570 lines
21 KiB
Python
570 lines
21 KiB
Python
"""
|
||
This is an example implementation of main.cpp from llama.cpp
|
||
Quirks:
|
||
* Its not exactly alike since this port is designed around programmatic I/O
|
||
* Input is always echoed if on, so it should be turned off when using "input()"
|
||
* The first antiprompt should be the userprompt like "\nUser:",
|
||
because its added when n_predict is reached (aka generation ended prematurely)
|
||
* n_predict can be set to -1 for unlimited length responses (or just a really high value)
|
||
* Instruction mode adds its own antiprompt.
|
||
You should also still be feeding the model with a "primer" prompt that
|
||
shows it the expected format.
|
||
"""
|
||
import ctypes
|
||
import sys
|
||
from time import time
|
||
from os import cpu_count, path
|
||
|
||
import llama_cpp
|
||
from common import GptParams, gpt_params_parse, gpt_random_prompt
|
||
|
||
ANSI_COLOR_RESET = "\x1b[0m"
|
||
ANSI_COLOR_YELLOW = "\x1b[33m"
|
||
ANSI_BOLD = "\x1b[1m"
|
||
ANSI_COLOR_GREEN = "\x1b[32m"
|
||
|
||
CONSOLE_COLOR_DEFAULT = ANSI_COLOR_RESET
|
||
CONSOLE_COLOR_PROMPT = ANSI_COLOR_YELLOW
|
||
CONSOLE_COLOR_USER_INPUT = ANSI_BOLD + ANSI_COLOR_GREEN
|
||
|
||
# Iterative search
|
||
# Actively searches and prevents a pattern from being returned
|
||
class IterSearch:
|
||
def __init__(self, pattern):
|
||
self.pattern = list(pattern)
|
||
self.buffer = []
|
||
|
||
def __call__(self, char):
|
||
self.buffer += [char]
|
||
|
||
if (self.pattern[:len(self.buffer)] == self.buffer):
|
||
if (len(self.buffer) >= len(self.pattern)):
|
||
self.buffer.clear()
|
||
return []
|
||
|
||
_tmp = self.buffer[:]
|
||
self.buffer.clear()
|
||
return _tmp
|
||
|
||
# A LLaMA interactive session
|
||
class LLaMAInteract:
|
||
def __init__(self, params: GptParams) -> None:
|
||
# input args
|
||
self.params = params
|
||
|
||
if (self.params.perplexity):
|
||
raise NotImplementedError("""************
|
||
please use the 'perplexity' tool for perplexity calculations
|
||
************""")
|
||
|
||
if (self.params.embedding):
|
||
raise NotImplementedError("""************
|
||
please use the 'embedding' tool for embedding calculations
|
||
************""")
|
||
|
||
if (self.params.n_ctx > 2048):
|
||
print(f"""warning: model does not support \
|
||
context sizes greater than 2048 tokens ({self.params.n_ctx} \
|
||
specified) expect poor results""", file=sys.stderr)
|
||
|
||
if (self.params.seed <= 0):
|
||
self.params.seed = int(time())
|
||
|
||
print(f"seed = {self.params.seed}", file=sys.stderr)
|
||
|
||
if (self.params.random_prompt):
|
||
self.params.prompt = gpt_random_prompt(self.params.seed)
|
||
|
||
# runtime args
|
||
self.input_consumed = 0
|
||
self.n_past = 0
|
||
self.n_session_consumed = 0
|
||
self.first_antiprompt = []
|
||
self.remaining_tokens = self.params.n_predict
|
||
self.output_echo = self.params.input_echo
|
||
|
||
# model load
|
||
self.lparams = llama_cpp.llama_context_default_params()
|
||
self.lparams.n_ctx = self.params.n_ctx
|
||
self.lparams.n_parts = self.params.n_parts
|
||
self.lparams.seed = self.params.seed
|
||
self.lparams.memory_f16 = self.params.memory_f16
|
||
self.lparams.use_mlock = self.params.use_mlock
|
||
self.lparams.use_mmap = self.params.use_mmap
|
||
|
||
self.ctx = llama_cpp.llama_init_from_file(self.params.model.encode("utf8"), self.lparams)
|
||
if (not self.ctx):
|
||
raise RuntimeError(f"error: failed to load model '{self.params.model}'")
|
||
|
||
if (self.params.ignore_eos):
|
||
self.params.logit_bias[llama_cpp.llama_token_eos()] = -float("inf")
|
||
|
||
if (len(self.params.lora_adapter) > 0):
|
||
if (llama_cpp.llama_apply_lora_from_file(
|
||
self.ctx,
|
||
self.params.lora_adapter,
|
||
self.params.lora_base if len(self.params.lora_base) > 0 else None,
|
||
self.params.n_threads
|
||
) != 0):
|
||
print("error: failed to apply lora adapter")
|
||
return
|
||
|
||
print(file=sys.stderr)
|
||
print(f"system_info: n_threads = {self.params.n_threads} / {cpu_count()} \
|
||
| {llama_cpp.llama_print_system_info().decode('utf8')}", file=sys.stderr)
|
||
|
||
# determine the required inference memory per token:
|
||
if (self.params.mem_test):
|
||
tmp = [0, 1, 2, 3]
|
||
llama_cpp.llama_eval(self.ctx, (llama_cpp.c_int * len(tmp))(*tmp), len(tmp), 0, self.n_threads)
|
||
llama_cpp.llama_print_timings(self.ctx)
|
||
self.exit()
|
||
return
|
||
|
||
# create internal context
|
||
self.n_ctx = llama_cpp.llama_n_ctx(self.ctx)
|
||
|
||
# Add a space in front of the first character to match OG llama tokenizer behavior
|
||
self.params.prompt = " " + self.params.prompt
|
||
|
||
# Load prompt file
|
||
if (self.params.file):
|
||
with open(self.params.file) as f:
|
||
self.params.prompt = f.read()
|
||
|
||
self.session_tokens: list[llama_cpp.llama_token] = []
|
||
if (len(self.params.path_session) > 0):
|
||
print(f"attempting to load saved session from '{self.params.path_session}'", file=sys.stderr)
|
||
|
||
if (path.exists(self.params.path_session)):
|
||
_session_tokens = (llama_cpp.llama_token * (self.params.n_ctx))()
|
||
_n_token_count_out = llama_cpp.c_int()
|
||
if (llama_cpp.llama_load_session_file(
|
||
self.ctx,
|
||
self.params.path_session.encode("utf8"),
|
||
_session_tokens,
|
||
self.params.n_ctx,
|
||
ctypes.byref(_n_token_count_out)
|
||
) != 0):
|
||
print(f"error: failed to load session file '{self.params.path_session}'", file=sys.stderr)
|
||
return
|
||
self.session_tokens = _session_tokens[:_n_token_count_out]
|
||
print(f"loaded a session with prompt size of {_n_token_count_out} tokens", file=sys.stderr)
|
||
else:
|
||
print(f"session file does not exist, will create", file=sys.stderr)
|
||
|
||
# tokenize the prompt
|
||
self.embd = []
|
||
self.embd_inp = self._tokenize(self.params.prompt)
|
||
|
||
if (len(self.embd_inp) > self.n_ctx - 4):
|
||
raise RuntimeError(f"error: prompt is too long ({len(self.embd_inp)} tokens, max {self.params.n_ctx - 4})")
|
||
|
||
# debug message about similarity of saved session, if applicable
|
||
n_matching_session_tokens = 0
|
||
if len(self.session_tokens) > 0:
|
||
for id in self.session_tokens:
|
||
if n_matching_session_tokens >= len(self.embd_inp) or id != self.embd_inp[n_matching_session_tokens]:
|
||
break
|
||
n_matching_session_tokens += 1
|
||
|
||
if n_matching_session_tokens >= len(self.embd_inp):
|
||
print(f"session file has exact match for prompt!")
|
||
elif n_matching_session_tokens < (len(self.embd_inp) / 2):
|
||
print(f"warning: session file has low similarity to prompt ({n_matching_session_tokens} / {len(self.embd_inp)} tokens); will mostly be reevaluated")
|
||
else:
|
||
print(f"session file matches {n_matching_session_tokens} / {len(self.embd_inp)} tokens of prompt")
|
||
|
||
# number of tokens to keep when resetting context
|
||
if (self.params.n_keep < 0 or self.params.n_keep > len(self.embd_inp) or self.params.instruct):
|
||
self.params.n_keep = len(self.embd_inp)
|
||
|
||
self.inp_prefix = self._tokenize(self.params.instruct_inp_prefix)
|
||
self.inp_suffix = self._tokenize(self.params.instruct_inp_suffix, False)
|
||
|
||
# in instruct mode, we inject a prefix and a suffix to each input by the user
|
||
self.antiecho = None
|
||
if (self.params.instruct):
|
||
self.params.interactive_start = True
|
||
_ptn = self._tokenize(self.params.instruct_inp_prefix.strip(), False)
|
||
self.first_antiprompt.append(_ptn)
|
||
self.antiecho = IterSearch(_ptn)
|
||
|
||
# enable interactive mode if reverse prompt or interactive start is specified
|
||
if (len(self.params.antiprompt) != 0 or self.params.interactive_start):
|
||
self.params.interactive = True
|
||
|
||
# determine newline token
|
||
self.llama_token_newline = self._tokenize("\n", False)
|
||
self.llama_token_eot = self._tokenize(" [end of text]\n", False)
|
||
|
||
if (self.params.verbose_prompt):
|
||
print(f"""
|
||
prompt: '{self.params.prompt}'
|
||
number of tokens in prompt = {len(self.embd_inp)}""", file=sys.stderr)
|
||
|
||
for i in range(len(self.embd_inp)):
|
||
print(f"{self.embd_inp[i]} -> '{llama_cpp.llama_token_to_str(self.ctx, self.embd_inp[i])}'", file=sys.stderr)
|
||
|
||
if (self.params.n_keep > 0):
|
||
print("static prompt based on n_keep: '")
|
||
for i in range(self.params.n_keep):
|
||
print(llama_cpp.llama_token_to_str(self.ctx, self.embd_inp[i]), file=sys.stderr)
|
||
print("'", file=sys.stderr)
|
||
print(file=sys.stderr)
|
||
|
||
if (self.params.interactive):
|
||
print("interactive mode on.", file=sys.stderr)
|
||
|
||
if (len(self.params.antiprompt) > 0):
|
||
for antiprompt in self.params.antiprompt:
|
||
print(f"Reverse prompt: '{antiprompt}'", file=sys.stderr)
|
||
|
||
if len(self.params.input_prefix) > 0:
|
||
print(f"Input prefix: '{self.params.input_prefix}'", file=sys.stderr)
|
||
|
||
print(f"""sampling: repeat_last_n = {self.params.repeat_last_n},\
|
||
repeat_penalty = {self.params.repeat_penalty},\
|
||
presence_penalty = {self.params.presence_penalty},\
|
||
frequency_penalty = {self.params.frequency_penalty},\
|
||
top_k = {self.params.top_k},\
|
||
tfs_z = {self.params.tfs_z},\
|
||
top_p = {self.params.top_p},\
|
||
typical_p = {self.params.typical_p},\
|
||
temp = {self.params.temp},\
|
||
mirostat = {self.params.mirostat},\
|
||
mirostat_lr = {self.params.mirostat_eta},\
|
||
mirostat_ent = {self.params.mirostat_tau},\
|
||
|
||
generate: n_ctx = {self.n_ctx},\
|
||
n_batch = {self.params.n_batch},\
|
||
n_predict = {self.params.n_predict},\
|
||
n_keep = {self.params.n_keep}
|
||
|
||
""", file=sys.stderr)
|
||
|
||
# determine antiprompt tokens
|
||
for i in self.params.antiprompt:
|
||
self.first_antiprompt.append(self._tokenize(i, False))
|
||
|
||
self.last_n_tokens = [0]*self.n_ctx #TODO: deque doesnt support slices
|
||
|
||
if (params.interactive):
|
||
print("""== Running in interactive mode. ==
|
||
- Press Ctrl+C to interject at any time.
|
||
- Press Return to return control to LLaMa.
|
||
- If you want to submit another line, end your input in '\\'.
|
||
|
||
""", file=sys.stderr)
|
||
self.set_color(CONSOLE_COLOR_PROMPT)
|
||
|
||
self.need_to_save_session = len(self.params.path_session) > 0 and n_matching_session_tokens < (len(self.embd_inp) * 3 / 4)
|
||
|
||
|
||
# tokenize a prompt
|
||
def _tokenize(self, prompt, bos=True):
|
||
_arr = (llama_cpp.llama_token * (len(prompt) + 1))()
|
||
_n = llama_cpp.llama_tokenize(self.ctx, prompt.encode("utf8", errors="ignore"), _arr, len(_arr), bos)
|
||
return _arr[:_n]
|
||
|
||
def set_color(self, c):
|
||
if (self.params.use_color):
|
||
print(c, end="")
|
||
|
||
def use_antiprompt(self):
|
||
return len(self.first_antiprompt) > 0
|
||
|
||
# generate tokens
|
||
def generate(self):
|
||
while self.remaining_tokens > 0 or self.params.interactive or self.params.n_predict == -1:
|
||
# predict
|
||
if len(self.embd) > 0:
|
||
# infinite text generation via context swapping
|
||
# if we run out of context:
|
||
# - take the n_keep first tokens from the original prompt (via n_past)
|
||
# - take half of the last (n_ctx - n_keep) tokens and recompute the logits in a batch
|
||
if (self.n_past + len(self.embd) > self.n_ctx):
|
||
n_left = self.n_past - self.params.n_keep
|
||
self.n_past = self.params.n_keep
|
||
|
||
# insert n_left/2 tokens at the start of embd from last_n_tokens
|
||
_insert = self.last_n_tokens[
|
||
self.n_ctx - int(n_left/2) - len(self.embd):-len(self.embd)
|
||
]
|
||
self.embd = _insert + self.embd
|
||
self.params.path_session = ""
|
||
|
||
# try to reuse a matching prefix from the loaded session instead of re-eval (via n_past)
|
||
# REVIEW
|
||
if self.n_session_consumed < len(self.session_tokens):
|
||
for i in range(len(self.embd)):
|
||
if self.embd[i] != self.session_tokens[self.n_session_consumed]:
|
||
self.session_tokens = self.session_tokens[:self.n_session_consumed]
|
||
break
|
||
|
||
self.n_past += 1
|
||
self.n_session_consumed += 1
|
||
|
||
if self.n_session_consumed >= len(self.session_tokens):
|
||
i += 1
|
||
break
|
||
|
||
if i > 0:
|
||
self.embd = self.embd[i:]
|
||
|
||
# evaluate tokens in batches
|
||
# embd is typically prepared beforehand to fit within a batch, but not always
|
||
#TODO BUG: The batching code causes nonsensical generation
|
||
"""for i in range(0, len(self.embd), self.params.n_batch):
|
||
n_eval = self.params.n_batch
|
||
_arr = (llama_cpp.llama_token * n_eval)(*self.embd[i:i + n_eval])
|
||
if llama_cpp.llama_eval(self.ctx, _arr, n_eval, self.n_past, self.params.n_threads) != 0:
|
||
print(f"failed to eval")
|
||
return
|
||
|
||
self.n_past += n_eval"""
|
||
|
||
if (llama_cpp.llama_eval(
|
||
self.ctx, (llama_cpp.llama_token * len(self.embd))(*self.embd), len(self.embd), self.n_past, self.params.n_threads
|
||
) != 0):
|
||
raise Exception("Failed to llama_eval!")
|
||
|
||
if len(self.embd) > 0 and not len(self.params.path_session) > 0:
|
||
self.session_tokens.extend(self.embd)
|
||
self.n_session_consumed = len(self.session_tokens)
|
||
|
||
self.n_past += len(self.embd)
|
||
self.embd = []
|
||
if len(self.embd_inp) <= self.input_consumed: #&& !is_interacting
|
||
# out of user input, sample next token
|
||
top_k = llama_cpp.llama_n_vocab(self.ctx) if self.params.top_k <= 0 else self.params.top_k
|
||
repeat_last_n = self.n_ctx if self.params.repeat_last_n < 0 else self.params.repeat_last_n
|
||
|
||
# optionally save the session on first sample (for faster prompt loading next time)
|
||
if len(self.params.path_session) > 0 and self.need_to_save_session:
|
||
self.need_to_save_session = False
|
||
llama_cpp.llama_save_session_file(
|
||
self.ctx,
|
||
self.params.path_session.encode("utf8"),
|
||
self.session_tokens,
|
||
len(self.session_tokens)
|
||
)
|
||
|
||
id = 0
|
||
|
||
logits = llama_cpp.llama_get_logits(self.ctx)
|
||
n_vocab = llama_cpp.llama_n_vocab(self.ctx)
|
||
|
||
# Apply params.logit_bias map
|
||
for key, value in self.params.logit_bias.items():
|
||
logits[key] += llama_cpp.c_float(value)
|
||
|
||
_arr = (llama_cpp.llama_token_data * n_vocab)(*[
|
||
llama_cpp.llama_token_data(token_id, logits[token_id], 0.0)
|
||
for token_id in range(n_vocab)
|
||
])
|
||
candidates_p = llama_cpp.ctypes.pointer(llama_cpp.llama_token_data_array(_arr, len(_arr), False))
|
||
|
||
# Apply penalties
|
||
nl_logit = logits[llama_cpp.llama_token_nl()]
|
||
last_n_repeat = min(len(self.last_n_tokens), repeat_last_n, self.n_ctx)
|
||
|
||
_arr = (llama_cpp.llama_token * last_n_repeat)(*self.last_n_tokens[len(self.last_n_tokens) - last_n_repeat:])
|
||
llama_cpp.llama_sample_repetition_penalty(self.ctx, candidates_p,
|
||
_arr,
|
||
last_n_repeat, llama_cpp.c_float(self.params.repeat_penalty))
|
||
llama_cpp.llama_sample_frequency_and_presence_penalties(self.ctx, candidates_p,
|
||
_arr,
|
||
last_n_repeat, llama_cpp.c_float(self.params.frequency_penalty), llama_cpp.c_float(self.params.presence_penalty))
|
||
|
||
if not self.params.penalize_nl:
|
||
logits[llama_cpp.llama_token_nl()] = nl_logit
|
||
|
||
if self.params.temp <= 0:
|
||
# Greedy sampling
|
||
id = llama_cpp.llama_sample_token_greedy(self.ctx, candidates_p)
|
||
else:
|
||
if self.params.mirostat == 1:
|
||
mirostat_mu = 2.0 * self.params.mirostat_tau
|
||
mirostat_m = 100
|
||
llama_cpp.llama_sample_temperature(self.ctx, candidates_p, llama_cpp.c_float(self.params.temp))
|
||
id = llama_cpp.llama_sample_token_mirostat(self.ctx, candidates_p, llama_cpp.c_float(self.params.mirostat_tau), llama_cpp.c_float(self.params.mirostat_eta), llama_cpp.c_int(mirostat_m), llama_cpp.c_float(mirostat_mu))
|
||
elif self.params.mirostat == 2:
|
||
mirostat_mu = 2.0 * self.params.mirostat_tau
|
||
llama_cpp.llama_sample_temperature(self.ctx, candidates_p, llama_cpp.c_float(self.params.temp))
|
||
id = llama_cpp.llama_sample_token_mirostat_v2(self.ctx, candidates_p, llama_cpp.c_float(self.params.mirostat_tau), llama_cpp.c_float(self.params.mirostat_eta), llama_cpp.c_float(mirostat_mu))
|
||
else:
|
||
# Temperature sampling
|
||
llama_cpp.llama_sample_top_k(self.ctx, candidates_p, top_k)
|
||
llama_cpp.llama_sample_tail_free(self.ctx, candidates_p, llama_cpp.c_float(self.params.tfs_z))
|
||
llama_cpp.llama_sample_typical(self.ctx, candidates_p, llama_cpp.c_float(self.params.typical_p))
|
||
llama_cpp.llama_sample_top_p(self.ctx, candidates_p, llama_cpp.c_float(self.params.top_p))
|
||
llama_cpp.llama_sample_temperature(self.ctx, candidates_p, llama_cpp.c_float(self.params.temp))
|
||
id = llama_cpp.llama_sample_token(self.ctx, candidates_p)
|
||
# print("`{}`".format(candidates_p.size))
|
||
|
||
self.last_n_tokens.pop(0)
|
||
self.last_n_tokens.append(id)
|
||
|
||
# replace end of text token with newline token when in interactive mode
|
||
if (id == llama_cpp.llama_token_eos() and self.params.interactive and not self.params.instruct):
|
||
id = self.llama_token_newline[0]
|
||
if (self.use_antiprompt()):
|
||
# tokenize and inject first reverse prompt
|
||
self.embd_inp += self.first_antiprompt[0]
|
||
|
||
# add it to the context
|
||
self.embd.append(id)
|
||
|
||
# echo this to console
|
||
self.output_echo = True
|
||
|
||
# decrement remaining sampling budget
|
||
self.remaining_tokens -= 1
|
||
else:
|
||
# output to console if input echo is on
|
||
self.output_echo = self.params.input_echo
|
||
|
||
# some user input remains from prompt or interaction, forward it to processing
|
||
while len(self.embd_inp) > self.input_consumed:
|
||
self.embd.append(self.embd_inp[self.input_consumed])
|
||
self.last_n_tokens.pop(0)
|
||
self.last_n_tokens.append(self.embd_inp[self.input_consumed])
|
||
self.input_consumed += 1
|
||
if len(self.embd) >= self.params.n_batch:
|
||
break
|
||
|
||
# display tokens
|
||
if self.output_echo:
|
||
for id in self.embd:
|
||
if self.antiecho != None:
|
||
for r in self.antiecho(id):
|
||
yield r
|
||
else:
|
||
yield id
|
||
|
||
# reset color to default if we there is no pending user input
|
||
if (self.params.input_echo and len(self.embd_inp) == self.input_consumed):
|
||
self.set_color(CONSOLE_COLOR_DEFAULT)
|
||
|
||
if (self.params.interactive and len(self.embd_inp) <= self.input_consumed):
|
||
# if antiprompt is present, stop
|
||
if (self.use_antiprompt()):
|
||
if True in [
|
||
i == self.last_n_tokens[-len(i):]
|
||
for i in self.first_antiprompt
|
||
]:
|
||
break
|
||
|
||
# if we are using instruction mode, and we have processed the initial prompt
|
||
if (self.params.interactive_start):
|
||
break
|
||
|
||
# end of text token
|
||
if len(self.embd) > 0 and self.embd[-1] == llama_cpp.llama_token_eos():
|
||
if (not self.params.instruct):
|
||
for i in self.llama_token_eot:
|
||
yield i
|
||
break
|
||
|
||
# respect n_predict even if antiprompt is present
|
||
if (self.params.interactive and self.remaining_tokens <= 0 and self.params.n_predict != -1):
|
||
# If we arent in instruction mode, fix the current generation by appending the antiprompt.
|
||
# Makes it so if chat ends prematurely you dont append the AI's text etc.
|
||
if not self.params.instruct:
|
||
self.embd_inp += self.first_antiprompt[0]
|
||
self.n_remain = self.params.n_predict
|
||
break
|
||
|
||
self.params.interactive_start = False
|
||
|
||
def __enter__(self):
|
||
return self
|
||
|
||
def __exit__(self, type, value, tb):
|
||
self.exit()
|
||
|
||
def exit(self):
|
||
llama_cpp.llama_free(self.ctx)
|
||
self.set_color(CONSOLE_COLOR_DEFAULT)
|
||
|
||
# return past text
|
||
def past(self):
|
||
for id in self.last_n_tokens[-self.n_past:]:
|
||
yield llama_cpp.llama_token_to_str(self.ctx, id).decode("utf-8", errors="ignore")
|
||
|
||
# write input
|
||
def input(self, prompt: str):
|
||
if (self.params.instruct and self.last_n_tokens[-len(self.inp_prefix):] != self.inp_prefix):
|
||
self.embd_inp += self.inp_prefix
|
||
self.embd_inp += self._tokenize(prompt)
|
||
if (self.params.instruct):
|
||
self.embd_inp += self.inp_suffix
|
||
|
||
# write output
|
||
def output(self):
|
||
self.remaining_tokens = self.params.n_predict
|
||
for id in self.generate():
|
||
yield llama_cpp.llama_token_to_str(self.ctx, id).decode("utf-8")
|
||
|
||
# read user input
|
||
def read_input(self):
|
||
out = ""
|
||
while (t := input()).endswith("\\"):
|
||
out += t[:-1] + "\n"
|
||
return out + t + "\n"
|
||
|
||
# interactive mode
|
||
def interact(self):
|
||
for i in self.output():
|
||
print(i,end="",flush=True)
|
||
self.params.input_echo = False
|
||
|
||
while self.params.interactive:
|
||
self.set_color(CONSOLE_COLOR_USER_INPUT)
|
||
if (self.params.instruct):
|
||
print('\n> ', end="")
|
||
self.input(self.read_input())
|
||
else:
|
||
print(self.params.input_prefix, end="")
|
||
self.input(f"{self.params.input_prefix}{self.read_input()}{self.params.input_suffix}")
|
||
print(self.params.input_suffix,end="")
|
||
self.set_color(CONSOLE_COLOR_DEFAULT)
|
||
|
||
try:
|
||
for i in self.output():
|
||
print(i,end="",flush=True)
|
||
except KeyboardInterrupt:
|
||
self.set_color(CONSOLE_COLOR_DEFAULT)
|
||
if not self.params.instruct:
|
||
print(self.params.fix_prefix,end="")
|
||
self.input(self.params.fix_prefix)
|
||
|
||
if __name__ == "__main__":
|
||
from datetime import datetime
|
||
|
||
USER_NAME="User"
|
||
AI_NAME="ChatLLaMa"
|
||
|
||
time_now = datetime.now()
|
||
prompt = f"""Text transcript of a never ending dialog, where {USER_NAME} interacts with an AI assistant named {AI_NAME}.
|
||
{AI_NAME} is helpful, kind, honest, friendly, good at writing and never fails to answer {USER_NAME}’s requests immediately and with details and precision.
|
||
There are no annotations like (30 seconds passed...) or (to himself), just what {USER_NAME} and {AI_NAME} say aloud to each other.
|
||
The dialog lasts for years, the entirety of it is shared below. It's 10000 pages long.
|
||
The transcript only includes text, it does not include markup like HTML and Markdown.
|
||
|
||
{USER_NAME}: Hello, {AI_NAME}!
|
||
{AI_NAME}: Hello {USER_NAME}! How may I help you today?
|
||
{USER_NAME}: What time is it?
|
||
{AI_NAME}: It is {time_now.strftime("%H:%M")}.
|
||
{USER_NAME}: What year is it?
|
||
{AI_NAME}: We are in {time_now.strftime("%Y")}.
|
||
{USER_NAME}: What is a cat?
|
||
{AI_NAME}: A cat is a domestic species of small carnivorous mammal. It is the only domesticated species in the family Felidae.
|
||
{USER_NAME}: Name a color.
|
||
{AI_NAME}: Blue
|
||
{USER_NAME}:"""
|
||
params = gpt_params_parse()
|
||
|
||
with LLaMAInteract(params) as m:
|
||
m.interact()
|