion: llama_cpp.Completion = completion_or_chunks # type: ignore
|
|
return completion
|
|
|
|
|
|
class CreateEmbeddingRequest(BaseModel):
|
|
model: Optional[str] = model_field
|
|
input: str = Field(description="The input to embed.")
|
|
user: Optional[str]
|
|
|
|
class Config:
|
|
schema_extra = {
|
|
"example": {
|
|
"input": "The food was delicious and the waiter...",
|
|
}
|
|
}
|
|
|
|
|
|
CreateEmbeddingResponse = create_model_from_typeddict(llama_cpp.Embedding)
|
|
|
|
|
|
@router.post(
|
|
"/v1/embeddings",
|
|
response_model=CreateEmbeddingResponse,
|
|
)
|
|
def create_embedding(
|
|
request: CreateEmbeddingRequest, llama: llama_cpp.Llama = Depends(get_llama)
|
|
):
|
|
return llama.create_embedding(**request.dict(exclude={"model", "user"}))
|
|
|
|
|
|
class ChatCompletionRequestMessage(BaseModel):
|
|
role: Literal["system", "user", "assistant"] = Field(
|
|
default="user", description="The role of the message."
|
|
)
|
|
content: str = Field(default="", description="The content of the message.")
|
|
|
|
|
|
class CreateChatCompletionRequest(BaseModel):
|
|
messages: List[ChatCompletionRequestMessage] = Field(
|
|
default=[], description="A list of messages to generate completions for."
|
|
)
|
|
max_tokens: int = max_tokens_field
|
|
temperature: float = temperature_field
|
|
top_p: float = top_p_field
|
|
stop: Optional[List[str]] = stop_field
|
|
stream: bool = stream_field
|
|
presence_penalty: Optional[float] = presence_penalty_field
|
|
frequency_penalty: Optional[float] = frequency_penalty_field
|
|
|
|
# ignored or currently unsupported
|
|
model: Optional[str] = model_field
|
|
n: Optional[int] = 1
|
|
logit_bias: Optional[Dict[str, float]] = Field(None)
|
|
user: Optional[str] = Field(None)
|
|
|
|
# llama.cpp specific parameters
|
|
top_k: int = top_k_field
|
|
repeat_penalty: float = repeat_penalty_field
|
|
|
|
class Config:
|
|
schema_extra = {
|
|
"example": {
|
|
"messages": [
|
|
ChatCompletionRequestMessage(
|
|
role="system", content="You are a helpful assistant."
|
|
),
|
|
ChatCompletionRequestMessage(
|
|
role="user", content="What is the capital of France?"
|
|
),
|
|
]
|
|
}
|
|
}
|
|
|
|
|
|
CreateChatCompletionResponse = create_model_from_typeddict(llama_cpp.ChatCompletion)
|
|
|
|
|
|
@router.post(
|
|
"/v1/chat/completions",
|
|
response_model=CreateChatCompletionResponse,
|
|
)
|
|
def create_chat_completion(
|
|
request: CreateChatCompletionRequest,
|
|
llama: llama_cpp.Llama = Depends(get_llama),
|
|
) -> Union[llama_cpp.ChatCompletion, EventSourceResponse]:
|
|
completion_or_chunks = llama.create_chat_completion(
|
|
**request.dict(
|
|
exclude={
|
|
"model",
|
|
"n",
|
|
"logit_bias",
|
|
"user",
|
|
}
|
|
),
|
|
)
|
|
|
|
if request.stream:
|
|
|
|
async def server_sent_events(
|
|
chat_chunks: Iterator[llama_cpp.ChatCompletionChunk],
|
|
):
|
|
for chat_chunk in chat_chunks:
|
|
yield dict(data=json.dumps(chat_chunk))
|
|
yield dict(data="[DONE]")
|
|
|
|
chunks: Iterator[llama_cpp.ChatCompletionChunk] = completion_or_chunks # type: ignore
|
|
|
|
return EventSourceResponse(
|
|
server_sent_events(chunks),
|
|
)
|
|
completion: llama_cpp.ChatCompletion = completion_or_chunks # type: ignore
|
|
return completion
|
|
|
|
|
|
class ModelData(TypedDict):
|
|
id: str
|
|
object: Literal["model"]
|
|
owned_by: str
|
|
permissions: List[str]
|
|
|
|
|
|
class ModelList(TypedDict):
|
|
object: Literal["list"]
|
|
data: List[ModelData]
|
|
|
|
|
|
GetModelResponse = create_model_from_typeddict(ModelList)
|
|
|
|
|
|
@router.get("/v1/models", response_model=GetModelResponse)
|
|
def get_models(
|
|
llama: llama_cpp.Llama = Depends(get_llama),
|
|
) -> ModelList:
|
|
return {
|
|
"object": "list",
|
|
"data": [
|
|
{
|
|
"id": llama.model_path,
|
|
"object": "model",
|
|
"owned_by": "me",
|
|
"permissions": [],
|
|
}
|
|
],
|
|
}
|