2f03fb0231
* fix text_offsets for bytes tokens * fix
2335 lines
89 KiB
Python
2335 lines
89 KiB
Python
import os
|
|
import sys
|
|
import uuid
|
|
import time
|
|
import multiprocessing
|
|
from abc import ABC, abstractmethod
|
|
from typing import (
|
|
List,
|
|
Optional,
|
|
Union,
|
|
Generator,
|
|
Sequence,
|
|
Iterator,
|
|
Deque,
|
|
Tuple,
|
|
Callable,
|
|
)
|
|
from collections import deque, OrderedDict
|
|
|
|
import diskcache
|
|
import ctypes
|
|
|
|
from .llama_types import *
|
|
from .llama_grammar import LlamaGrammar
|
|
import llama_cpp.llama_cpp as llama_cpp
|
|
import llama_cpp.llama_chat_format as llama_chat_format
|
|
|
|
import numpy as np
|
|
import numpy.typing as npt
|
|
|
|
from ._utils import suppress_stdout_stderr
|
|
|
|
|
|
class BaseLlamaCache(ABC):
|
|
"""Base cache class for a llama.cpp model."""
|
|
|
|
def __init__(self, capacity_bytes: int = (2 << 30)):
|
|
self.capacity_bytes = capacity_bytes
|
|
|
|
@property
|
|
@abstractmethod
|
|
def cache_size(self) -> int:
|
|
raise NotImplementedError
|
|
|
|
def _find_longest_prefix_key(
|
|
self,
|
|
key: Tuple[int, ...],
|
|
) -> Optional[Tuple[int, ...]]:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def __getitem__(self, key: Sequence[int]) -> "LlamaState":
|
|
raise NotImplementedError
|
|
|
|
@abstractmethod
|
|
def __contains__(self, key: Sequence[int]) -> bool:
|
|
raise NotImplementedError
|
|
|
|
@abstractmethod
|
|
def __setitem__(self, key: Sequence[int], value: "LlamaState") -> None:
|
|
raise NotImplementedError
|
|
|
|
|
|
class LlamaRAMCache(BaseLlamaCache):
|
|
"""Cache for a llama.cpp model using RAM."""
|
|
|
|
def __init__(self, capacity_bytes: int = (2 << 30)):
|
|
super().__init__(capacity_bytes)
|
|
self.capacity_bytes = capacity_bytes
|
|
self.cache_state: OrderedDict[Tuple[int, ...], "LlamaState"] = OrderedDict()
|
|
|
|
@property
|
|
def cache_size(self):
|
|
return sum([state.llama_state_size for state in self.cache_state.values()])
|
|
|
|
def _find_longest_prefix_key(
|
|
self,
|
|
key: Tuple[int, ...],
|
|
) -> Optional[Tuple[int, ...]]:
|
|
min_len = 0
|
|
min_key = None
|
|
keys = (
|
|
(k, Llama.longest_token_prefix(k, key)) for k in self.cache_state.keys()
|
|
)
|
|
for k, prefix_len in keys:
|
|
if prefix_len > min_len:
|
|
min_len = prefix_len
|
|
min_key = k
|
|
return min_key
|
|
|
|
def __getitem__(self, key: Sequence[int]) -> "LlamaState":
|
|
key = tuple(key)
|
|
_key = self._find_longest_prefix_key(key)
|
|
if _key is None:
|
|
raise KeyError("Key not found")
|
|
value = self.cache_state[_key]
|
|
self.cache_state.move_to_end(_key)
|
|
return value
|
|
|
|
def __contains__(self, key: Sequence[int]) -> bool:
|
|
return self._find_longest_prefix_key(tuple(key)) is not None
|
|
|
|
def __setitem__(self, key: Sequence[int], value: "LlamaState"):
|
|
key = tuple(key)
|
|
if key in self.cache_state:
|
|
del self.cache_state[key]
|
|
self.cache_state[key] = value
|
|
while self.cache_size > self.capacity_bytes and len(self.cache_state) > 0:
|
|
self.cache_state.popitem(last=False)
|
|
|
|
|
|
# Alias for backwards compatibility
|
|
LlamaCache = LlamaRAMCache
|
|
|
|
|
|
class LlamaDiskCache(BaseLlamaCache):
|
|
"""Cache for a llama.cpp model using disk."""
|
|
|
|
def __init__(
|
|
self, cache_dir: str = ".cache/llama_cache", capacity_bytes: int = (2 << 30)
|
|
):
|
|
super().__init__(capacity_bytes)
|
|
self.cache = diskcache.Cache(cache_dir)
|
|
|
|
@property
|
|
def cache_size(self):
|
|
return int(self.cache.volume()) # type: ignore
|
|
|
|
def _find_longest_prefix_key(
|
|
self,
|
|
key: Tuple[int, ...],
|
|
) -> Optional[Tuple[int, ...]]:
|
|
min_len = 0
|
|
min_key: Optional[Tuple[int, ...]] = None
|
|
for k in self.cache.iterkeys(): # type: ignore
|
|
prefix_len = Llama.longest_token_prefix(k, key)
|
|
if prefix_len > min_len:
|
|
min_len = prefix_len
|
|
min_key = k # type: ignore
|
|
return min_key
|
|
|
|
def __getitem__(self, key: Sequence[int]) -> "LlamaState":
|
|
key = tuple(key)
|
|
_key = self._find_longest_prefix_key(key)
|
|
if _key is None:
|
|
raise KeyError("Key not found")
|
|
value: "LlamaState" = self.cache.pop(_key) # type: ignore
|
|
# NOTE: This puts an integer as key in cache, which breaks,
|
|
# Llama.longest_token_prefix(k, key) above since k is not a tuple of ints/tokens
|
|
# self.cache.push(_key, side="front") # type: ignore
|
|
return value
|
|
|
|
def __contains__(self, key: Sequence[int]) -> bool:
|
|
return self._find_longest_prefix_key(tuple(key)) is not None
|
|
|
|
def __setitem__(self, key: Sequence[int], value: "LlamaState"):
|
|
print("LlamaDiskCache.__setitem__: called", file=sys.stderr)
|
|
key = tuple(key)
|
|
if key in self.cache:
|
|
print("LlamaDiskCache.__setitem__: delete", file=sys.stderr)
|
|
del self.cache[key]
|
|
self.cache[key] = value
|
|
print("LlamaDiskCache.__setitem__: set", file=sys.stderr)
|
|
while self.cache_size > self.capacity_bytes and len(self.cache) > 0:
|
|
key_to_remove = next(iter(self.cache))
|
|
del self.cache[key_to_remove]
|
|
print("LlamaDiskCache.__setitem__: trim", file=sys.stderr)
|
|
|
|
|
|
class LlamaState:
|
|
def __init__(
|
|
self,
|
|
input_ids: npt.NDArray[np.intc],
|
|
scores: npt.NDArray[np.single],
|
|
n_tokens: int,
|
|
llama_state: bytes,
|
|
llama_state_size: int,
|
|
):
|
|
self.input_ids = input_ids
|
|
self.scores = scores
|
|
self.n_tokens = n_tokens
|
|
self.llama_state = llama_state
|
|
self.llama_state_size = llama_state_size
|
|
|
|
|
|
LogitsProcessor = Callable[
|
|
[npt.NDArray[np.intc], npt.NDArray[np.single]], npt.NDArray[np.single]
|
|
]
|
|
|
|
|
|
class LogitsProcessorList(List[LogitsProcessor]):
|
|
def __call__(
|
|
self, input_ids: npt.NDArray[np.intc], scores: npt.NDArray[np.single]
|
|
) -> npt.NDArray[np.single]:
|
|
for processor in self:
|
|
scores = processor(input_ids, scores)
|
|
return scores
|
|
|
|
|
|
StoppingCriteria = Callable[[npt.NDArray[np.intc], npt.NDArray[np.single]], bool]
|
|
|
|
|
|
class StoppingCriteriaList(List[StoppingCriteria]):
|
|
def __call__(
|
|
self, input_ids: npt.NDArray[np.intc], logits: npt.NDArray[np.single]
|
|
) -> bool:
|
|
return any([stopping_criteria(input_ids, logits) for stopping_criteria in self])
|
|
|
|
|
|
class _LlamaModel:
|
|
"""Intermediate Python wrapper for a llama.cpp llama_model.
|
|
|
|
NOTE: For stability it's recommended you use the Llama class instead."""
|
|
|
|
_llama_free_model = None
|
|
# NOTE: this must be "saved" here to avoid exceptions when calling __del__
|
|
suppress_stdout_stderr = suppress_stdout_stderr
|
|
|
|
def __init__(
|
|
self,
|
|
*,
|
|
path_model: str,
|
|
params: llama_cpp.llama_model_params,
|
|
verbose: bool = True,
|
|
):
|
|
self.path_model = path_model
|
|
self.params = params
|
|
self.verbose = verbose
|
|
|
|
self._llama_free_model = llama_cpp._lib.llama_free_model # type: ignore
|
|
|
|
if not os.path.exists(path_model):
|
|
raise ValueError(f"Model path does not exist: {path_model}")
|
|
|
|
with suppress_stdout_stderr(disable=self.verbose):
|
|
self.model = llama_cpp.llama_load_model_from_file(
|
|
self.path_model.encode("utf-8"), self.params
|
|
)
|
|
|
|
def __del__(self):
|
|
with self.suppress_stdout_stderr(disable=self.verbose):
|
|
if self.model is not None and self._llama_free_model is not None:
|
|
self._llama_free_model(self.model)
|
|
self.model = None
|
|
|
|
def vocab_type(self) -> int:
|
|
assert self.model is not None
|
|
return llama_cpp.llama_vocab_type(self.model)
|
|
|
|
def n_vocab(self) -> int:
|
|
assert self.model is not None
|
|
return llama_cpp.llama_n_vocab(self.model)
|
|
|
|
def n_ctx_train(self) -> int:
|
|
assert self.model is not None
|
|
return llama_cpp.llama_n_ctx_train(self.model)
|
|
|
|
def n_embd(self) -> int:
|
|
assert self.model is not None
|
|
return llama_cpp.llama_n_embd(self.model)
|
|
|
|
def rope_freq_scale_train(self) -> float:
|
|
assert self.model is not None
|
|
return llama_cpp.llama_rope_freq_scale_train(self.model)
|
|
|
|
def desc(self) -> str:
|
|
assert self.model is not None
|
|
buf = ctypes.create_string_buffer(1024)
|
|
llama_cpp.llama_model_desc(self.model, buf, 1024) # type: ignore
|
|
return buf.value.decode("utf-8")
|
|
|
|
def size(self) -> int:
|
|
assert self.model is not None
|
|
return llama_cpp.llama_model_size(self.model)
|
|
|
|
def n_params(self) -> int:
|
|
assert self.model is not None
|
|
return llama_cpp.llama_model_n_params(self.model)
|
|
|
|
def get_tensor(self, name: str) -> ctypes.c_void_p:
|
|
assert self.model is not None
|
|
return llama_cpp.llama_get_model_tensor(self.model, name.encode("utf-8"))
|
|
|
|
def apply_lora_from_file(
|
|
self,
|
|
lora_path: str,
|
|
scale: float,
|
|
path_base_model: Optional[str],
|
|
n_threads: int,
|
|
):
|
|
assert self.model is not None
|
|
return llama_cpp.llama_model_apply_lora_from_file(
|
|
self.model,
|
|
lora_path.encode("utf-8"),
|
|
scale,
|
|
path_base_model.encode("utf-8")
|
|
if path_base_model is not None
|
|
else llama_cpp.c_char_p(0),
|
|
n_threads,
|
|
)
|
|
|
|
# Vocab
|
|
|
|
def token_get_text(self, token: int) -> str:
|
|
# TODO: Fix
|
|
assert self.model is not None
|
|
return llama_cpp.llama_token_get_text(self.model, token).decode("utf-8")
|
|
|
|
def token_get_score(self, token: int) -> float:
|
|
assert self.model is not None
|
|
return llama_cpp.llama_token_get_score(self.model, token)
|
|
|
|
def token_get_type(self, token: int) -> int:
|
|
assert self.model is not None
|
|
return llama_cpp.llama_token_get_type(self.model, token)
|
|
|
|
# Special tokens
|
|
|
|
def token_bos(self) -> int:
|
|
assert self.model is not None
|
|
return llama_cpp.llama_token_bos(self.model)
|
|
|
|
def token_eos(self) -> int:
|
|
assert self.model is not None
|
|
return llama_cpp.llama_token_eos(self.model)
|
|
|
|
def token_nl(self) -> int:
|
|
assert self.model is not None
|
|
return llama_cpp.llama_token_nl(self.model)
|
|
|
|
def token_prefix(self) -> int:
|
|
assert self.model is not None
|
|
return llama_cpp.llama_token_prefix(self.model)
|
|
|
|
def token_middle(self) -> int:
|
|
assert self.model is not None
|
|
return llama_cpp.llama_token_middle(self.model)
|
|
|
|
def token_suffix(self) -> int:
|
|
assert self.model is not None
|
|
return llama_cpp.llama_token_suffix(self.model)
|
|
|
|
def token_eot(self) -> int:
|
|
assert self.model is not None
|
|
return llama_cpp.llama_token_eot(self.model)
|
|
|
|
# Tokenization
|
|
|
|
def tokenize(self, text: bytes, add_bos: bool, special: bool):
|
|
assert self.model is not None
|
|
n_ctx = self.n_ctx_train()
|
|
tokens = (llama_cpp.llama_token * n_ctx)()
|
|
n_tokens = llama_cpp.llama_tokenize(
|
|
self.model, text, len(text), tokens, n_ctx, add_bos, special
|
|
)
|
|
if n_tokens < 0:
|
|
n_tokens = abs(n_tokens)
|
|
tokens = (llama_cpp.llama_token * n_tokens)()
|
|
n_tokens = llama_cpp.llama_tokenize(
|
|
self.model, text, len(text), tokens, n_tokens, add_bos, special
|
|
)
|
|
if n_tokens < 0:
|
|
raise RuntimeError(
|
|
f'Failed to tokenize: text="{text}" n_tokens={n_tokens}'
|
|
)
|
|
return list(tokens[:n_tokens])
|
|
|
|
def token_to_piece(self, token: int) -> bytes:
|
|
assert self.model is not None
|
|
buf = ctypes.create_string_buffer(32)
|
|
llama_cpp.llama_token_to_piece(self.model, token, buf, 32) # type: ignore
|
|
return bytes(buf)
|
|
|
|
def detokenize(self, tokens: List[int]) -> bytes:
|
|
assert self.model is not None
|
|
output = b""
|
|
size = 32
|
|
buffer = (ctypes.c_char * size)()
|
|
for token in tokens:
|
|
n = llama_cpp.llama_token_to_piece(
|
|
self.model, llama_cpp.llama_token(token), buffer, size
|
|
)
|
|
assert n <= size
|
|
output += bytes(buffer[:n])
|
|
# NOTE: Llama1 models automatically added a space at the start of the prompt
|
|
# this line removes a leading space if the first token is a beginning of sentence token
|
|
return (
|
|
output[1:] if len(tokens) > 0 and tokens[0] == self.token_bos() else output
|
|
)
|
|
|
|
@staticmethod
|
|
def default_params():
|
|
"""Get the default llama_model_params."""
|
|
return llama_cpp.llama_model_default_params()
|
|
|
|
|
|
class _LlamaContext:
|
|
"""Intermediate Python wrapper for a llama.cpp llama_context.
|
|
|
|
NOTE: For stability it's recommended you use the Llama class instead."""
|
|
|
|
_llama_free = None
|
|
# NOTE: this must be "saved" here to avoid exceptions when calling __del__
|
|
suppress_stdout_stderr = suppress_stdout_stderr
|
|
|
|
def __init__(
|
|
self,
|
|
*,
|
|
model: _LlamaModel,
|
|
params: llama_cpp.llama_context_params,
|
|
verbose: bool = True,
|
|
):
|
|
self.model = model
|
|
self.params = params
|
|
self.verbose = verbose
|
|
|
|
self._llama_free = llama_cpp._lib.llama_free # type: ignore
|
|
|
|
with suppress_stdout_stderr(disable=self.verbose):
|
|
self.ctx = llama_cpp.llama_new_context_with_model(
|
|
self.model.model, self.params
|
|
)
|
|
|
|
def __del__(self):
|
|
with self.suppress_stdout_stderr(disable=self.verbose):
|
|
if self.ctx is not None and self._llama_free is not None:
|
|
self._llama_free(self.ctx)
|
|
self.ctx = None
|
|
|
|
def n_ctx(self) -> int:
|
|
assert self.ctx is not None
|
|
return llama_cpp.llama_n_ctx(self.ctx)
|
|
|
|
def kv_cache_clear(self):
|
|
assert self.ctx is not None
|
|
llama_cpp.llama_kv_cache_clear(self.ctx)
|
|
|
|
def kv_cache_seq_rm(self, seq_id: int, p0: int, p1: int):
|
|
assert self.ctx is not None
|
|
llama_cpp.llama_kv_cache_seq_rm(self.ctx, seq_id, p0, p1)
|
|
|
|
def kv_cache_seq_cp(self, seq_id_src: int, seq_id_dst: int, p0: int, p1: int):
|
|
assert self.ctx is not None
|
|
llama_cpp.llama_kv_cache_seq_cp(self.ctx, seq_id_src, seq_id_dst, p0, p1)
|
|
|
|
def kv_cache_seq_keep(self, seq_id: int):
|
|
assert self.ctx is not None
|
|
llama_cpp.llama_kv_cache_seq_keep(self.ctx, seq_id)
|
|
|
|
def kv_cache_seq_shift(self, seq_id: int, p0: int, p1: int, shift: int):
|
|
assert self.ctx is not None
|
|
llama_cpp.llama_kv_cache_seq_shift(self.ctx, seq_id, p0, p1, shift)
|
|
|
|
def get_state_size(self) -> int:
|
|
assert self.ctx is not None
|
|
return llama_cpp.llama_get_state_size(self.ctx)
|
|
|
|
# TODO: copy_state_data
|
|
|
|
# TODO: set_state_data
|
|
|
|
# TODO: llama_load_session_file
|
|
|
|
# TODO: llama_save_session_file
|
|
|
|
def decode(self, batch: "_LlamaBatch"):
|
|
assert self.ctx is not None
|
|
assert batch.batch is not None
|
|
return_code = llama_cpp.llama_decode(
|
|
ctx=self.ctx,
|
|
batch=batch.batch,
|
|
)
|
|
if return_code != 0:
|
|
raise RuntimeError(f"llama_decode returned {return_code}")
|
|
|
|
def set_n_threads(self, n_threads: int, n_threads_batch: int):
|
|
assert self.ctx is not None
|
|
llama_cpp.llama_set_n_threads(self.ctx, n_threads, n_threads_batch)
|
|
|
|
def get_logits(self):
|
|
assert self.ctx is not None
|
|
return llama_cpp.llama_get_logits(self.ctx)
|
|
|
|
def get_logits_ith(self, i: int):
|
|
assert self.ctx is not None
|
|
return llama_cpp.llama_get_logits_ith(self.ctx, i)
|
|
|
|
def get_embeddings(self):
|
|
assert self.ctx is not None
|
|
return llama_cpp.llama_get_embeddings(self.ctx)
|
|
|
|
# Sampling functions
|
|
|
|
def set_rng_seed(self, seed: int):
|
|
assert self.ctx is not None
|
|
llama_cpp.llama_set_rng_seed(self.ctx, seed)
|
|
|
|
def sample_repetition_penalties(
|
|
self,
|
|
candidates: "_LlamaTokenDataArray",
|
|
last_tokens_data: "llama_cpp.Array[llama_cpp.llama_token]",
|
|
penalty_last_n: int,
|
|
penalty_repeat: float,
|
|
penalty_freq: float,
|
|
penalty_present: float,
|
|
):
|
|
assert self.ctx is not None
|
|
llama_cpp.llama_sample_repetition_penalties(
|
|
self.ctx,
|
|
ctypes.byref(candidates.candidates), # type: ignore
|
|
last_tokens_data,
|
|
penalty_last_n,
|
|
penalty_repeat,
|
|
penalty_freq,
|
|
penalty_present,
|
|
)
|
|
|
|
def sample_classifier_free_guidance(
|
|
self,
|
|
candidates: "_LlamaTokenDataArray",
|
|
guidance_ctx: "_LlamaContext",
|
|
scale: float,
|
|
):
|
|
assert self.ctx is not None
|
|
assert guidance_ctx.ctx is not None
|
|
llama_cpp.llama_sample_classifier_free_guidance(
|
|
self.ctx,
|
|
ctypes.byref(candidates.candidates), # type: ignore
|
|
guidance_ctx.ctx,
|
|
scale,
|
|
)
|
|
|
|
def sample_softmax(self, candidates: "_LlamaTokenDataArray"):
|
|
assert self.ctx is not None
|
|
llama_cpp.llama_sample_softmax(
|
|
self.ctx,
|
|
ctypes.byref(candidates.candidates), # type: ignore
|
|
)
|
|
|
|
def sample_top_k(self, candidates: "_LlamaTokenDataArray", k: int, min_keep: int):
|
|
assert self.ctx is not None
|
|
llama_cpp.llama_sample_top_k(
|
|
self.ctx, ctypes.byref(candidates.candidates), k, min_keep # type: ignore
|
|
)
|
|
|
|
def sample_top_p(self, candidates: "_LlamaTokenDataArray", p: float, min_keep: int):
|
|
assert self.ctx is not None
|
|
llama_cpp.llama_sample_top_p(
|
|
self.ctx, ctypes.byref(candidates.candidates), p, min_keep # type: ignore
|
|
)
|
|
|
|
def sample_min_p(self, candidates: "_LlamaTokenDataArray", p: float, min_keep: int):
|
|
assert self.ctx is not None
|
|
llama_cpp.llama_sample_min_p(
|
|
self.ctx, ctypes.byref(candidates.candidates), p, min_keep # type: ignore
|
|
)
|
|
|
|
def sample_tail_free(
|
|
self, candidates: "_LlamaTokenDataArray", z: float, min_keep: int
|
|
):
|
|
assert self.ctx is not None
|
|
llama_cpp.llama_sample_tail_free(
|
|
self.ctx, ctypes.byref(candidates.candidates), z, min_keep # type: ignore
|
|
)
|
|
|
|
def sample_typical(
|
|
self, candidates: "_LlamaTokenDataArray", p: float, min_keep: int
|
|
):
|
|
assert self.ctx is not None
|
|
llama_cpp.llama_sample_typical(
|
|
self.ctx, ctypes.byref(candidates.candidates), p, min_keep # type: ignore
|
|
)
|
|
|
|
def sample_temp(self, candidates: "_LlamaTokenDataArray", temp: float):
|
|
assert self.ctx is not None
|
|
llama_cpp.llama_sample_temp(
|
|
self.ctx, ctypes.byref(candidates.candidates), temp # type: ignore
|
|
)
|
|
|
|
def sample_grammar(self, candidates: "_LlamaTokenDataArray", grammar: LlamaGrammar):
|
|
assert self.ctx is not None
|
|
assert grammar.grammar is not None
|
|
llama_cpp.llama_sample_grammar(
|
|
self.ctx,
|
|
ctypes.byref(candidates.candidates), # type: ignore
|
|
grammar.grammar,
|
|
)
|
|
|
|
def sample_token_mirostat(
|
|
self,
|
|
candidates: "_LlamaTokenDataArray",
|
|
tau: float,
|
|
eta: float,
|
|
m: int,
|
|
mu: float,
|
|
) -> int:
|
|
assert self.ctx is not None
|
|
return llama_cpp.llama_sample_token_mirostat(
|
|
self.ctx,
|
|
ctypes.byref(candidates.candidates), # type: ignore
|
|
tau,
|
|
eta,
|
|
m,
|
|
ctypes.pointer(ctypes.c_float(mu)),
|
|
)
|
|
|
|
def sample_token_mirostat_v2(
|
|
self, candidates: "_LlamaTokenDataArray", tau: float, eta: float, mu: float
|
|
) -> int:
|
|
assert self.ctx is not None
|
|
return llama_cpp.llama_sample_token_mirostat_v2(
|
|
self.ctx,
|
|
ctypes.byref(candidates.candidates), # type: ignore
|
|
tau,
|
|
eta,
|
|
ctypes.pointer(ctypes.c_float(mu)),
|
|
)
|
|
|
|
def sample_token_greedy(self, candidates: "_LlamaTokenDataArray") -> int:
|
|
assert self.ctx is not None
|
|
return llama_cpp.llama_sample_token_greedy(
|
|
self.ctx,
|
|
ctypes.byref(candidates.candidates), # type: ignore
|
|
)
|
|
|
|
def sample_token(self, candidates: "_LlamaTokenDataArray") -> int:
|
|
assert self.ctx is not None
|
|
return llama_cpp.llama_sample_token(
|
|
self.ctx,
|
|
ctypes.byref(candidates.candidates), # type: ignore
|
|
)
|
|
|
|
# Grammar
|
|
def grammar_accept_token(self, grammar: LlamaGrammar, token: int):
|
|
assert self.ctx is not None
|
|
assert grammar.grammar is not None
|
|
llama_cpp.llama_grammar_accept_token(self.ctx, grammar.grammar, token)
|
|
|
|
def reset_timings(self):
|
|
assert self.ctx is not None
|
|
llama_cpp.llama_reset_timings(self.ctx)
|
|
|
|
def print_timings(self):
|
|
assert self.ctx is not None
|
|
llama_cpp.llama_print_timings(self.ctx)
|
|
|
|
# Utility functions
|
|
@staticmethod
|
|
def default_params():
|
|
"""Get the default llama_context_params."""
|
|
return llama_cpp.llama_context_default_params()
|
|
|
|
|
|
class _LlamaBatch:
|
|
_llama_batch_free = None
|
|
# NOTE: this must be "saved" here to avoid exceptions when calling __del__
|
|
suppress_stdout_stderr = suppress_stdout_stderr
|
|
|
|
def __init__(
|
|
self, *, n_tokens: int, embd: int, n_seq_max: int, verbose: bool = True
|
|
):
|
|
self.n_tokens = n_tokens
|
|
self.embd = embd
|
|
self.n_seq_max = n_seq_max
|
|
self.verbose = verbose
|
|
|
|
self._llama_batch_free = llama_cpp._lib.llama_batch_free # type: ignore
|
|
|
|
with suppress_stdout_stderr(disable=self.verbose):
|
|
self.batch = llama_cpp.llama_batch_init(
|
|
self.n_tokens, self.embd, self.n_seq_max
|
|
)
|
|
|
|
def __del__(self):
|
|
with self.suppress_stdout_stderr(disable=self.verbose):
|
|
if self.batch is not None and self._llama_batch_free is not None:
|
|
self._llama_batch_free(self.batch)
|
|
self.batch = None
|
|
|
|
def set_batch(self, batch: Sequence[int], n_past: int, logits_all: bool):
|
|
assert self.batch is not None
|
|
n_tokens = len(batch)
|
|
self.batch.n_tokens = n_tokens
|
|
for i in range(n_tokens):
|
|
self.batch.token[i] = batch[i]
|
|
self.batch.pos[i] = n_past + i
|
|
self.batch.seq_id[i][0] = 0
|
|
self.batch.n_seq_id[i] = 1
|
|
self.batch.logits[i] = logits_all
|
|
self.batch.logits[n_tokens - 1] = True
|
|
|
|
|
|
class _LlamaTokenDataArray:
|
|
def __init__(self, *, n_vocab: int):
|
|
self.n_vocab = n_vocab
|
|
self.candidates_data = np.array(
|
|
[],
|
|
dtype=np.dtype(
|
|
[("id", np.intc), ("logit", np.single), ("p", np.single)], align=True
|
|
),
|
|
)
|
|
self.candidates_data.resize(3, self.n_vocab, refcheck=False)
|
|
self.candidates = llama_cpp.llama_token_data_array(
|
|
data=self.candidates_data.ctypes.data_as(llama_cpp.llama_token_data_p),
|
|
size=self.n_vocab,
|
|
sorted=False,
|
|
)
|
|
self.default_candidates_data_id = np.arange(self.n_vocab, dtype=np.intc)
|
|
self.default_candidates_data_p = np.zeros(self.n_vocab, dtype=np.single)
|
|
|
|
def copy_logits(self, logits: npt.NDArray[np.single]):
|
|
self.candidates_data["id"][:] = self.default_candidates_data_id
|
|
self.candidates_data["logit"][:] = logits
|
|
self.candidates_data["p"][:] = self.default_candidates_data_p
|
|
self.candidates.data = self.candidates_data.ctypes.data_as(
|
|
llama_cpp.llama_token_data_p
|
|
)
|
|
self.candidates.sorted = llama_cpp.c_bool(False)
|
|
self.candidates.size = llama_cpp.c_size_t(self.n_vocab)
|
|
|
|
|
|
class Llama:
|
|
"""High-level Python wrapper for a llama.cpp model."""
|
|
|
|
__backend_initialized = False
|
|
|
|
def __init__(
|
|
self,
|
|
model_path: str,
|
|
*,
|
|
# Model Params
|
|
n_gpu_layers: int = 0,
|
|
main_gpu: int = 0,
|
|
tensor_split: Optional[List[float]] = None,
|
|
vocab_only: bool = False,
|
|
use_mmap: bool = True,
|
|
use_mlock: bool = False,
|
|
# Context Params
|
|
seed: int = llama_cpp.LLAMA_DEFAULT_SEED,
|
|
n_ctx: int = 512,
|
|
n_batch: int = 512,
|
|
n_threads: Optional[int] = None,
|
|
n_threads_batch: Optional[int] = None,
|
|
rope_scaling_type: Optional[int] = llama_cpp.LLAMA_ROPE_SCALING_UNSPECIFIED,
|
|
rope_freq_base: float = 0.0,
|
|
rope_freq_scale: float = 0.0,
|
|
yarn_ext_factor: float = -1.0,
|
|
yarn_attn_factor: float = 1.0,
|
|
yarn_beta_fast: float = 32.0,
|
|
yarn_beta_slow: float = 1.0,
|
|
yarn_orig_ctx: int = 0,
|
|
mul_mat_q: bool = True,
|
|
logits_all: bool = False,
|
|
embedding: bool = False,
|
|
offload_kqv: bool = False,
|
|
# Sampling Params
|
|
last_n_tokens_size: int = 64,
|
|
# LoRA Params
|
|
lora_base: Optional[str] = None,
|
|
lora_scale: float = 1.0,
|
|
lora_path: Optional[str] = None,
|
|
# Backend Params
|
|
numa: bool = False,
|
|
# Chat Format Params
|
|
chat_format: str = "llama-2",
|
|
chat_handler: Optional[llama_chat_format.LlamaChatCompletionHandler] = None,
|
|
# Misc
|
|
verbose: bool = True,
|
|
# Extra Params
|
|
**kwargs, # type: ignore
|
|
):
|
|
"""Load a llama.cpp model from `model_path`.
|
|
|
|
Examples:
|
|
Basic usage
|
|
|
|
>>> import llama_cpp
|
|
>>> model = llama_cpp.Llama(
|
|
... model_path="path/to/model",
|
|
... )
|
|
>>> print(model("The quick brown fox jumps ", stop=["."])["choices"][0]["text"])
|
|
the lazy dog
|
|
|
|
Loading a chat model
|
|
|
|
>>> import llama_cpp
|
|
>>> model = llama_cpp.Llama(
|
|
... model_path="path/to/model",
|
|
... chat_format="llama-2",
|
|
... )
|
|
>>> print(model.create_chat_completion(
|
|
... messages=[{
|
|
... "role": "user",
|
|
... "content": "what is the meaning of life?"
|
|
... }]
|
|
... ))
|
|
|
|
Args:
|
|
model_path: Path to the model.
|
|
n_gpu_layers: Number of layers to offload to GPU (-ngl). If -1, all layers are offloaded.
|
|
main_gpu: The GPU that is used for scratch and small tensors.
|
|
tensor_split: How split tensors should be distributed across GPUs. If None, the model is not split.
|
|
vocab_only: Only load the vocabulary no weights.
|
|
use_mmap: Use mmap if possible.
|
|
use_mlock: Force the system to keep the model in RAM.
|
|
seed: RNG seed, -1 for random
|
|
n_ctx: Text context, 0 = from model
|
|
n_batch: Prompt processing maximum batch size
|
|
n_threads: Number of threads to use for generation
|
|
n_threads_batch: Number of threads to use for batch processing
|
|
rope_scaling_type: RoPE scaling type, from `enum llama_rope_scaling_type`. ref: https://github.com/ggerganov/llama.cpp/pull/2054
|
|
rope_freq_base: RoPE base frequency, 0 = from model
|
|
rope_freq_scale: RoPE frequency scaling factor, 0 = from model
|
|
yarn_ext_factor: YaRN extrapolation mix factor, negative = from model
|
|
yarn_attn_factor: YaRN magnitude scaling factor
|
|
yarn_beta_fast: YaRN low correction dim
|
|
yarn_beta_slow: YaRN high correction dim
|
|
yarn_orig_ctx: YaRN original context size
|
|
logits_all: Return logits for all tokens, not just the last token. Must be True for completion to return logprobs.
|
|
embedding: Embedding mode only.
|
|
offload_kqv: Offload K, Q, V to GPU.
|
|
last_n_tokens_size: Maximum number of tokens to keep in the last_n_tokens deque.
|
|
lora_base: Optional path to base model, useful if using a quantized base model and you want to apply LoRA to an f16 model.
|
|
lora_path: Path to a LoRA file to apply to the model.
|
|
numa: Enable NUMA support. (NOTE: The initial value of this parameter is used for the remainder of the program as this value is set in llama_backend_init)
|
|
chat_format: String specifying the chat format to use when calling create_chat_completion.
|
|
chat_handler: Optional chat handler to use when calling create_chat_completion.
|
|
verbose: Print verbose output to stderr.
|
|
|
|
Raises:
|
|
ValueError: If the model path does not exist.
|
|
|
|
Returns:
|
|
A Llama instance.
|
|
"""
|
|
self.verbose = verbose
|
|
|
|
self.numa = numa
|
|
if not Llama.__backend_initialized:
|
|
with suppress_stdout_stderr(disable=self.verbose):
|
|
llama_cpp.llama_backend_init(self.numa)
|
|
Llama.__backend_initialized = True
|
|
|
|
self.model_path = model_path
|
|
|
|
# Model Params
|
|
self.model_params = llama_cpp.llama_model_default_params()
|
|
self.model_params.n_gpu_layers = (
|
|
0x7FFFFFFF if n_gpu_layers == -1 else n_gpu_layers
|
|
) # 0x7FFFFFFF is INT32 max, will be auto set to all layers
|
|
self.model_params.main_gpu = main_gpu
|
|
self.tensor_split = tensor_split
|
|
self._p_tensor_split = None
|
|
if self.tensor_split is not None:
|
|
if len(self.tensor_split) > llama_cpp.LLAMA_MAX_DEVICES:
|
|
raise ValueError(
|
|
f"Attempt to split tensors that exceed maximum supported devices. Current LLAMA_MAX_DEVICES={llama_cpp.LLAMA_MAX_DEVICES}"
|
|
)
|
|
# Type conversion and expand the list to the length of LLAMA_MAX_DEVICES
|
|
FloatArray = ctypes.c_float * llama_cpp.LLAMA_MAX_DEVICES
|
|
self._c_tensor_split = FloatArray(
|
|
*tensor_split # type: ignore
|
|
) # keep a reference to the array so it is not gc'd
|
|
self.model_params.tensor_split = self._c_tensor_split
|
|
self.model_params.vocab_only = vocab_only
|
|
self.model_params.use_mmap = use_mmap if lora_path is None else False
|
|
self.model_params.use_mlock = use_mlock
|
|
|
|
self.n_batch = min(n_ctx, n_batch) # ???
|
|
self.n_threads = n_threads or max(multiprocessing.cpu_count() // 2, 1)
|
|
self.n_threads_batch = n_threads_batch or max(
|
|
multiprocessing.cpu_count() // 2, 1
|
|
)
|
|
# Context Params
|
|
self.context_params = llama_cpp.llama_context_default_params()
|
|
self.context_params.seed = seed
|
|
self.context_params.n_ctx = n_ctx
|
|
self.context_params.n_batch = self.n_batch
|
|
self.context_params.n_threads = self.n_threads
|
|
self.context_params.n_threads_batch = self.n_threads_batch
|
|
self.context_params.rope_scaling_type = (
|
|
rope_scaling_type
|
|
if rope_scaling_type is not None
|
|
else llama_cpp.LLAMA_ROPE_SCALING_UNSPECIFIED
|
|
)
|
|
self.context_params.rope_freq_base = (
|
|
rope_freq_base if rope_freq_base != 0.0 else 0
|
|
)
|
|
self.context_params.rope_freq_scale = (
|
|
rope_freq_scale if rope_freq_scale != 0.0 else 0
|
|
)
|
|
self.context_params.yarn_ext_factor = (
|
|
yarn_ext_factor if yarn_ext_factor != 0.0 else 0
|
|
)
|
|
self.context_params.yarn_attn_factor = (
|
|
yarn_attn_factor if yarn_attn_factor != 0.0 else 0
|
|
)
|
|
self.context_params.yarn_beta_fast = (
|
|
yarn_beta_fast if yarn_beta_fast != 0.0 else 0
|
|
)
|
|
self.context_params.yarn_beta_slow = (
|
|
yarn_beta_slow if yarn_beta_slow != 0.0 else 0
|
|
)
|
|
self.context_params.yarn_orig_ctx = yarn_orig_ctx if yarn_orig_ctx != 0 else 0
|
|
self.context_params.mul_mat_q = mul_mat_q
|
|
self.context_params.logits_all = logits_all
|
|
self.context_params.embedding = embedding
|
|
self.context_params.offload_kqv = offload_kqv
|
|
|
|
# Sampling Params
|
|
self.last_n_tokens_size = last_n_tokens_size
|
|
|
|
self.cache: Optional[BaseLlamaCache] = None
|
|
|
|
self.lora_base = lora_base
|
|
self.lora_scale = lora_scale
|
|
self.lora_path = lora_path
|
|
|
|
if not os.path.exists(model_path):
|
|
raise ValueError(f"Model path does not exist: {model_path}")
|
|
|
|
self._model = _LlamaModel(
|
|
path_model=self.model_path, params=self.model_params, verbose=self.verbose
|
|
)
|
|
# Set the default value for the context and correct the batch
|
|
if n_ctx == 0:
|
|
n_ctx = self._model.n_ctx_train()
|
|
self.n_batch = min(n_ctx, n_batch)
|
|
self.context_params.n_ctx = self._model.n_ctx_train()
|
|
self.context_params.n_batch = self.n_batch
|
|
|
|
self._ctx = _LlamaContext(
|
|
model=self._model,
|
|
params=self.context_params,
|
|
verbose=self.verbose,
|
|
)
|
|
|
|
self._batch = _LlamaBatch(
|
|
n_tokens=self.n_batch,
|
|
embd=0,
|
|
n_seq_max=self.context_params.n_ctx,
|
|
verbose=self.verbose,
|
|
)
|
|
|
|
if self.lora_path:
|
|
if self._model.apply_lora_from_file(
|
|
self.lora_path,
|
|
self.lora_scale,
|
|
self.lora_base,
|
|
self.n_threads,
|
|
):
|
|
raise RuntimeError(
|
|
f"Failed to apply LoRA from lora path: {self.lora_path} to base path: {self.lora_base}"
|
|
)
|
|
|
|
if self.verbose:
|
|
print(llama_cpp.llama_print_system_info().decode("utf-8"), file=sys.stderr)
|
|
|
|
self.chat_format = chat_format
|
|
self.chat_handler = chat_handler
|
|
|
|
self._n_vocab = self.n_vocab()
|
|
self._n_ctx = self.n_ctx()
|
|
|
|
self._token_nl = self.token_nl()
|
|
self._token_eos = self.token_eos()
|
|
|
|
self._candidates = _LlamaTokenDataArray(n_vocab=self._n_vocab)
|
|
|
|
self.n_tokens = 0
|
|
self.input_ids: npt.NDArray[np.intc] = np.ndarray((n_ctx,), dtype=np.intc)
|
|
self.scores: npt.NDArray[np.single] = np.ndarray(
|
|
(n_ctx, self._n_vocab), dtype=np.single
|
|
)
|
|
|
|
@property
|
|
def ctx(self) -> llama_cpp.llama_context_p:
|
|
assert self._ctx.ctx is not None
|
|
return self._ctx.ctx
|
|
|
|
@property
|
|
def model(self) -> llama_cpp.llama_model_p:
|
|
assert self._model.model is not None
|
|
return self._model.model
|
|
|
|
@property
|
|
def _input_ids(self) -> npt.NDArray[np.intc]:
|
|
return self.input_ids[: self.n_tokens]
|
|
|
|
@property
|
|
def _scores(self) -> npt.NDArray[np.single]:
|
|
return self.scores[: self.n_tokens, :]
|
|
|
|
@property
|
|
def eval_tokens(self) -> Deque[int]:
|
|
return deque(self.input_ids[: self.n_tokens].tolist(), maxlen=self._n_ctx)
|
|
|
|
@property
|
|
def eval_logits(self) -> Deque[List[float]]:
|
|
return deque(
|
|
self.scores[: self.n_tokens, :].tolist(),
|
|
maxlen=self._n_ctx if self.context_params.logits_all else 1,
|
|
)
|
|
|
|
def tokenize(
|
|
self, text: bytes, add_bos: bool = True, special: bool = False
|
|
) -> List[int]:
|
|
"""Tokenize a string.
|
|
|
|
Args:
|
|
text: The utf-8 encoded string to tokenize.
|
|
|
|
Raises:
|
|
RuntimeError: If the tokenization failed.
|
|
|
|
Returns:
|
|
A list of tokens.
|
|
"""
|
|
return self._model.tokenize(text, add_bos, special)
|
|
|
|
def detokenize(self, tokens: List[int]) -> bytes:
|
|
"""Detokenize a list of tokens.
|
|
|
|
Args:
|
|
tokens: The list of tokens to detokenize.
|
|
|
|
Returns:
|
|
The detokenized string.
|
|
"""
|
|
return self._model.detokenize(tokens)
|
|
|
|
def set_cache(self, cache: Optional[BaseLlamaCache]):
|
|
"""Set the cache.
|
|
|
|
Args:
|
|
cache: The cache to set.
|
|
"""
|
|
self.cache = cache
|
|
|
|
def set_seed(self, seed: int):
|
|
"""Set the random seed.
|
|
|
|
Args:
|
|
seed: The random seed.
|
|
"""
|
|
assert self._ctx.ctx is not None
|
|
llama_cpp.llama_set_rng_seed(self._ctx.ctx, seed)
|
|
|
|
def reset(self):
|
|
"""Reset the model state."""
|
|
self.n_tokens = 0
|
|
|
|
def eval(self, tokens: Sequence[int]):
|
|
"""Evaluate a list of tokens.
|
|
|
|
Args:
|
|
tokens: The list of tokens to evaluate.
|
|
"""
|
|
assert self._ctx.ctx is not None
|
|
assert self._batch.batch is not None
|
|
self._ctx.kv_cache_seq_rm(-1, self.n_tokens, -1)
|
|
for i in range(0, len(tokens), self.n_batch):
|
|
batch = tokens[i : min(len(tokens), i + self.n_batch)]
|
|
n_past = self.n_tokens
|
|
n_tokens = len(batch)
|
|
self._batch.set_batch(
|
|
batch=batch, n_past=n_past, logits_all=self.context_params.logits_all
|
|
)
|
|
self._ctx.decode(self._batch)
|
|
# Save tokens
|
|
self.input_ids[n_past : n_past + n_tokens] = batch
|
|
# Save logits
|
|
rows = n_tokens
|
|
cols = self._n_vocab
|
|
offset = (
|
|
0 if self.context_params.logits_all else n_tokens - 1
|
|
) # NOTE: Only save the last token logits if logits_all is False
|
|
self.scores[n_past + offset : n_past + n_tokens, :].reshape(-1)[
|
|
:
|
|
] = self._ctx.get_logits()[offset * cols : rows * cols]
|
|
# Update n_tokens
|
|
self.n_tokens += n_tokens
|
|
|
|
def sample(
|
|
self,
|
|
top_k: int = 40,
|
|
top_p: float = 0.95,
|
|
min_p: float = 0.05,
|
|
typical_p: float = 1.0,
|
|
temp: float = 0.80,
|
|
repeat_penalty: float = 1.1,
|
|
frequency_penalty: float = 0.0,
|
|
presence_penalty: float = 0.0,
|
|
tfs_z: float = 1.0,
|
|
mirostat_mode: int = 0,
|
|
mirostat_eta: float = 0.1,
|
|
mirostat_tau: float = 5.0,
|
|
penalize_nl: bool = True,
|
|
logits_processor: Optional[LogitsProcessorList] = None,
|
|
grammar: Optional[LlamaGrammar] = None,
|
|
):
|
|
"""Sample a token from the model.
|
|
|
|
Args:
|
|
top_k: The top-k sampling parameter.
|
|
top_p: The top-p sampling parameter.
|
|
temp: The temperature parameter.
|
|
repeat_penalty: The repeat penalty parameter.
|
|
|
|
Returns:
|
|
The sampled token.
|
|
"""
|
|
assert self._ctx is not None
|
|
assert self.n_tokens > 0
|
|
last_n_tokens_data = [llama_cpp.llama_token(0)] * max(
|
|
0, self.last_n_tokens_size - self.n_tokens
|
|
) + self._input_ids[-self.last_n_tokens_size :].tolist()
|
|
last_n_tokens_size = len(last_n_tokens_data)
|
|
n_vocab = self._n_vocab
|
|
n_ctx = self._n_ctx
|
|
top_k = n_vocab if top_k <= 0 else top_k
|
|
last_n_tokens_size = n_ctx if last_n_tokens_size < 0 else last_n_tokens_size
|
|
last_n_tokens_data_c = (llama_cpp.llama_token * last_n_tokens_size)(
|
|
*last_n_tokens_data
|
|
)
|
|
logits: npt.NDArray[np.single] = self._scores[-1, :]
|
|
|
|
if logits_processor is not None:
|
|
logits[:] = logits_processor(self._input_ids, logits)
|
|
|
|
nl_logit = logits[self._token_nl]
|
|
self._candidates.copy_logits(logits)
|
|
self._ctx.sample_repetition_penalties(
|
|
candidates=self._candidates,
|
|
last_tokens_data=last_n_tokens_data_c,
|
|
penalty_last_n=last_n_tokens_size,
|
|
penalty_repeat=repeat_penalty,
|
|
penalty_freq=frequency_penalty,
|
|
penalty_present=presence_penalty,
|
|
)
|
|
if not penalize_nl:
|
|
self._candidates.candidates.data[self._token_nl].logit = llama_cpp.c_float(
|
|
nl_logit
|
|
)
|
|
|
|
if grammar is not None:
|
|
self._ctx.sample_grammar(
|
|
candidates=self._candidates,
|
|
grammar=grammar,
|
|
)
|
|
|
|
if temp < 0.0:
|
|
self._ctx.sample_softmax(candidates=self._candidates)
|
|
id = self._candidates.candidates.data[0].id
|
|
elif temp == 0.0:
|
|
id = self._ctx.sample_token_greedy(candidates=self._candidates)
|
|
elif mirostat_mode == 1:
|
|
self._ctx.sample_temp(candidates=self._candidates, temp=temp)
|
|
id = self._ctx.sample_token_mirostat(
|
|
candidates=self._candidates,
|
|
tau=mirostat_tau,
|
|
eta=mirostat_eta,
|
|
mu=2.0 * mirostat_tau,
|
|
m=100,
|
|
)
|
|
elif mirostat_mode == 2:
|
|
self._ctx.sample_temp(candidates=self._candidates, temp=temp)
|
|
id = self._ctx.sample_token_mirostat_v2(
|
|
candidates=self._candidates,
|
|
tau=mirostat_tau,
|
|
eta=mirostat_eta,
|
|
mu=2.0 * mirostat_tau,
|
|
)
|
|
else:
|
|
self._ctx.sample_top_k(candidates=self._candidates, k=top_k, min_keep=1)
|
|
self._ctx.sample_tail_free(candidates=self._candidates, z=tfs_z, min_keep=1)
|
|
self._ctx.sample_typical(
|
|
candidates=self._candidates, p=typical_p, min_keep=1
|
|
)
|
|
self._ctx.sample_top_p(candidates=self._candidates, p=top_p, min_keep=1)
|
|
self._ctx.sample_min_p(candidates=self._candidates, p=min_p, min_keep=1)
|
|
self._ctx.sample_temp(candidates=self._candidates, temp=temp)
|
|
id = self._ctx.sample_token(candidates=self._candidates)
|
|
if grammar is not None:
|
|
self._ctx.grammar_accept_token(grammar=grammar, token=id)
|
|
return id
|
|
|
|
def generate(
|
|
self,
|
|
tokens: Sequence[int],
|
|
top_k: int = 40,
|
|
top_p: float = 0.95,
|
|
min_p: float = 0.05,
|
|
typical_p: float = 1.0,
|
|
temp: float = 0.80,
|
|
repeat_penalty: float = 1.1,
|
|
reset: bool = True,
|
|
frequency_penalty: float = 0.0,
|
|
presence_penalty: float = 0.0,
|
|
tfs_z: float = 1.0,
|
|
mirostat_mode: int = 0,
|
|
mirostat_tau: float = 5.0,
|
|
mirostat_eta: float = 0.1,
|
|
logits_processor: Optional[LogitsProcessorList] = None,
|
|
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
|
grammar: Optional[LlamaGrammar] = None,
|
|
) -> Generator[int, Optional[Sequence[int]], None]:
|
|
"""Create a generator of tokens from a prompt.
|
|
|
|
Examples:
|
|
>>> llama = Llama("models/ggml-7b.bin")
|
|
>>> tokens = llama.tokenize(b"Hello, world!")
|
|
>>> for token in llama.generate(tokens, top_k=40, top_p=0.95, temp=1.0, repeat_penalty=1.1):
|
|
... print(llama.detokenize([token]))
|
|
|
|
Args:
|
|
tokens: The prompt tokens.
|
|
top_k: The top-k sampling parameter.
|
|
top_p: The top-p sampling parameter.
|
|
temp: The temperature parameter.
|
|
repeat_penalty: The repeat penalty parameter.
|
|
reset: Whether to reset the model state.
|
|
|
|
Yields:
|
|
The generated tokens.
|
|
"""
|
|
if reset and self.n_tokens > 0:
|
|
longest_prefix = 0
|
|
for a, b in zip(self._input_ids, tokens[:-1]):
|
|
if a == b:
|
|
longest_prefix += 1
|
|
else:
|
|
break
|
|
if longest_prefix > 0:
|
|
if self.verbose:
|
|
print("Llama.generate: prefix-match hit", file=sys.stderr)
|
|
reset = False
|
|
tokens = tokens[longest_prefix:]
|
|
self.n_tokens = longest_prefix
|
|
|
|
if reset:
|
|
self.reset()
|
|
|
|
if grammar is not None:
|
|
grammar.reset()
|
|
|
|
while True:
|
|
self.eval(tokens)
|
|
token = self.sample(
|
|
top_k=top_k,
|
|
top_p=top_p,
|
|
min_p=min_p,
|
|
typical_p=typical_p,
|
|
temp=temp,
|
|
repeat_penalty=repeat_penalty,
|
|
frequency_penalty=frequency_penalty,
|
|
presence_penalty=presence_penalty,
|
|
tfs_z=tfs_z,
|
|
mirostat_mode=mirostat_mode,
|
|
mirostat_tau=mirostat_tau,
|
|
mirostat_eta=mirostat_eta,
|
|
logits_processor=logits_processor,
|
|
grammar=grammar,
|
|
)
|
|
if stopping_criteria is not None and stopping_criteria(
|
|
self._input_ids, self._scores[-1, :]
|
|
):
|
|
return
|
|
tokens_or_none = yield token
|
|
tokens = [token]
|
|
if tokens_or_none is not None:
|
|
tokens.extend(tokens_or_none)
|
|
|
|
def create_embedding(
|
|
self, input: Union[str, List[str]], model: Optional[str] = None
|
|
) -> CreateEmbeddingResponse:
|
|
"""Embed a string.
|
|
|
|
Args:
|
|
input: The utf-8 encoded string to embed.
|
|
|
|
Returns:
|
|
An embedding object.
|
|
"""
|
|
assert self._ctx.ctx is not None
|
|
assert self._model.model is not None
|
|
model_name: str = model if model is not None else self.model_path
|
|
|
|
if self.context_params.embedding == False:
|
|
raise RuntimeError(
|
|
"Llama model must be created with embedding=True to call this method"
|
|
)
|
|
|
|
if self.verbose:
|
|
llama_cpp.llama_reset_timings(self._ctx.ctx)
|
|
|
|
if isinstance(input, str):
|
|
inputs = [input]
|
|
else:
|
|
inputs = input
|
|
|
|
data: List[Embedding] = []
|
|
total_tokens = 0
|
|
for index, input in enumerate(inputs):
|
|
tokens = self.tokenize(input.encode("utf-8"), special=True)
|
|
self.reset()
|
|
self.eval(tokens)
|
|
n_tokens = len(tokens)
|
|
total_tokens += n_tokens
|
|
embedding = llama_cpp.llama_get_embeddings(self._ctx.ctx)[
|
|
: llama_cpp.llama_n_embd(self._model.model)
|
|
]
|
|
|
|
data.append(
|
|
{
|
|
"object": "embedding",
|
|
"embedding": embedding,
|
|
"index": index,
|
|
}
|
|
)
|
|
if self.verbose:
|
|
llama_cpp.llama_print_timings(self._ctx.ctx)
|
|
|
|
return {
|
|
"object": "list",
|
|
"data": data,
|
|
"model": model_name,
|
|
"usage": {
|
|
"prompt_tokens": total_tokens,
|
|
"total_tokens": total_tokens,
|
|
},
|
|
}
|
|
|
|
def embed(self, input: str) -> List[float]:
|
|
"""Embed a string.
|
|
|
|
Args:
|
|
input: The utf-8 encoded string to embed.
|
|
|
|
Returns:
|
|
A list of embeddings
|
|
"""
|
|
return list(map(float, self.create_embedding(input)["data"][0]["embedding"]))
|
|
|
|
def _create_completion(
|
|
self,
|
|
prompt: Union[str, List[int]],
|
|
suffix: Optional[str] = None,
|
|
max_tokens: Optional[int] = 16,
|
|
temperature: float = 0.8,
|
|
top_p: float = 0.95,
|
|
min_p: float = 0.05,
|
|
typical_p: float = 1.0,
|
|
logprobs: Optional[int] = None,
|
|
echo: bool = False,
|
|
stop: Optional[Union[str, List[str]]] = [],
|
|
frequency_penalty: float = 0.0,
|
|
presence_penalty: float = 0.0,
|
|
repeat_penalty: float = 1.1,
|
|
top_k: int = 40,
|
|
stream: bool = False,
|
|
seed: Optional[int] = None,
|
|
tfs_z: float = 1.0,
|
|
mirostat_mode: int = 0,
|
|
mirostat_tau: float = 5.0,
|
|
mirostat_eta: float = 0.1,
|
|
model: Optional[str] = None,
|
|
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
|
logits_processor: Optional[LogitsProcessorList] = None,
|
|
grammar: Optional[LlamaGrammar] = None,
|
|
logit_bias: Optional[Dict[str, float]] = None,
|
|
) -> Union[
|
|
Iterator[CreateCompletionResponse], Iterator[CreateCompletionStreamResponse]
|
|
]:
|
|
assert self._ctx is not None
|
|
assert suffix is None or suffix.__class__ is str
|
|
|
|
completion_id: str = f"cmpl-{str(uuid.uuid4())}"
|
|
created: int = int(time.time())
|
|
# If prompt is empty, initialize completion with BOS token to avoid
|
|
# detokenization including a space at the beginning of the completion
|
|
completion_tokens: List[int] = [] if len(prompt) > 0 else [self.token_bos()]
|
|
# Add blank space to start of prompt to match OG llama tokenizer
|
|
prompt_tokens: List[int] = (
|
|
(
|
|
self.tokenize(prompt.encode("utf-8"), special=True)
|
|
if prompt != ""
|
|
else [self.token_bos()]
|
|
)
|
|
if isinstance(prompt, str)
|
|
else prompt
|
|
)
|
|
text: bytes = b""
|
|
returned_tokens: int = 0
|
|
stop = (
|
|
stop if isinstance(stop, list) else [stop] if isinstance(stop, str) else []
|
|
)
|
|
model_name: str = model if model is not None else self.model_path
|
|
|
|
# NOTE: This likely doesn't work correctly for the first token in the prompt
|
|
# because of the extra space added to the start of the prompt_tokens
|
|
if logit_bias is not None:
|
|
logit_bias_map = {int(k): float(v) for k, v in logit_bias.items()}
|
|
|
|
def logit_bias_processor(
|
|
input_ids: npt.NDArray[np.intc],
|
|
scores: npt.NDArray[np.single],
|
|
) -> npt.NDArray[np.single]:
|
|
new_scores = np.copy(
|
|
scores
|
|
) # Does it make sense to copy the whole array or can we just overwrite the original one?
|
|
for input_id, score in logit_bias_map.items():
|
|
new_scores[input_id] = score + scores[input_id]
|
|
return new_scores
|
|
|
|
_logit_bias_processor = LogitsProcessorList([logit_bias_processor])
|
|
if logits_processor is None:
|
|
logits_processor = _logit_bias_processor
|
|
else:
|
|
logits_processor = logits_processor.extend(_logit_bias_processor)
|
|
|
|
if self.verbose:
|
|
self._ctx.reset_timings()
|
|
|
|
if len(prompt_tokens) >= self._n_ctx:
|
|
raise ValueError(
|
|
f"Requested tokens ({len(prompt_tokens)}) exceed context window of {llama_cpp.llama_n_ctx(self.ctx)}"
|
|
)
|
|
|
|
if max_tokens is None or max_tokens <= 0:
|
|
# Unlimited, depending on n_ctx.
|
|
max_tokens = self._n_ctx - len(prompt_tokens)
|
|
|
|
# Truncate max_tokens if requested tokens would exceed the context window
|
|
max_tokens = (
|
|
max_tokens
|
|
if max_tokens + len(prompt_tokens) < self._n_ctx
|
|
else (self._n_ctx - len(prompt_tokens))
|
|
)
|
|
|
|
if stop != []:
|
|
stop_sequences = [s.encode("utf-8") for s in stop]
|
|
else:
|
|
stop_sequences = []
|
|
|
|
if logprobs is not None and self.context_params.logits_all is False:
|
|
raise ValueError(
|
|
"logprobs is not supported for models created with logits_all=False"
|
|
)
|
|
|
|
if self.cache:
|
|
try:
|
|
cache_item = self.cache[prompt_tokens]
|
|
cache_prefix_len = Llama.longest_token_prefix(
|
|
cache_item.input_ids.tolist(), prompt_tokens
|
|
)
|
|
eval_prefix_len = Llama.longest_token_prefix(
|
|
self._input_ids.tolist(), prompt_tokens
|
|
)
|
|
if cache_prefix_len > eval_prefix_len:
|
|
self.load_state(cache_item)
|
|
if self.verbose:
|
|
print("Llama._create_completion: cache hit", file=sys.stderr)
|
|
except KeyError:
|
|
if self.verbose:
|
|
print("Llama._create_completion: cache miss", file=sys.stderr)
|
|
|
|
if seed is not None:
|
|
self._ctx.set_rng_seed(seed)
|
|
|
|
finish_reason = "length"
|
|
multibyte_fix = 0
|
|
for token in self.generate(
|
|
prompt_tokens,
|
|
top_k=top_k,
|
|
top_p=top_p,
|
|
min_p=min_p,
|
|
typical_p=typical_p,
|
|
temp=temperature,
|
|
tfs_z=tfs_z,
|
|
mirostat_mode=mirostat_mode,
|
|
mirostat_tau=mirostat_tau,
|
|
mirostat_eta=mirostat_eta,
|
|
frequency_penalty=frequency_penalty,
|
|
presence_penalty=presence_penalty,
|
|
repeat_penalty=repeat_penalty,
|
|
stopping_criteria=stopping_criteria,
|
|
logits_processor=logits_processor,
|
|
grammar=grammar,
|
|
):
|
|
if token == self._token_eos:
|
|
text = self.detokenize(completion_tokens)
|
|
finish_reason = "stop"
|
|
break
|
|
|
|
completion_tokens.append(token)
|
|
|
|
all_text = self.detokenize(completion_tokens)
|
|
|
|
# Contains multi-byte UTF8
|
|
for k, char in enumerate(all_text[-3:]):
|
|
k = 3 - k
|
|
for num, pattern in [(2, 192), (3, 224), (4, 240)]:
|
|
# Bitwise AND check
|
|
if num > k and pattern & char == pattern:
|
|
multibyte_fix = num - k
|
|
|
|
# Stop incomplete bytes from passing
|
|
if multibyte_fix > 0:
|
|
multibyte_fix -= 1
|
|
continue
|
|
|
|
any_stop = [s for s in stop_sequences if s in all_text]
|
|
if len(any_stop) > 0:
|
|
first_stop = any_stop[0]
|
|
text = all_text[: all_text.index(first_stop)]
|
|
finish_reason = "stop"
|
|
break
|
|
|
|
if stream:
|
|
remaining_tokens = completion_tokens[returned_tokens:]
|
|
remaining_text = self.detokenize(remaining_tokens)
|
|
remaining_length = len(remaining_text)
|
|
|
|
# We want to avoid yielding any characters from
|
|
# the generated text if they are part of a stop
|
|
# sequence.
|
|
first_stop_position = 0
|
|
for s in stop_sequences:
|
|
for i in range(min(len(s), remaining_length), 0, -1):
|
|
if remaining_text.endswith(s[:i]):
|
|
if i > first_stop_position:
|
|
first_stop_position = i
|
|
break
|
|
|
|
token_end_position = 0
|
|
|
|
if logprobs is not None:
|
|
# not sure how to handle this branch when dealing
|
|
# with CJK output, so keep it unchanged
|
|
for token in remaining_tokens:
|
|
if token == self.token_bos():
|
|
continue
|
|
token_end_position += len(self.detokenize([token]))
|
|
# Check if stop sequence is in the token
|
|
if token_end_position > (
|
|
remaining_length - first_stop_position
|
|
):
|
|
break
|
|
token_str = self.detokenize([token]).decode(
|
|
"utf-8", errors="ignore"
|
|
)
|
|
text_offset = len(prompt) + len(
|
|
self.detokenize(completion_tokens[:returned_tokens]).decode(
|
|
"utf-8", errors="ignore"
|
|
)
|
|
)
|
|
token_offset = len(prompt_tokens) + returned_tokens
|
|
logits = self._scores[token_offset - 1, :]
|
|
current_logprobs = Llama.logits_to_logprobs(logits).tolist()
|
|
sorted_logprobs = list(
|
|
sorted(
|
|
zip(current_logprobs, range(len(current_logprobs))),
|
|
reverse=True,
|
|
)
|
|
)
|
|
top_logprob = {
|
|
self.detokenize([i]).decode(
|
|
"utf-8", errors="ignore"
|
|
): logprob
|
|
for logprob, i in sorted_logprobs[:logprobs]
|
|
}
|
|
top_logprob.update({token_str: current_logprobs[int(token)]})
|
|
logprobs_or_none = {
|
|
"tokens": [
|
|
self.detokenize([token]).decode(
|
|
"utf-8", errors="ignore"
|
|
)
|
|
],
|
|
"text_offset": [text_offset],
|
|
"token_logprobs": [current_logprobs[int(token)]],
|
|
"top_logprobs": [top_logprob],
|
|
}
|
|
returned_tokens += 1
|
|
yield {
|
|
"id": completion_id,
|
|
"object": "text_completion",
|
|
"created": created,
|
|
"model": model_name,
|
|
"choices": [
|
|
{
|
|
"text": self.detokenize([token]).decode(
|
|
"utf-8", errors="ignore"
|
|
),
|
|
"index": 0,
|
|
"logprobs": logprobs_or_none,
|
|
"finish_reason": None,
|
|
}
|
|
],
|
|
}
|
|
else:
|
|
while len(remaining_tokens) > 0:
|
|
decode_success = False
|
|
for i in range(1, len(remaining_tokens) + 1):
|
|
try:
|
|
bs = self.detokenize(remaining_tokens[:i])
|
|
ts = bs.decode("utf-8")
|
|
decode_success = True
|
|
break
|
|
except UnicodeError:
|
|
pass
|
|
else:
|
|
break
|
|
if not decode_success:
|
|
# all remaining tokens cannot be decoded to a UTF-8 character
|
|
break
|
|
token_end_position += len(bs)
|
|
if token_end_position > (
|
|
remaining_length - first_stop_position
|
|
):
|
|
break
|
|
remaining_tokens = remaining_tokens[i:]
|
|
returned_tokens += i
|
|
|
|
yield {
|
|
"id": completion_id,
|
|
"object": "text_completion",
|
|
"created": created,
|
|
"model": model_name,
|
|
"choices": [
|
|
{
|
|
"text": ts,
|
|
"index": 0,
|
|
"logprobs": None,
|
|
"finish_reason": None,
|
|
}
|
|
],
|
|
}
|
|
|
|
if len(completion_tokens) >= max_tokens:
|
|
text = self.detokenize(completion_tokens)
|
|
finish_reason = "length"
|
|
break
|
|
|
|
if stopping_criteria is not None and stopping_criteria(
|
|
self._input_ids, self._scores[-1, :]
|
|
):
|
|
text = self.detokenize(completion_tokens)
|
|
finish_reason = "stop"
|
|
|
|
if self.verbose:
|
|
self._ctx.print_timings()
|
|
|
|
if stream:
|
|
remaining_tokens = completion_tokens[returned_tokens:]
|
|
all_text = self.detokenize(remaining_tokens)
|
|
any_stop = [s for s in stop_sequences if s in all_text]
|
|
if len(any_stop) > 0:
|
|
end = min(all_text.index(stop) for stop in any_stop)
|
|
else:
|
|
end = len(all_text)
|
|
|
|
token_end_position = 0
|
|
for token in remaining_tokens:
|
|
token_end_position += len(self.detokenize([token]))
|
|
|
|
logprobs_or_none: Optional[CompletionLogprobs] = None
|
|
if logprobs is not None:
|
|
if token == self.token_bos():
|
|
continue
|
|
token_str = self.detokenize([token]).decode(
|
|
"utf-8", errors="ignore"
|
|
)
|
|
text_offset = len(prompt) + len(
|
|
self.detokenize(completion_tokens[:returned_tokens])
|
|
)
|
|
token_offset = len(prompt_tokens) + returned_tokens - 1
|
|
logits = self._scores[token_offset, :]
|
|
current_logprobs = Llama.logits_to_logprobs(logits).tolist()
|
|
sorted_logprobs = list(
|
|
sorted(
|
|
zip(current_logprobs, range(len(current_logprobs))),
|
|
reverse=True,
|
|
)
|
|
)
|
|
top_logprob = {
|
|
self.detokenize([i]).decode("utf-8", errors="ignore"): logprob
|
|
for logprob, i in sorted_logprobs[:logprobs]
|
|
}
|
|
top_logprob.update({token_str: current_logprobs[int(token)]})
|
|
logprobs_or_none = {
|
|
"tokens": [
|
|
self.detokenize([token]).decode("utf-8", errors="ignore")
|
|
],
|
|
"text_offset": [text_offset],
|
|
"token_logprobs": [current_logprobs[int(token)]],
|
|
"top_logprobs": [top_logprob],
|
|
}
|
|
|
|
if token_end_position >= end:
|
|
last_text = self.detokenize([token])
|
|
if token_end_position == end - 1:
|
|
break
|
|
returned_tokens += 1
|
|
yield {
|
|
"id": completion_id,
|
|
"object": "text_completion",
|
|
"created": created,
|
|
"model": model_name,
|
|
"choices": [
|
|
{
|
|
"text": last_text[
|
|
: len(last_text) - (token_end_position - end)
|
|
].decode("utf-8", errors="ignore"),
|
|
"index": 0,
|
|
"logprobs": logprobs_or_none,
|
|
"finish_reason": None,
|
|
}
|
|
],
|
|
}
|
|
break
|
|
returned_tokens += 1
|
|
yield {
|
|
"id": completion_id,
|
|
"object": "text_completion",
|
|
"created": created,
|
|
"model": model_name,
|
|
"choices": [
|
|
{
|
|
"text": self.detokenize([token]).decode(
|
|
"utf-8", errors="ignore"
|
|
),
|
|
"index": 0,
|
|
"logprobs": logprobs_or_none,
|
|
"finish_reason": None,
|
|
}
|
|
],
|
|
}
|
|
yield {
|
|
"id": completion_id,
|
|
"object": "text_completion",
|
|
"created": created,
|
|
"model": model_name,
|
|
"choices": [
|
|
{
|
|
"text": "",
|
|
"index": 0,
|
|
"logprobs": None,
|
|
"finish_reason": finish_reason,
|
|
}
|
|
],
|
|
}
|
|
if self.cache:
|
|
if self.verbose:
|
|
print("Llama._create_completion: cache save", file=sys.stderr)
|
|
self.cache[prompt_tokens + completion_tokens] = self.save_state()
|
|
print("Llama._create_completion: cache saved", file=sys.stderr)
|
|
return
|
|
|
|
if self.cache:
|
|
if self.verbose:
|
|
print("Llama._create_completion: cache save", file=sys.stderr)
|
|
self.cache[prompt_tokens + completion_tokens] = self.save_state()
|
|
|
|
text_str = text.decode("utf-8", errors="ignore")
|
|
|
|
if echo:
|
|
text_str = prompt + text_str
|
|
|
|
if suffix is not None:
|
|
text_str = text_str + suffix
|
|
|
|
logprobs_or_none: Optional[CompletionLogprobs] = None
|
|
if logprobs is not None:
|
|
text_offset = 0 if echo else len(prompt)
|
|
token_offset = 0 if echo else len(prompt_tokens[1:])
|
|
text_offsets: List[int] = []
|
|
token_logprobs: List[Optional[float]] = []
|
|
tokens: List[str] = []
|
|
top_logprobs: List[Optional[Dict[str, float]]] = []
|
|
|
|
if echo:
|
|
# Remove leading BOS token
|
|
all_tokens = prompt_tokens[1:] + completion_tokens
|
|
else:
|
|
all_tokens = completion_tokens
|
|
|
|
all_token_strs = [
|
|
self.detokenize([token]).decode("utf-8", errors="ignore")
|
|
for token in all_tokens
|
|
]
|
|
all_logprobs = Llama.logits_to_logprobs(self._scores)[token_offset:]
|
|
# TODO: may be able to change this loop to use np.take_along_dim
|
|
for idx, (token, token_str, logprobs_token) in enumerate(
|
|
zip(all_tokens, all_token_strs, all_logprobs)
|
|
):
|
|
if token == self.token_bos():
|
|
continue
|
|
text_offsets.append(
|
|
text_offset
|
|
+ len(
|
|
self.detokenize(all_tokens[:idx]).decode(
|
|
"utf-8", errors="ignore"
|
|
)
|
|
)
|
|
)
|
|
tokens.append(token_str)
|
|
sorted_logprobs = list(
|
|
sorted(
|
|
zip(logprobs_token, range(len(logprobs_token))), reverse=True
|
|
)
|
|
)
|
|
token_logprobs.append(logprobs_token[int(token)])
|
|
top_logprob: Optional[Dict[str, float]] = {
|
|
self.detokenize([i]).decode("utf-8", errors="ignore"): logprob
|
|
for logprob, i in sorted_logprobs[:logprobs]
|
|
}
|
|
top_logprob.update({token_str: logprobs_token[int(token)]})
|
|
top_logprobs.append(top_logprob)
|
|
# Weird idosincracy of the OpenAI API where
|
|
# token_logprobs and top_logprobs are null for
|
|
# the first token.
|
|
if echo and len(all_tokens) > 0:
|
|
token_logprobs[0] = None
|
|
top_logprobs[0] = None
|
|
logprobs_or_none = {
|
|
"tokens": tokens,
|
|
"text_offset": text_offsets,
|
|
"token_logprobs": token_logprobs,
|
|
"top_logprobs": top_logprobs,
|
|
}
|
|
|
|
yield {
|
|
"id": completion_id,
|
|
"object": "text_completion",
|
|
"created": created,
|
|
"model": model_name,
|
|
"choices": [
|
|
{
|
|
"text": text_str,
|
|
"index": 0,
|
|
"logprobs": logprobs_or_none,
|
|
"finish_reason": finish_reason,
|
|
}
|
|
],
|
|
"usage": {
|
|
"prompt_tokens": len(prompt_tokens),
|
|
"completion_tokens": len(completion_tokens),
|
|
"total_tokens": len(prompt_tokens) + len(completion_tokens),
|
|
},
|
|
}
|
|
|
|
def create_completion(
|
|
self,
|
|
prompt: Union[str, List[int]],
|
|
suffix: Optional[str] = None,
|
|
max_tokens: Optional[int] = 16,
|
|
temperature: float = 0.8,
|
|
top_p: float = 0.95,
|
|
min_p: float = 0.05,
|
|
typical_p: float = 1.0,
|
|
logprobs: Optional[int] = None,
|
|
echo: bool = False,
|
|
stop: Optional[Union[str, List[str]]] = [],
|
|
frequency_penalty: float = 0.0,
|
|
presence_penalty: float = 0.0,
|
|
repeat_penalty: float = 1.1,
|
|
top_k: int = 40,
|
|
stream: bool = False,
|
|
seed: Optional[int] = None,
|
|
tfs_z: float = 1.0,
|
|
mirostat_mode: int = 0,
|
|
mirostat_tau: float = 5.0,
|
|
mirostat_eta: float = 0.1,
|
|
model: Optional[str] = None,
|
|
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
|
logits_processor: Optional[LogitsProcessorList] = None,
|
|
grammar: Optional[LlamaGrammar] = None,
|
|
logit_bias: Optional[Dict[str, float]] = None,
|
|
) -> Union[CreateCompletionResponse, Iterator[CreateCompletionStreamResponse]]:
|
|
"""Generate text from a prompt.
|
|
|
|
Args:
|
|
prompt: The prompt to generate text from.
|
|
suffix: A suffix to append to the generated text. If None, no suffix is appended.
|
|
max_tokens: The maximum number of tokens to generate. If max_tokens <= 0 or None, the maximum number of tokens to generate is unlimited and depends on n_ctx.
|
|
temperature: The temperature to use for sampling.
|
|
top_p: The top-p value to use for nucleus sampling. Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
|
min_p: The min-p value to use for minimum p sampling. Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
|
|
typical_p: The typical-p value to use for sampling. Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
|
|
logprobs: The number of logprobs to return. If None, no logprobs are returned.
|
|
echo: Whether to echo the prompt.
|
|
stop: A list of strings to stop generation when encountered.
|
|
frequency_penalty: The penalty to apply to tokens based on their frequency in the prompt.
|
|
presence_penalty: The penalty to apply to tokens based on their presence in the prompt.
|
|
repeat_penalty: The penalty to apply to repeated tokens.
|
|
top_k: The top-k value to use for sampling. Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
|
stream: Whether to stream the results.
|
|
seed: The seed to use for sampling.
|
|
tfs_z: The tail-free sampling parameter. Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
|
|
mirostat_mode: The mirostat sampling mode.
|
|
mirostat_tau: The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
|
|
mirostat_eta: The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
|
|
model: The name to use for the model in the completion object.
|
|
stopping_criteria: A list of stopping criteria to use.
|
|
logits_processor: A list of logits processors to use.
|
|
grammar: A grammar to use for constrained sampling.
|
|
logit_bias: A logit bias to use.
|
|
|
|
Raises:
|
|
ValueError: If the requested tokens exceed the context window.
|
|
RuntimeError: If the prompt fails to tokenize or the model fails to evaluate the prompt.
|
|
|
|
Returns:
|
|
Response object containing the generated text.
|
|
"""
|
|
completion_or_chunks = self._create_completion(
|
|
prompt=prompt,
|
|
suffix=suffix,
|
|
max_tokens=max_tokens,
|
|
temperature=temperature,
|
|
top_p=top_p,
|
|
min_p=min_p,
|
|
typical_p=typical_p,
|
|
logprobs=logprobs,
|
|
echo=echo,
|
|
stop=stop,
|
|
frequency_penalty=frequency_penalty,
|
|
presence_penalty=presence_penalty,
|
|
repeat_penalty=repeat_penalty,
|
|
top_k=top_k,
|
|
stream=stream,
|
|
seed=seed,
|
|
tfs_z=tfs_z,
|
|
mirostat_mode=mirostat_mode,
|
|
mirostat_tau=mirostat_tau,
|
|
mirostat_eta=mirostat_eta,
|
|
model=model,
|
|
stopping_criteria=stopping_criteria,
|
|
logits_processor=logits_processor,
|
|
grammar=grammar,
|
|
logit_bias=logit_bias,
|
|
)
|
|
if stream:
|
|
chunks: Iterator[CreateCompletionStreamResponse] = completion_or_chunks
|
|
return chunks
|
|
completion: Completion = next(completion_or_chunks) # type: ignore
|
|
return completion
|
|
|
|
def __call__(
|
|
self,
|
|
prompt: str,
|
|
suffix: Optional[str] = None,
|
|
max_tokens: int = 128,
|
|
temperature: float = 0.8,
|
|
top_p: float = 0.95,
|
|
min_p: float = 0.05,
|
|
typical_p: float = 1.0,
|
|
logprobs: Optional[int] = None,
|
|
echo: bool = False,
|
|
stop: Optional[Union[str, List[str]]] = [],
|
|
frequency_penalty: float = 0.0,
|
|
presence_penalty: float = 0.0,
|
|
repeat_penalty: float = 1.1,
|
|
top_k: int = 40,
|
|
stream: bool = False,
|
|
seed: Optional[int] = None,
|
|
tfs_z: float = 1.0,
|
|
mirostat_mode: int = 0,
|
|
mirostat_tau: float = 5.0,
|
|
mirostat_eta: float = 0.1,
|
|
model: Optional[str] = None,
|
|
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
|
logits_processor: Optional[LogitsProcessorList] = None,
|
|
grammar: Optional[LlamaGrammar] = None,
|
|
logit_bias: Optional[Dict[str, float]] = None,
|
|
) -> Union[CreateCompletionResponse, Iterator[CreateCompletionStreamResponse]]:
|
|
"""Generate text from a prompt.
|
|
|
|
Args:
|
|
prompt: The prompt to generate text from.
|
|
suffix: A suffix to append to the generated text. If None, no suffix is appended.
|
|
max_tokens: The maximum number of tokens to generate. If max_tokens <= 0 or None, the maximum number of tokens to generate is unlimited and depends on n_ctx.
|
|
temperature: The temperature to use for sampling.
|
|
top_p: The top-p value to use for nucleus sampling. Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
|
min_p: The min-p value to use for minimum p sampling. Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
|
|
typical_p: The typical-p value to use for sampling. Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
|
|
logprobs: The number of logprobs to return. If None, no logprobs are returned.
|
|
echo: Whether to echo the prompt.
|
|
stop: A list of strings to stop generation when encountered.
|
|
frequency_penalty: The penalty to apply to tokens based on their frequency in the prompt.
|
|
presence_penalty: The penalty to apply to tokens based on their presence in the prompt.
|
|
repeat_penalty: The penalty to apply to repeated tokens.
|
|
top_k: The top-k value to use for sampling. Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
|
stream: Whether to stream the results.
|
|
seed: The seed to use for sampling.
|
|
tfs_z: The tail-free sampling parameter. Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
|
|
mirostat_mode: The mirostat sampling mode.
|
|
mirostat_tau: The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
|
|
mirostat_eta: The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
|
|
model: The name to use for the model in the completion object.
|
|
stopping_criteria: A list of stopping criteria to use.
|
|
logits_processor: A list of logits processors to use.
|
|
grammar: A grammar to use for constrained sampling.
|
|
logit_bias: A logit bias to use.
|
|
|
|
Raises:
|
|
ValueError: If the requested tokens exceed the context window.
|
|
RuntimeError: If the prompt fails to tokenize or the model fails to evaluate the prompt.
|
|
|
|
Returns:
|
|
Response object containing the generated text.
|
|
"""
|
|
return self.create_completion(
|
|
prompt=prompt,
|
|
suffix=suffix,
|
|
max_tokens=max_tokens,
|
|
temperature=temperature,
|
|
top_p=top_p,
|
|
min_p=min_p,
|
|
typical_p=typical_p,
|
|
logprobs=logprobs,
|
|
echo=echo,
|
|
stop=stop,
|
|
frequency_penalty=frequency_penalty,
|
|
presence_penalty=presence_penalty,
|
|
repeat_penalty=repeat_penalty,
|
|
top_k=top_k,
|
|
stream=stream,
|
|
seed=seed,
|
|
tfs_z=tfs_z,
|
|
mirostat_mode=mirostat_mode,
|
|
mirostat_tau=mirostat_tau,
|
|
mirostat_eta=mirostat_eta,
|
|
model=model,
|
|
stopping_criteria=stopping_criteria,
|
|
logits_processor=logits_processor,
|
|
grammar=grammar,
|
|
logit_bias=logit_bias,
|
|
)
|
|
|
|
def create_chat_completion(
|
|
self,
|
|
messages: List[ChatCompletionRequestMessage],
|
|
functions: Optional[List[ChatCompletionFunction]] = None,
|
|
function_call: Optional[ChatCompletionRequestFunctionCall] = None,
|
|
tools: Optional[List[ChatCompletionTool]] = None,
|
|
tool_choice: Optional[ChatCompletionToolChoiceOption] = None,
|
|
temperature: float = 0.2,
|
|
top_p: float = 0.95,
|
|
top_k: int = 40,
|
|
min_p: float = 0.05,
|
|
typical_p: float = 1.0,
|
|
stream: bool = False,
|
|
stop: Optional[Union[str, List[str]]] = [],
|
|
seed: Optional[int] = None,
|
|
response_format: Optional[ChatCompletionRequestResponseFormat] = None,
|
|
max_tokens: Optional[int] = None,
|
|
presence_penalty: float = 0.0,
|
|
frequency_penalty: float = 0.0,
|
|
repeat_penalty: float = 1.1,
|
|
tfs_z: float = 1.0,
|
|
mirostat_mode: int = 0,
|
|
mirostat_tau: float = 5.0,
|
|
mirostat_eta: float = 0.1,
|
|
model: Optional[str] = None,
|
|
logits_processor: Optional[LogitsProcessorList] = None,
|
|
grammar: Optional[LlamaGrammar] = None,
|
|
logit_bias: Optional[Dict[str, float]] = None,
|
|
) -> Union[
|
|
CreateChatCompletionResponse, Iterator[CreateChatCompletionStreamResponse]
|
|
]:
|
|
"""Generate a chat completion from a list of messages.
|
|
|
|
Args:
|
|
messages: A list of messages to generate a response for.
|
|
functions: A list of functions to use for the chat completion.
|
|
function_call: A function call to use for the chat completion.
|
|
tools: A list of tools to use for the chat completion.
|
|
tool_choice: A tool choice to use for the chat completion.
|
|
temperature: The temperature to use for sampling.
|
|
top_p: The top-p value to use for nucleus sampling. Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
|
top_k: The top-k value to use for sampling. Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
|
min_p: The min-p value to use for minimum p sampling. Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
|
|
typical_p: The typical-p value to use for sampling. Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
|
|
stream: Whether to stream the results.
|
|
stop: A list of strings to stop generation when encountered.
|
|
seed: The seed to use for sampling.
|
|
response_format: The response format to use for the chat completion. Use { "type": "json_object" } to contstrain output to only valid json.
|
|
max_tokens: The maximum number of tokens to generate. If max_tokens <= 0 or None, the maximum number of tokens to generate is unlimited and depends on n_ctx.
|
|
presence_penalty: The penalty to apply to tokens based on their presence in the prompt.
|
|
frequency_penalty: The penalty to apply to tokens based on their frequency in the prompt.
|
|
repeat_penalty: The penalty to apply to repeated tokens.
|
|
tfs_z: The tail-free sampling parameter.
|
|
mirostat_mode: The mirostat sampling mode.
|
|
mirostat_tau: The mirostat sampling tau parameter.
|
|
mirostat_eta: The mirostat sampling eta parameter.
|
|
model: The name to use for the model in the completion object.
|
|
logits_processor: A list of logits processors to use.
|
|
grammar: A grammar to use.
|
|
logit_bias: A logit bias to use.
|
|
|
|
Returns:
|
|
Generated chat completion or a stream of chat completion chunks.
|
|
"""
|
|
handler = self.chat_handler or llama_chat_format.get_chat_completion_handler(
|
|
self.chat_format
|
|
)
|
|
return handler(
|
|
llama=self,
|
|
messages=messages,
|
|
functions=functions,
|
|
function_call=function_call,
|
|
tools=tools,
|
|
tool_choice=tool_choice,
|
|
temperature=temperature,
|
|
top_p=top_p,
|
|
top_k=top_k,
|
|
min_p=min_p,
|
|
typical_p=typical_p,
|
|
stream=stream,
|
|
stop=stop,
|
|
seed=seed,
|
|
response_format=response_format,
|
|
max_tokens=max_tokens,
|
|
presence_penalty=presence_penalty,
|
|
frequency_penalty=frequency_penalty,
|
|
repeat_penalty=repeat_penalty,
|
|
tfs_z=tfs_z,
|
|
mirostat_mode=mirostat_mode,
|
|
mirostat_tau=mirostat_tau,
|
|
mirostat_eta=mirostat_eta,
|
|
model=model,
|
|
logits_processor=logits_processor,
|
|
grammar=grammar,
|
|
logit_bias=logit_bias,
|
|
)
|
|
|
|
def __getstate__(self):
|
|
return dict(
|
|
model_path=self.model_path,
|
|
# Model Params
|
|
n_gpu_layers=self.model_params.n_gpu_layers,
|
|
main_gpu=self.model_params.main_gpu,
|
|
tensor_split=self.tensor_split,
|
|
vocab_only=self.model_params.vocab_only,
|
|
use_mmap=self.model_params.use_mmap,
|
|
use_mlock=self.model_params.use_mlock,
|
|
# Context Params
|
|
seed=self.context_params.seed,
|
|
n_ctx=self.context_params.n_ctx,
|
|
n_batch=self.n_batch,
|
|
n_threads=self.context_params.n_threads,
|
|
n_threads_batch=self.context_params.n_threads_batch,
|
|
rope_scaling_type=self.context_params.rope_scaling_type,
|
|
rope_freq_base=self.context_params.rope_freq_base,
|
|
rope_freq_scale=self.context_params.rope_freq_scale,
|
|
yarn_ext_factor=self.context_params.yarn_ext_factor,
|
|
yarn_attn_factor=self.context_params.yarn_attn_factor,
|
|
yarn_beta_fast=self.context_params.yarn_beta_fast,
|
|
yarn_beta_slow=self.context_params.yarn_beta_slow,
|
|
yarn_orig_ctx=self.context_params.yarn_orig_ctx,
|
|
mul_mat_q=self.context_params.mul_mat_q,
|
|
logits_all=self.context_params.logits_all,
|
|
embedding=self.context_params.embedding,
|
|
# Sampling Params
|
|
last_n_tokens_size=self.last_n_tokens_size,
|
|
# LoRA Params
|
|
lora_base=self.lora_base,
|
|
lora_scale=self.lora_scale,
|
|
lora_path=self.lora_path,
|
|
# Backend Params
|
|
numa=self.numa,
|
|
# Chat Format Params
|
|
chat_format=self.chat_format,
|
|
chat_handler=self.chat_handler,
|
|
# Misc
|
|
verbose=self.verbose,
|
|
)
|
|
|
|
def __setstate__(self, state):
|
|
self.__init__(
|
|
model_path=state["model_path"],
|
|
# Model Params
|
|
n_gpu_layers=state["n_gpu_layers"],
|
|
main_gpu=state["main_gpu"],
|
|
tensor_split=state["tensor_split"],
|
|
vocab_only=state["vocab_only"],
|
|
use_mmap=state["use_mmap"],
|
|
use_mlock=state["use_mlock"],
|
|
# Context Params
|
|
seed=state["seed"],
|
|
n_ctx=state["n_ctx"],
|
|
n_batch=state["n_batch"],
|
|
n_threads=state["n_threads"],
|
|
n_threads_batch=state["n_threads_batch"],
|
|
rope_freq_base=state["rope_freq_base"],
|
|
rope_freq_scale=state["rope_freq_scale"],
|
|
rope_scaling_type=state["rope_scaling_type"],
|
|
yarn_ext_factor=state["yarn_ext_factor"],
|
|
yarn_attn_factor=state["yarn_attn_factor"],
|
|
yarn_beta_fast=state["yarn_beta_fast"],
|
|
yarn_beta_slow=state["yarn_beta_slow"],
|
|
yarn_orig_ctx=state["yarn_orig_ctx"],
|
|
mul_mat_q=state["mul_mat_q"],
|
|
logits_all=state["logits_all"],
|
|
embedding=state["embedding"],
|
|
# Sampling Params
|
|
last_n_tokens_size=state["last_n_tokens_size"],
|
|
# LoRA Params
|
|
lora_base=state["lora_base"],
|
|
lora_path=state["lora_path"],
|
|
# Backend Params
|
|
numa=state["numa"],
|
|
# Chat Format Params
|
|
chat_format=state["chat_format"],
|
|
chat_handler=state["chat_handler"],
|
|
# Misc
|
|
verbose=state["verbose"],
|
|
)
|
|
|
|
def save_state(self) -> LlamaState:
|
|
assert self._ctx.ctx is not None
|
|
if self.verbose:
|
|
print("Llama.save_state: saving llama state", file=sys.stderr)
|
|
state_size = llama_cpp.llama_get_state_size(self._ctx.ctx)
|
|
if self.verbose:
|
|
print(f"Llama.save_state: got state size: {state_size}", file=sys.stderr)
|
|
llama_state = (llama_cpp.c_uint8 * int(state_size))()
|
|
if self.verbose:
|
|
print("Llama.save_state: allocated state", file=sys.stderr)
|
|
n_bytes = llama_cpp.llama_copy_state_data(self._ctx.ctx, llama_state)
|
|
if self.verbose:
|
|
print(f"Llama.save_state: copied llama state: {n_bytes}", file=sys.stderr)
|
|
if int(n_bytes) > int(state_size):
|
|
raise RuntimeError("Failed to copy llama state data")
|
|
llama_state_compact = (llama_cpp.c_uint8 * int(n_bytes))()
|
|
llama_cpp.ctypes.memmove(llama_state_compact, llama_state, int(n_bytes))
|
|
if self.verbose:
|
|
print(
|
|
f"Llama.save_state: saving {n_bytes} bytes of llama state",
|
|
file=sys.stderr,
|
|
)
|
|
return LlamaState(
|
|
scores=self.scores.copy(),
|
|
input_ids=self.input_ids.copy(),
|
|
n_tokens=self.n_tokens,
|
|
llama_state=bytes(llama_state_compact),
|
|
llama_state_size=n_bytes,
|
|
)
|
|
|
|
def load_state(self, state: LlamaState) -> None:
|
|
assert self._ctx.ctx is not None
|
|
self.scores = state.scores.copy()
|
|
self.input_ids = state.input_ids.copy()
|
|
self.n_tokens = state.n_tokens
|
|
state_size = state.llama_state_size
|
|
LLamaStateArrayType = llama_cpp.c_uint8 * state_size
|
|
llama_state = LLamaStateArrayType.from_buffer_copy(state.llama_state)
|
|
|
|
if llama_cpp.llama_set_state_data(self._ctx.ctx, llama_state) != state_size:
|
|
raise RuntimeError("Failed to set llama state data")
|
|
|
|
def n_ctx(self) -> int:
|
|
"""Return the context window size."""
|
|
return self._ctx.n_ctx()
|
|
|
|
def n_embd(self) -> int:
|
|
"""Return the embedding size."""
|
|
return self._model.n_embd()
|
|
|
|
def n_vocab(self) -> int:
|
|
"""Return the vocabulary size."""
|
|
return self._model.n_vocab()
|
|
|
|
def tokenizer(self) -> "LlamaTokenizer":
|
|
"""Return the tokenizer for this model."""
|
|
return LlamaTokenizer(self)
|
|
|
|
def token_eos(self) -> int:
|
|
"""Return the end-of-sequence token."""
|
|
return self._model.token_eos()
|
|
|
|
def token_bos(self) -> int:
|
|
"""Return the beginning-of-sequence token."""
|
|
return self._model.token_bos()
|
|
|
|
def token_nl(self) -> int:
|
|
"""Return the newline token."""
|
|
return self._model.token_nl()
|
|
|
|
@staticmethod
|
|
def logits_to_logprobs(
|
|
logits: Union[npt.NDArray[np.single], List], axis: int = -1
|
|
) -> npt.NDArray[np.single]:
|
|
# https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.log_softmax.html
|
|
logits_maxs: np.ndarray = np.amax(logits, axis=axis, keepdims=True)
|
|
if logits_maxs.ndim > 0:
|
|
logits_maxs[~np.isfinite(logits_maxs)] = 0
|
|
elif not np.isfinite(logits_maxs):
|
|
logits_maxs = 0
|
|
subtract_maxs = np.subtract(logits, logits_maxs, dtype=np.single)
|
|
exp = np.exp(subtract_maxs)
|
|
# Suppress warnings about log of zero
|
|
with np.errstate(divide="ignore"):
|
|
summed = np.sum(exp, axis=axis, keepdims=True)
|
|
out = np.log(summed)
|
|
return subtract_maxs - out
|
|
|
|
@staticmethod
|
|
def longest_token_prefix(a: Sequence[int], b: Sequence[int]):
|
|
longest_prefix = 0
|
|
for _a, _b in zip(a, b):
|
|
if _a == _b:
|
|
longest_prefix += 1
|
|
else:
|
|
break
|
|
return longest_prefix
|
|
|
|
|
|
class LlamaTokenizer:
|
|
def __init__(self, llama: Llama):
|
|
self.llama = llama
|
|
|
|
def encode(self, text: str, add_bos: bool = True) -> List[int]:
|
|
return self.llama.tokenize(
|
|
text.encode("utf-8", errors="ignore"), add_bos=add_bos, special=True
|
|
)
|
|
|
|
def decode(self, tokens: List[int]) -> str:
|
|
return self.llama.detokenize(tokens).decode("utf-8", errors="ignore")
|
|
|
|
@classmethod
|
|
def from_ggml_file(cls, path: str) -> "LlamaTokenizer":
|
|
return cls(Llama(model_path=path, vocab_only=True))
|