788 lines
No EOL
26 KiB
Python
788 lines
No EOL
26 KiB
Python
from __future__ import annotations
|
|
|
|
import os
|
|
import ctypes
|
|
|
|
from typing import (
|
|
List,
|
|
Optional,
|
|
Sequence,
|
|
)
|
|
from dataclasses import dataclass, field
|
|
|
|
import numpy as np
|
|
import numpy.typing as npt
|
|
|
|
from .llama_types import *
|
|
from .llama_grammar import LlamaGrammar
|
|
|
|
import llama_cpp.llama_cpp as llama_cpp
|
|
|
|
|
|
# Python wrappers over llama.h structs
|
|
|
|
|
|
class _LlamaModel:
|
|
"""Intermediate Python wrapper for a llama.cpp llama_model.
|
|
NOTE: For stability it's recommended you use the Llama class instead."""
|
|
|
|
_llama_free_model = None
|
|
# NOTE: this must be "saved" here to avoid exceptions when calling __del__
|
|
|
|
def __init__(
|
|
self,
|
|
*,
|
|
path_model: str,
|
|
params: llama_cpp.llama_model_params,
|
|
verbose: bool = True,
|
|
):
|
|
self.path_model = path_model
|
|
self.params = params
|
|
self.verbose = verbose
|
|
|
|
self._llama_free_model = llama_cpp._lib.llama_free_model # type: ignore
|
|
|
|
self.model = None
|
|
|
|
if not os.path.exists(path_model):
|
|
raise ValueError(f"Model path does not exist: {path_model}")
|
|
|
|
self.model = llama_cpp.llama_load_model_from_file(
|
|
self.path_model.encode("utf-8"), self.params
|
|
)
|
|
|
|
def __del__(self):
|
|
if self.model is not None and self._llama_free_model is not None:
|
|
self._llama_free_model(self.model)
|
|
self.model = None
|
|
|
|
def vocab_type(self) -> int:
|
|
assert self.model is not None
|
|
return llama_cpp.llama_vocab_type(self.model)
|
|
|
|
def n_vocab(self) -> int:
|
|
assert self.model is not None
|
|
return llama_cpp.llama_n_vocab(self.model)
|
|
|
|
def n_ctx_train(self) -> int:
|
|
assert self.model is not None
|
|
return llama_cpp.llama_n_ctx_train(self.model)
|
|
|
|
def n_embd(self) -> int:
|
|
assert self.model is not None
|
|
return llama_cpp.llama_n_embd(self.model)
|
|
|
|
def rope_freq_scale_train(self) -> float:
|
|
assert self.model is not None
|
|
return llama_cpp.llama_rope_freq_scale_train(self.model)
|
|
|
|
def desc(self) -> str:
|
|
assert self.model is not None
|
|
buf = ctypes.create_string_buffer(1024)
|
|
llama_cpp.llama_model_desc(self.model, buf, 1024) # type: ignore
|
|
return buf.value.decode("utf-8")
|
|
|
|
def size(self) -> int:
|
|
assert self.model is not None
|
|
return llama_cpp.llama_model_size(self.model)
|
|
|
|
def n_params(self) -> int:
|
|
assert self.model is not None
|
|
return llama_cpp.llama_model_n_params(self.model)
|
|
|
|
def get_tensor(self, name: str) -> ctypes.c_void_p:
|
|
assert self.model is not None
|
|
return llama_cpp.llama_get_model_tensor(self.model, name.encode("utf-8"))
|
|
|
|
def apply_lora_from_file(
|
|
self,
|
|
lora_path: str,
|
|
scale: float,
|
|
path_base_model: Optional[str],
|
|
n_threads: int,
|
|
):
|
|
assert self.model is not None
|
|
return llama_cpp.llama_model_apply_lora_from_file(
|
|
self.model,
|
|
lora_path.encode("utf-8"),
|
|
scale,
|
|
path_base_model.encode("utf-8")
|
|
if path_base_model is not None
|
|
else llama_cpp.c_char_p(0),
|
|
n_threads,
|
|
)
|
|
|
|
# Vocab
|
|
|
|
def token_get_text(self, token: int) -> str:
|
|
# TODO: Fix
|
|
assert self.model is not None
|
|
return llama_cpp.llama_token_get_text(self.model, token).decode("utf-8")
|
|
|
|
def token_get_score(self, token: int) -> float:
|
|
assert self.model is not None
|
|
return llama_cpp.llama_token_get_score(self.model, token)
|
|
|
|
def token_get_type(self, token: int) -> int:
|
|
assert self.model is not None
|
|
return llama_cpp.llama_token_get_type(self.model, token)
|
|
|
|
# Special tokens
|
|
|
|
def token_bos(self) -> int:
|
|
assert self.model is not None
|
|
return llama_cpp.llama_token_bos(self.model)
|
|
|
|
def token_eos(self) -> int:
|
|
assert self.model is not None
|
|
return llama_cpp.llama_token_eos(self.model)
|
|
|
|
def token_nl(self) -> int:
|
|
assert self.model is not None
|
|
return llama_cpp.llama_token_nl(self.model)
|
|
|
|
def token_prefix(self) -> int:
|
|
assert self.model is not None
|
|
return llama_cpp.llama_token_prefix(self.model)
|
|
|
|
def token_middle(self) -> int:
|
|
assert self.model is not None
|
|
return llama_cpp.llama_token_middle(self.model)
|
|
|
|
def token_suffix(self) -> int:
|
|
assert self.model is not None
|
|
return llama_cpp.llama_token_suffix(self.model)
|
|
|
|
def token_eot(self) -> int:
|
|
assert self.model is not None
|
|
return llama_cpp.llama_token_eot(self.model)
|
|
|
|
# Tokenization
|
|
|
|
def tokenize(self, text: bytes, add_bos: bool, special: bool):
|
|
assert self.model is not None
|
|
n_ctx = self.n_ctx_train()
|
|
tokens = (llama_cpp.llama_token * n_ctx)()
|
|
n_tokens = llama_cpp.llama_tokenize(
|
|
self.model, text, len(text), tokens, n_ctx, add_bos, special
|
|
)
|
|
if n_tokens < 0:
|
|
n_tokens = abs(n_tokens)
|
|
tokens = (llama_cpp.llama_token * n_tokens)()
|
|
n_tokens = llama_cpp.llama_tokenize(
|
|
self.model, text, len(text), tokens, n_tokens, add_bos, special
|
|
)
|
|
if n_tokens < 0:
|
|
raise RuntimeError(
|
|
f'Failed to tokenize: text="{text}" n_tokens={n_tokens}'
|
|
)
|
|
return list(tokens[:n_tokens])
|
|
|
|
def token_to_piece(self, token: int) -> bytes:
|
|
assert self.model is not None
|
|
buf = ctypes.create_string_buffer(32)
|
|
llama_cpp.llama_token_to_piece(self.model, token, buf, 32) # type: ignore
|
|
return bytes(buf)
|
|
|
|
def detokenize(self, tokens: List[int]) -> bytes:
|
|
assert self.model is not None
|
|
output = b""
|
|
size = 32
|
|
buffer = (ctypes.c_char * size)()
|
|
for token in tokens:
|
|
n = llama_cpp.llama_token_to_piece(
|
|
self.model, llama_cpp.llama_token(token), buffer, size
|
|
)
|
|
assert n <= size
|
|
output += bytes(buffer[:n])
|
|
# NOTE: Llama1 models automatically added a space at the start of the prompt
|
|
# this line removes a leading space if the first token is a beginning of sentence token
|
|
return (
|
|
output[1:] if len(tokens) > 0 and tokens[0] == self.token_bos() else output
|
|
)
|
|
|
|
# Extra
|
|
def metadata(self) -> Dict[str, str]:
|
|
assert self.model is not None
|
|
metadata: Dict[str, str] = {}
|
|
buffer_size = 1024
|
|
buffer = ctypes.create_string_buffer(buffer_size)
|
|
# zero the buffer
|
|
buffer.value = b'\0' * buffer_size
|
|
# iterate over model keys
|
|
for i in range(llama_cpp.llama_model_meta_count(self.model)):
|
|
nbytes = llama_cpp.llama_model_meta_key_by_index(self.model, i, buffer, buffer_size)
|
|
if nbytes > buffer_size:
|
|
buffer_size = nbytes + 1
|
|
buffer = ctypes.create_string_buffer(buffer_size)
|
|
nbytes = llama_cpp.llama_model_meta_key_by_index(self.model, i, buffer, buffer_size)
|
|
key = buffer.value.decode("utf-8")
|
|
nbytes = llama_cpp.llama_model_meta_val_str_by_index(self.model, i, buffer, buffer_size)
|
|
if nbytes > buffer_size:
|
|
buffer_size = nbytes + 1
|
|
buffer = ctypes.create_string_buffer(buffer_size)
|
|
nbytes = llama_cpp.llama_model_meta_val_str_by_index(self.model, i, buffer, buffer_size)
|
|
value = buffer.value.decode("utf-8")
|
|
metadata[key] = value
|
|
return metadata
|
|
|
|
@staticmethod
|
|
def default_params():
|
|
"""Get the default llama_model_params."""
|
|
return llama_cpp.llama_model_default_params()
|
|
|
|
|
|
class _LlamaContext:
|
|
"""Intermediate Python wrapper for a llama.cpp llama_context.
|
|
NOTE: For stability it's recommended you use the Llama class instead."""
|
|
|
|
_llama_free = None
|
|
|
|
def __init__(
|
|
self,
|
|
*,
|
|
model: _LlamaModel,
|
|
params: llama_cpp.llama_context_params,
|
|
verbose: bool = True,
|
|
):
|
|
self.model = model
|
|
self.params = params
|
|
self.verbose = verbose
|
|
|
|
self._llama_free = llama_cpp._lib.llama_free # type: ignore
|
|
self.ctx = None
|
|
|
|
assert self.model.model is not None
|
|
|
|
self.ctx = llama_cpp.llama_new_context_with_model(
|
|
self.model.model, self.params
|
|
)
|
|
|
|
def __del__(self):
|
|
if self.ctx is not None and self._llama_free is not None:
|
|
self._llama_free(self.ctx)
|
|
self.ctx = None
|
|
|
|
def n_ctx(self) -> int:
|
|
assert self.ctx is not None
|
|
return llama_cpp.llama_n_ctx(self.ctx)
|
|
|
|
def kv_cache_clear(self):
|
|
assert self.ctx is not None
|
|
llama_cpp.llama_kv_cache_clear(self.ctx)
|
|
|
|
def kv_cache_seq_rm(self, seq_id: int, p0: int, p1: int):
|
|
assert self.ctx is not None
|
|
llama_cpp.llama_kv_cache_seq_rm(self.ctx, seq_id, p0, p1)
|
|
|
|
def kv_cache_seq_cp(self, seq_id_src: int, seq_id_dst: int, p0: int, p1: int):
|
|
assert self.ctx is not None
|
|
llama_cpp.llama_kv_cache_seq_cp(self.ctx, seq_id_src, seq_id_dst, p0, p1)
|
|
|
|
def kv_cache_seq_keep(self, seq_id: int):
|
|
assert self.ctx is not None
|
|
llama_cpp.llama_kv_cache_seq_keep(self.ctx, seq_id)
|
|
|
|
def kv_cache_seq_shift(self, seq_id: int, p0: int, p1: int, shift: int):
|
|
assert self.ctx is not None
|
|
llama_cpp.llama_kv_cache_seq_shift(self.ctx, seq_id, p0, p1, shift)
|
|
|
|
def get_state_size(self) -> int:
|
|
assert self.ctx is not None
|
|
return llama_cpp.llama_get_state_size(self.ctx)
|
|
|
|
# TODO: copy_state_data
|
|
|
|
# TODO: set_state_data
|
|
|
|
# TODO: llama_load_session_file
|
|
|
|
# TODO: llama_save_session_file
|
|
|
|
def decode(self, batch: "_LlamaBatch"):
|
|
assert self.ctx is not None
|
|
assert batch.batch is not None
|
|
return_code = llama_cpp.llama_decode(
|
|
ctx=self.ctx,
|
|
batch=batch.batch,
|
|
)
|
|
if return_code != 0:
|
|
raise RuntimeError(f"llama_decode returned {return_code}")
|
|
|
|
def set_n_threads(self, n_threads: int, n_threads_batch: int):
|
|
assert self.ctx is not None
|
|
llama_cpp.llama_set_n_threads(self.ctx, n_threads, n_threads_batch)
|
|
|
|
def get_logits(self):
|
|
assert self.ctx is not None
|
|
return llama_cpp.llama_get_logits(self.ctx)
|
|
|
|
def get_logits_ith(self, i: int):
|
|
assert self.ctx is not None
|
|
return llama_cpp.llama_get_logits_ith(self.ctx, i)
|
|
|
|
def get_embeddings(self):
|
|
assert self.ctx is not None
|
|
return llama_cpp.llama_get_embeddings(self.ctx)
|
|
|
|
# Sampling functions
|
|
|
|
def set_rng_seed(self, seed: int):
|
|
assert self.ctx is not None
|
|
llama_cpp.llama_set_rng_seed(self.ctx, seed)
|
|
|
|
def sample_repetition_penalties(
|
|
self,
|
|
candidates: "_LlamaTokenDataArray",
|
|
last_tokens_data: "llama_cpp.Array[llama_cpp.llama_token]",
|
|
penalty_last_n: int,
|
|
penalty_repeat: float,
|
|
penalty_freq: float,
|
|
penalty_present: float,
|
|
):
|
|
assert self.ctx is not None
|
|
llama_cpp.llama_sample_repetition_penalties(
|
|
self.ctx,
|
|
ctypes.byref(candidates.candidates), # type: ignore
|
|
last_tokens_data,
|
|
penalty_last_n,
|
|
penalty_repeat,
|
|
penalty_freq,
|
|
penalty_present,
|
|
)
|
|
|
|
def sample_classifier_free_guidance(
|
|
self,
|
|
candidates: "_LlamaTokenDataArray",
|
|
guidance_ctx: "_LlamaContext",
|
|
scale: float,
|
|
):
|
|
assert self.ctx is not None
|
|
assert guidance_ctx.ctx is not None
|
|
llama_cpp.llama_sample_classifier_free_guidance(
|
|
self.ctx,
|
|
ctypes.byref(candidates.candidates), # type: ignore
|
|
guidance_ctx.ctx,
|
|
scale,
|
|
)
|
|
|
|
def sample_softmax(self, candidates: "_LlamaTokenDataArray"):
|
|
assert self.ctx is not None
|
|
llama_cpp.llama_sample_softmax(
|
|
self.ctx,
|
|
ctypes.byref(candidates.candidates), # type: ignore
|
|
)
|
|
|
|
def sample_top_k(self, candidates: "_LlamaTokenDataArray", k: int, min_keep: int):
|
|
assert self.ctx is not None
|
|
llama_cpp.llama_sample_top_k(
|
|
self.ctx, ctypes.byref(candidates.candidates), k, min_keep # type: ignore
|
|
)
|
|
|
|
def sample_top_p(self, candidates: "_LlamaTokenDataArray", p: float, min_keep: int):
|
|
assert self.ctx is not None
|
|
llama_cpp.llama_sample_top_p(
|
|
self.ctx, ctypes.byref(candidates.candidates), p, min_keep # type: ignore
|
|
)
|
|
|
|
def sample_min_p(self, candidates: "_LlamaTokenDataArray", p: float, min_keep: int):
|
|
assert self.ctx is not None
|
|
llama_cpp.llama_sample_min_p(
|
|
self.ctx, ctypes.byref(candidates.candidates), p, min_keep # type: ignore
|
|
)
|
|
|
|
def sample_tail_free(
|
|
self, candidates: "_LlamaTokenDataArray", z: float, min_keep: int
|
|
):
|
|
assert self.ctx is not None
|
|
llama_cpp.llama_sample_tail_free(
|
|
self.ctx, ctypes.byref(candidates.candidates), z, min_keep # type: ignore
|
|
)
|
|
|
|
def sample_typical(
|
|
self, candidates: "_LlamaTokenDataArray", p: float, min_keep: int
|
|
):
|
|
assert self.ctx is not None
|
|
llama_cpp.llama_sample_typical(
|
|
self.ctx, ctypes.byref(candidates.candidates), p, min_keep # type: ignore
|
|
)
|
|
|
|
def sample_temp(self, candidates: "_LlamaTokenDataArray", temp: float):
|
|
assert self.ctx is not None
|
|
llama_cpp.llama_sample_temp(
|
|
self.ctx, ctypes.byref(candidates.candidates), temp # type: ignore
|
|
)
|
|
|
|
def sample_grammar(self, candidates: "_LlamaTokenDataArray", grammar: LlamaGrammar):
|
|
assert self.ctx is not None
|
|
assert grammar.grammar is not None
|
|
llama_cpp.llama_sample_grammar(
|
|
self.ctx,
|
|
ctypes.byref(candidates.candidates), # type: ignore
|
|
grammar.grammar,
|
|
)
|
|
|
|
def sample_token_mirostat(
|
|
self,
|
|
candidates: "_LlamaTokenDataArray",
|
|
tau: float,
|
|
eta: float,
|
|
m: int,
|
|
mu: ctypes._Pointer[ctypes.c_float], # type: ignore
|
|
) -> int:
|
|
assert self.ctx is not None
|
|
return llama_cpp.llama_sample_token_mirostat(
|
|
self.ctx,
|
|
ctypes.byref(candidates.candidates), # type: ignore
|
|
tau,
|
|
eta,
|
|
m,
|
|
mu,
|
|
)
|
|
|
|
def sample_token_mirostat_v2(
|
|
self, candidates: "_LlamaTokenDataArray", tau: float, eta: float, mu: ctypes._Pointer[ctypes.c_float] # type: ignore
|
|
) -> int:
|
|
assert self.ctx is not None
|
|
return llama_cpp.llama_sample_token_mirostat_v2(
|
|
self.ctx,
|
|
ctypes.byref(candidates.candidates), # type: ignore
|
|
tau,
|
|
eta,
|
|
mu,
|
|
)
|
|
|
|
def sample_token_greedy(self, candidates: "_LlamaTokenDataArray") -> int:
|
|
assert self.ctx is not None
|
|
return llama_cpp.llama_sample_token_greedy(
|
|
self.ctx,
|
|
ctypes.byref(candidates.candidates), # type: ignore
|
|
)
|
|
|
|
def sample_token(self, candidates: "_LlamaTokenDataArray") -> int:
|
|
assert self.ctx is not None
|
|
return llama_cpp.llama_sample_token(
|
|
self.ctx,
|
|
ctypes.byref(candidates.candidates), # type: ignore
|
|
)
|
|
|
|
# Grammar
|
|
def grammar_accept_token(self, grammar: LlamaGrammar, token: int):
|
|
assert self.ctx is not None
|
|
assert grammar.grammar is not None
|
|
llama_cpp.llama_grammar_accept_token(self.ctx, grammar.grammar, token)
|
|
|
|
def reset_timings(self):
|
|
assert self.ctx is not None
|
|
llama_cpp.llama_reset_timings(self.ctx)
|
|
|
|
def print_timings(self):
|
|
assert self.ctx is not None
|
|
llama_cpp.llama_print_timings(self.ctx)
|
|
|
|
# Utility functions
|
|
@staticmethod
|
|
def default_params():
|
|
"""Get the default llama_context_params."""
|
|
return llama_cpp.llama_context_default_params()
|
|
|
|
|
|
class _LlamaBatch:
|
|
_llama_batch_free = None
|
|
|
|
def __init__(
|
|
self, *, n_tokens: int, embd: int, n_seq_max: int, verbose: bool = True
|
|
):
|
|
self.n_tokens = n_tokens
|
|
self.embd = embd
|
|
self.n_seq_max = n_seq_max
|
|
self.verbose = verbose
|
|
|
|
self._llama_batch_free = llama_cpp._lib.llama_batch_free # type: ignore
|
|
|
|
self.batch = None
|
|
self.batch = llama_cpp.llama_batch_init(
|
|
self.n_tokens, self.embd, self.n_seq_max
|
|
)
|
|
|
|
def __del__(self):
|
|
if self.batch is not None and self._llama_batch_free is not None:
|
|
self._llama_batch_free(self.batch)
|
|
self.batch = None
|
|
|
|
def set_batch(self, batch: Sequence[int], n_past: int, logits_all: bool):
|
|
assert self.batch is not None
|
|
n_tokens = len(batch)
|
|
self.batch.n_tokens = n_tokens
|
|
for i in range(n_tokens):
|
|
self.batch.token[i] = batch[i]
|
|
self.batch.pos[i] = n_past + i
|
|
self.batch.seq_id[i][0] = 0
|
|
self.batch.n_seq_id[i] = 1
|
|
self.batch.logits[i] = logits_all
|
|
self.batch.logits[n_tokens - 1] = True
|
|
|
|
|
|
class _LlamaTokenDataArray:
|
|
def __init__(self, *, n_vocab: int):
|
|
self.n_vocab = n_vocab
|
|
self.candidates_data = np.array(
|
|
[],
|
|
dtype=np.dtype(
|
|
[("id", np.intc), ("logit", np.single), ("p", np.single)], align=True
|
|
),
|
|
)
|
|
self.candidates_data.resize(3, self.n_vocab, refcheck=False)
|
|
self.candidates = llama_cpp.llama_token_data_array(
|
|
data=self.candidates_data.ctypes.data_as(llama_cpp.llama_token_data_p),
|
|
size=self.n_vocab,
|
|
sorted=False,
|
|
)
|
|
self.default_candidates_data_id = np.arange(self.n_vocab, dtype=np.intc)
|
|
self.default_candidates_data_p = np.zeros(self.n_vocab, dtype=np.single)
|
|
|
|
def copy_logits(self, logits: npt.NDArray[np.single]):
|
|
self.candidates_data["id"][:] = self.default_candidates_data_id
|
|
self.candidates_data["logit"][:] = logits
|
|
self.candidates_data["p"][:] = self.default_candidates_data_p
|
|
self.candidates.data = self.candidates_data.ctypes.data_as(
|
|
llama_cpp.llama_token_data_p
|
|
)
|
|
self.candidates.sorted = llama_cpp.c_bool(False)
|
|
self.candidates.size = llama_cpp.c_size_t(self.n_vocab)
|
|
|
|
|
|
# Python wrappers over common/common
|
|
def _tokenize(model: _LlamaModel, text: str, add_bos: bool, special: bool) -> list[int]:
|
|
n_tokens = len(text) + 1 if add_bos else len(text)
|
|
result = (llama_cpp.llama_token * n_tokens)()
|
|
n_tokens = llama_cpp.llama_tokenize(
|
|
model.model,
|
|
text.encode("utf-8"),
|
|
len(text),
|
|
result,
|
|
n_tokens,
|
|
add_bos,
|
|
special,
|
|
)
|
|
if n_tokens < 0:
|
|
result = (llama_cpp.llama_token * -n_tokens)()
|
|
check = llama_cpp.llama_tokenize(
|
|
model.model,
|
|
text.encode("utf-8"),
|
|
len(text),
|
|
result,
|
|
len(result),
|
|
add_bos,
|
|
special,
|
|
)
|
|
if check != -n_tokens:
|
|
raise RuntimeError(f'Failed to tokenize: text="{text}" n_tokens={n_tokens}')
|
|
else:
|
|
result = result[:n_tokens]
|
|
return list(result)
|
|
|
|
|
|
def _token_to_piece(model: _LlamaModel, token: int) -> str:
|
|
assert model.model is not None
|
|
result = (ctypes.c_char * 8)(0)
|
|
n_tokens = llama_cpp.llama_token_to_piece(model.model, token, result, len(result))
|
|
if n_tokens < 0:
|
|
result = (ctypes.c_char * -n_tokens)(0)
|
|
check = llama_cpp.llama_token_to_piece(model.model, token, result, len(result))
|
|
if check != -n_tokens:
|
|
raise RuntimeError(f"Failed to get piece: token={token}")
|
|
else:
|
|
result = result[:n_tokens]
|
|
return bytes(result).decode("utf-8")
|
|
|
|
|
|
def _detokenize_spm(model: _LlamaModel, tokens: List[int]) -> str:
|
|
bos_id = model.token_bos()
|
|
result = ""
|
|
for i, token in enumerate(tokens):
|
|
piece = _token_to_piece(model, token)
|
|
if (
|
|
(tokens[0] == bos_id and i == 1) or (tokens[0] != bos_id and i == 0)
|
|
) and piece[0] == " ":
|
|
piece = piece[1:]
|
|
result += piece
|
|
return result
|
|
|
|
|
|
def _detokenize_bpe(model: _LlamaModel, tokens: List[int]) -> str:
|
|
result = ""
|
|
for token in tokens:
|
|
piece = _token_to_piece(model, token)
|
|
result += piece
|
|
return result
|
|
|
|
|
|
def _should_add_bos(model: _LlamaModel) -> bool:
|
|
assert model.model is not None
|
|
add_bos = llama_cpp.llama_add_bos_token(model.model)
|
|
if add_bos != -1:
|
|
return add_bos != 0
|
|
else:
|
|
return llama_cpp.llama_vocab_type(model.model) == llama_cpp.LLAMA_VOCAB_TYPE_SPM
|
|
|
|
|
|
# Python wrappers over common/sampling structs
|
|
|
|
|
|
@dataclass
|
|
class _LlamaSamplingParams:
|
|
n_prev: int = 64
|
|
n_probs: int = 0
|
|
top_k: int = 40
|
|
top_p: float = 0.95
|
|
min_p: float = 0.05
|
|
tfs_z: float = 1.00
|
|
typical_p: float = 1.00
|
|
temp: float = 0.80
|
|
penalty_last_n: int = 64
|
|
penalty_repeat: float = 1.10
|
|
penalty_freq: float = 0.00
|
|
penalty_present: float = 0.00
|
|
mirostat: int = 0
|
|
mirostat_tau: float = 5.00
|
|
mirostat_eta: float = 0.10
|
|
penalize_nl: bool = True
|
|
|
|
grammar: str = ""
|
|
|
|
cfg_negative_prompt: str = ""
|
|
cfg_scale: float = 1.00
|
|
|
|
logit_bias: dict[int, float] = field(default_factory=dict)
|
|
|
|
|
|
@dataclass
|
|
class _LlamaSamplingContext:
|
|
params: _LlamaSamplingParams = field(default_factory=_LlamaSamplingParams)
|
|
mirostat_mu: ctypes.c_float = field(default_factory=ctypes.c_float)
|
|
grammar: Optional[LlamaGrammar] = None
|
|
# NOTE: Missing parsed_grammar
|
|
prev: list[int] = field(default_factory=list)
|
|
cur: list[llama_cpp.llama_token_data] = field(default_factory=list)
|
|
|
|
def reset(self):
|
|
self.prev = []
|
|
self.cur = []
|
|
if self.grammar is not None:
|
|
self.grammar.reset()
|
|
|
|
def cp(self):
|
|
return _LlamaSamplingContext(
|
|
params=self.params,
|
|
mirostat_mu=self.mirostat_mu,
|
|
grammar=self.grammar,
|
|
prev=self.prev.copy(),
|
|
cur=self.cur.copy(),
|
|
)
|
|
|
|
def last(self) -> Optional[int]:
|
|
if len(self.prev) > 0:
|
|
return self.prev[-1]
|
|
else:
|
|
return None
|
|
|
|
def prev_str(self, ctx_main: _LlamaContext, n: int) -> str:
|
|
return ctx_main.model.detokenize(self.prev[-n:]).decode("utf-8")
|
|
|
|
def sample(
|
|
self, ctx_main: _LlamaContext, ctx_cfg: Optional[_LlamaContext] = None, idx: int = 0, logits_array: Optional[npt.NDArray[np.single]] = None
|
|
):
|
|
n_vocab = ctx_main.model.n_vocab()
|
|
id: int = 0
|
|
|
|
if logits_array is None:
|
|
logits = ctx_main.get_logits_ith(idx)
|
|
logits_array = np.array(
|
|
ctypes.cast(logits, ctypes.POINTER(ctypes.c_float * n_vocab)).contents,
|
|
dtype=np.single,
|
|
)
|
|
|
|
# apply logit_bias
|
|
for token, logit_bias in self.params.logit_bias.items():
|
|
logits_array[token] += logit_bias
|
|
|
|
token_data_array = _LlamaTokenDataArray(
|
|
n_vocab=n_vocab
|
|
) # TODO: Only create this once
|
|
token_data_array.copy_logits(logits_array)
|
|
|
|
if ctx_cfg is not None:
|
|
ctx_main.sample_classifier_free_guidance(
|
|
token_data_array, ctx_cfg, self.params.cfg_scale
|
|
)
|
|
|
|
# apply penalties
|
|
if len(self.prev) > 0:
|
|
nl_token = ctx_main.model.token_nl()
|
|
nl_logit = logits_array[nl_token]
|
|
if self.params.penalty_last_n > 0:
|
|
ctx_main.sample_repetition_penalties(
|
|
token_data_array,
|
|
# TODO: Only create this once
|
|
(llama_cpp.llama_token * len(self.prev))(*self.prev), # type: ignore
|
|
self.params.penalty_last_n,
|
|
self.params.penalty_repeat,
|
|
self.params.penalty_freq,
|
|
self.params.penalty_present,
|
|
)
|
|
if not self.params.penalize_nl:
|
|
token_data_array.candidates_data["logit"][nl_token] = nl_logit
|
|
|
|
if self.grammar is not None:
|
|
ctx_main.sample_grammar(token_data_array, self.grammar)
|
|
|
|
if self.params.temp < 0:
|
|
ctx_main.sample_softmax(token_data_array)
|
|
id = token_data_array.candidates_data["id"][0]
|
|
elif self.params.temp == 0:
|
|
id = ctx_main.sample_token_greedy(token_data_array)
|
|
else:
|
|
if self.params.mirostat == 1:
|
|
mirostat_m = 100
|
|
ctx_main.sample_temp(token_data_array, self.params.temp)
|
|
id = ctx_main.sample_token_mirostat(
|
|
token_data_array,
|
|
self.params.mirostat_tau,
|
|
self.params.mirostat_eta,
|
|
mirostat_m,
|
|
ctypes.pointer(self.mirostat_mu),
|
|
)
|
|
elif self.params.mirostat == 2:
|
|
ctx_main.sample_temp(token_data_array, self.params.temp)
|
|
id = ctx_main.sample_token_mirostat_v2(
|
|
token_data_array,
|
|
self.params.mirostat_tau,
|
|
self.params.mirostat_eta,
|
|
ctypes.pointer(self.mirostat_mu),
|
|
)
|
|
else:
|
|
min_keep = max(1, self.params.n_probs)
|
|
ctx_main.sample_top_k(
|
|
token_data_array, self.params.top_k, min_keep=min_keep
|
|
)
|
|
ctx_main.sample_tail_free(
|
|
token_data_array, self.params.tfs_z, min_keep=min_keep
|
|
)
|
|
ctx_main.sample_typical(
|
|
token_data_array, self.params.typical_p, min_keep=min_keep
|
|
)
|
|
ctx_main.sample_top_p(
|
|
token_data_array, self.params.top_p, min_keep=min_keep
|
|
)
|
|
ctx_main.sample_min_p(
|
|
token_data_array, self.params.min_p, min_keep=min_keep
|
|
)
|
|
ctx_main.sample_temp(token_data_array, self.params.temp)
|
|
id = ctx_main.sample_token(token_data_array)
|
|
return id
|
|
|
|
def accept(self, ctx_main: _LlamaContext, id: int, apply_grammar: bool):
|
|
if apply_grammar and self.grammar is not None:
|
|
ctx_main.grammar_accept_token(self.grammar, id)
|
|
self.prev.append(id) |