efe8e6f879
Define an init_llama function that starts llama with supplied settings instead of just doing it in the global context of app.py This allows the test to be less brittle by not needing to mess with os.environ, then importing the app
271 lines
7.3 KiB
Python
271 lines
7.3 KiB
Python
import os
|
|
import json
|
|
from threading import Lock
|
|
from typing import List, Optional, Literal, Union, Iterator, Dict
|
|
from typing_extensions import TypedDict
|
|
|
|
import llama_cpp
|
|
|
|
from fastapi import Depends, FastAPI
|
|
from fastapi.middleware.cors import CORSMiddleware
|
|
from pydantic import BaseModel, BaseSettings, Field, create_model_from_typeddict
|
|
from sse_starlette.sse import EventSourceResponse
|
|
|
|
|
|
class Settings(BaseSettings):
|
|
model: str = os.environ.get("MODEL", "null")
|
|
n_ctx: int = 2048
|
|
n_batch: int = 512
|
|
n_threads: int = max((os.cpu_count() or 2) // 2, 1)
|
|
f16_kv: bool = True
|
|
use_mlock: bool = False # This causes a silent failure on platforms that don't support mlock (e.g. Windows) took forever to figure out...
|
|
use_mmap: bool = True
|
|
embedding: bool = True
|
|
last_n_tokens_size: int = 64
|
|
logits_all: bool = False
|
|
cache: bool = False # WARNING: This is an experimental feature
|
|
vocab_only: bool = False
|
|
|
|
|
|
app = FastAPI(
|
|
title="🦙 llama.cpp Python API",
|
|
version="0.0.1",
|
|
)
|
|
app.add_middleware(
|
|
CORSMiddleware,
|
|
allow_origins=["*"],
|
|
allow_credentials=True,
|
|
allow_methods=["*"],
|
|
allow_headers=["*"],
|
|
)
|
|
|
|
llama: llama_cpp.Llama = None
|
|
def init_llama(settings: Settings = None):
|
|
if settings is None:
|
|
settings = Settings()
|
|
global llama
|
|
llama = llama_cpp.Llama(
|
|
settings.model,
|
|
f16_kv=settings.f16_kv,
|
|
use_mlock=settings.use_mlock,
|
|
use_mmap=settings.use_mmap,
|
|
embedding=settings.embedding,
|
|
logits_all=settings.logits_all,
|
|
n_threads=settings.n_threads,
|
|
n_batch=settings.n_batch,
|
|
n_ctx=settings.n_ctx,
|
|
last_n_tokens_size=settings.last_n_tokens_size,
|
|
vocab_only=settings.vocab_only,
|
|
)
|
|
if settings.cache:
|
|
cache = llama_cpp.LlamaCache()
|
|
llama.set_cache(cache)
|
|
|
|
llama_lock = Lock()
|
|
def get_llama():
|
|
with llama_lock:
|
|
yield llama
|
|
|
|
class CreateCompletionRequest(BaseModel):
|
|
prompt: Union[str, List[str]]
|
|
suffix: Optional[str] = Field(None)
|
|
max_tokens: int = 16
|
|
temperature: float = 0.8
|
|
top_p: float = 0.95
|
|
echo: bool = False
|
|
stop: Optional[List[str]] = []
|
|
stream: bool = False
|
|
|
|
# ignored or currently unsupported
|
|
model: Optional[str] = Field(None)
|
|
n: Optional[int] = 1
|
|
logprobs: Optional[int] = Field(None)
|
|
presence_penalty: Optional[float] = 0
|
|
frequency_penalty: Optional[float] = 0
|
|
best_of: Optional[int] = 1
|
|
logit_bias: Optional[Dict[str, float]] = Field(None)
|
|
user: Optional[str] = Field(None)
|
|
|
|
# llama.cpp specific parameters
|
|
top_k: int = 40
|
|
repeat_penalty: float = 1.1
|
|
|
|
class Config:
|
|
schema_extra = {
|
|
"example": {
|
|
"prompt": "\n\n### Instructions:\nWhat is the capital of France?\n\n### Response:\n",
|
|
"stop": ["\n", "###"],
|
|
}
|
|
}
|
|
|
|
|
|
CreateCompletionResponse = create_model_from_typeddict(llama_cpp.Completion)
|
|
|
|
|
|
@app.post(
|
|
"/v1/completions",
|
|
response_model=CreateCompletionResponse,
|
|
)
|
|
def create_completion(
|
|
request: CreateCompletionRequest, llama: llama_cpp.Llama = Depends(get_llama)
|
|
):
|
|
if isinstance(request.prompt, list):
|
|
request.prompt = "".join(request.prompt)
|
|
|
|
completion_or_chunks = llama(
|
|
**request.dict(
|
|
exclude={
|
|
"model",
|
|
"n",
|
|
"frequency_penalty",
|
|
"presence_penalty",
|
|
"best_of",
|
|
"logit_bias",
|
|
"user",
|
|
}
|
|
)
|
|
)
|
|
if request.stream:
|
|
chunks: Iterator[llama_cpp.CompletionChunk] = completion_or_chunks # type: ignore
|
|
return EventSourceResponse(dict(data=json.dumps(chunk)) for chunk in chunks)
|
|
completion: llama_cpp.Completion = completion_or_chunks # type: ignore
|
|
return completion
|
|
|
|
|
|
class CreateEmbeddingRequest(BaseModel):
|
|
model: Optional[str]
|
|
input: str
|
|
user: Optional[str]
|
|
|
|
class Config:
|
|
schema_extra = {
|
|
"example": {
|
|
"input": "The food was delicious and the waiter...",
|
|
}
|
|
}
|
|
|
|
|
|
CreateEmbeddingResponse = create_model_from_typeddict(llama_cpp.Embedding)
|
|
|
|
|
|
@app.post(
|
|
"/v1/embeddings",
|
|
response_model=CreateEmbeddingResponse,
|
|
)
|
|
def create_embedding(
|
|
request: CreateEmbeddingRequest, llama: llama_cpp.Llama = Depends(get_llama)
|
|
):
|
|
return llama.create_embedding(**request.dict(exclude={"model", "user"}))
|
|
|
|
|
|
class ChatCompletionRequestMessage(BaseModel):
|
|
role: Union[Literal["system"], Literal["user"], Literal["assistant"]]
|
|
content: str
|
|
user: Optional[str] = None
|
|
|
|
|
|
class CreateChatCompletionRequest(BaseModel):
|
|
model: Optional[str]
|
|
messages: List[ChatCompletionRequestMessage]
|
|
temperature: float = 0.8
|
|
top_p: float = 0.95
|
|
stream: bool = False
|
|
stop: Optional[List[str]] = []
|
|
max_tokens: int = 128
|
|
|
|
# ignored or currently unsupported
|
|
model: Optional[str] = Field(None)
|
|
n: Optional[int] = 1
|
|
presence_penalty: Optional[float] = 0
|
|
frequency_penalty: Optional[float] = 0
|
|
logit_bias: Optional[Dict[str, float]] = Field(None)
|
|
user: Optional[str] = Field(None)
|
|
|
|
# llama.cpp specific parameters
|
|
repeat_penalty: float = 1.1
|
|
|
|
class Config:
|
|
schema_extra = {
|
|
"example": {
|
|
"messages": [
|
|
ChatCompletionRequestMessage(
|
|
role="system", content="You are a helpful assistant."
|
|
),
|
|
ChatCompletionRequestMessage(
|
|
role="user", content="What is the capital of France?"
|
|
),
|
|
]
|
|
}
|
|
}
|
|
|
|
|
|
CreateChatCompletionResponse = create_model_from_typeddict(llama_cpp.ChatCompletion)
|
|
|
|
|
|
@app.post(
|
|
"/v1/chat/completions",
|
|
response_model=CreateChatCompletionResponse,
|
|
)
|
|
def create_chat_completion(
|
|
request: CreateChatCompletionRequest,
|
|
llama: llama_cpp.Llama = Depends(get_llama),
|
|
) -> Union[llama_cpp.ChatCompletion, EventSourceResponse]:
|
|
completion_or_chunks = llama.create_chat_completion(
|
|
**request.dict(
|
|
exclude={
|
|
"model",
|
|
"n",
|
|
"presence_penalty",
|
|
"frequency_penalty",
|
|
"logit_bias",
|
|
"user",
|
|
}
|
|
),
|
|
)
|
|
|
|
if request.stream:
|
|
|
|
async def server_sent_events(
|
|
chat_chunks: Iterator[llama_cpp.ChatCompletionChunk],
|
|
):
|
|
for chat_chunk in chat_chunks:
|
|
yield dict(data=json.dumps(chat_chunk))
|
|
yield dict(data="[DONE]")
|
|
|
|
chunks: Iterator[llama_cpp.ChatCompletionChunk] = completion_or_chunks # type: ignore
|
|
|
|
return EventSourceResponse(
|
|
server_sent_events(chunks),
|
|
)
|
|
completion: llama_cpp.ChatCompletion = completion_or_chunks # type: ignore
|
|
return completion
|
|
|
|
|
|
class ModelData(TypedDict):
|
|
id: str
|
|
object: Literal["model"]
|
|
owned_by: str
|
|
permissions: List[str]
|
|
|
|
|
|
class ModelList(TypedDict):
|
|
object: Literal["list"]
|
|
data: List[ModelData]
|
|
|
|
|
|
GetModelResponse = create_model_from_typeddict(ModelList)
|
|
|
|
|
|
@app.get("/v1/models", response_model=GetModelResponse)
|
|
def get_models() -> ModelList:
|
|
return {
|
|
"object": "list",
|
|
"data": [
|
|
{
|
|
"id": llama.model_path,
|
|
"object": "model",
|
|
"owned_by": "me",
|
|
"permissions": [],
|
|
}
|
|
],
|
|
}
|