202 lines
8.7 KiB
Python
202 lines
8.7 KiB
Python
import os
|
|
import argparse
|
|
import re
|
|
|
|
from dataclasses import dataclass, field
|
|
from typing import List
|
|
|
|
# Based on https://github.com/ggerganov/llama.cpp/blob/master/examples/common.cpp
|
|
|
|
|
|
@dataclass
|
|
class GptParams:
|
|
seed: int = -1
|
|
n_threads: int = min(4, os.cpu_count() or 1)
|
|
n_predict: int = 128
|
|
n_parts: int = -1
|
|
n_ctx: int = 512
|
|
n_batch: int = 8
|
|
n_keep: int = 0
|
|
|
|
ignore_eos: bool = False
|
|
logit_bias: dict[int, float] = field(default_factory=dict)
|
|
top_k: int = 40
|
|
top_p: float = 0.95
|
|
tfs_z: float = 1.00
|
|
typical_p: float = 1.00
|
|
temp: float = 0.80
|
|
repeat_penalty: float = 1.10
|
|
repeat_last_n: int = 64
|
|
frequency_penalty: float = 0.0
|
|
presence_penalty: float = 0.0
|
|
mirostat: int = 0
|
|
mirostat_tau: float = 5.0
|
|
mirostat_eta: float = 0.1
|
|
|
|
model: str = "./models/llama-7B/ggml-model.bin"
|
|
prompt: str = ""
|
|
path_session: str = ""
|
|
input_prefix: str = " "
|
|
antiprompt: List[str] = field(default_factory=list)
|
|
|
|
lora_adapter: str = ""
|
|
lora_base: str = ""
|
|
|
|
memory_f16: bool = True
|
|
random_prompt: bool = False
|
|
use_color: bool = False
|
|
interactive: bool = False
|
|
|
|
embedding: bool = False
|
|
interactive_start: bool = False
|
|
|
|
instruct: bool = False
|
|
penalize_nl: bool = True
|
|
perplexity: bool = False
|
|
use_mmap: bool = True
|
|
use_mlock: bool = False
|
|
mem_test: bool = False
|
|
verbose_prompt: bool = False
|
|
|
|
file: str = None
|
|
|
|
# If chat ended prematurely, append this to the conversation to fix it.
|
|
# Set to "\nUser:" etc.
|
|
# This is an alternative to input_prefix which always adds it, so it potentially duplicates "User:""
|
|
fix_prefix: str = ""
|
|
output_postfix: str = ""
|
|
input_echo: bool = True,
|
|
|
|
# Default instructions for Alpaca
|
|
# switch to "Human" and "Assistant" for Vicuna.
|
|
# TODO: TBD how they are gonna handle this upstream
|
|
instruct_inp_prefix: str="\n\n### Instruction:\n\n"
|
|
instruct_inp_suffix: str="\n\n### Response:\n\n"
|
|
|
|
|
|
def gpt_params_parse(argv = None):
|
|
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
|
parser.add_argument("-s", "--seed", type=int, default=-1, help="RNG seed (use random seed for <= 0)",dest="seed")
|
|
parser.add_argument("-t", "--threads", type=int, default=min(4, os.cpu_count() or 1), help="number of threads to use during computation",dest="n_threads")
|
|
parser.add_argument("-n", "--n_predict", type=int, default=128, help="number of tokens to predict (-1 = infinity)",dest="n_predict")
|
|
parser.add_argument("--n_parts", type=int, default=-1, help="number of model parts", dest="n_parts")
|
|
parser.add_argument("-c", "--ctx_size", type=int, default=512, help="size of the prompt context",dest="n_ctx")
|
|
parser.add_argument("-b", "--batch_size", type=int, default=8, help="batch size for prompt processing",dest="n_batch")
|
|
parser.add_argument("--keep", type=int, default=0, help="number of tokens to keep from the initial prompt",dest="n_keep")
|
|
|
|
parser.add_argument(
|
|
"-l",
|
|
"--logit-bias",
|
|
type=str,
|
|
action='append',
|
|
help="--logit-bias TOKEN_ID(+/-)BIAS",
|
|
dest="logit_bias_str"
|
|
)
|
|
parser.add_argument("--ignore-eos", action="store_true", help="ignore end of stream token and continue generating", dest="ignore_eos")
|
|
parser.add_argument("--top_k", type=int, default=40, help="top-k sampling",dest="top_k")
|
|
parser.add_argument("--top_p", type=float, default=0.95, help="top-p samplin",dest="top_p")
|
|
parser.add_argument("--tfs", type=float, default=1.0, help="tail free sampling, parameter z (1.0 = disabled)",dest="tfs_z")
|
|
parser.add_argument("--temp", type=float, default=0.80, help="temperature",dest="temp")
|
|
parser.add_argument("--repeat_penalty", type=float, default=1.10, help="penalize repeat sequence of tokens",dest="repeat_penalty")
|
|
parser.add_argument("--repeat_last_n", type=int, default=64, help="last n tokens to consider for penalize ",dest="repeat_last_n")
|
|
parser.add_argument("--frequency_penalty", type=float, default=0.0, help="repeat alpha frequency penalty (0.0 = disabled)",dest="tfs_z")
|
|
parser.add_argument("--presence_penalty", type=float, default=0.0, help="repeat alpha presence penalty (0.0 = disabled)",dest="presence_penalty")
|
|
parser.add_argument("--mirostat", type=float, default=1.0, help="use Mirostat sampling.",dest="mirostat")
|
|
parser.add_argument("--mirostat_ent", type=float, default=5.0, help="Mirostat target entropy, parameter tau",dest="mirostat_tau")
|
|
parser.add_argument("--mirostat_lr", type=float, default=0.1, help="Mirostat learning rate, parameter eta",dest="mirostat_eta")
|
|
|
|
parser.add_argument("-m", "--model", type=str, default="./models/llama-7B/ggml-model.bin", help="model path",dest="model")
|
|
parser.add_argument("-p", "--prompt", type=str, default="", help="initial prompt",dest="prompt")
|
|
parser.add_argument("-f", "--file", type=str, default=None, help="file containing initial prompt to load",dest="file")
|
|
parser.add_argument("--session", type=str, default=None, help="file to cache model state in (may be large!)",dest="path_session")
|
|
parser.add_argument("--in-prefix", type=str, default="", help="string to prefix user inputs with", dest="input_prefix")
|
|
parser.add_argument(
|
|
"-r",
|
|
"--reverse-prompt",
|
|
type=str,
|
|
action='append',
|
|
help="poll user input upon seeing PROMPT (can be\nspecified more than once for multiple prompts).",
|
|
dest="antiprompt"
|
|
)
|
|
|
|
parser.add_argument("--lora", type=str, default="", help="apply LoRA adapter (implies --no-mmap)", dest="lora_adapter")
|
|
parser.add_argument("--lora-base", type=str, default="", help="optional model to use as a base for the layers modified by the LoRA adapter", dest="lora_base")
|
|
|
|
parser.add_argument("--memory_f32", action="store_false", help="use f32 instead of f16 for memory key+value",dest="memory_f16")
|
|
parser.add_argument("--random-prompt", action="store_true", help="start with a randomized prompt.", dest="random_prompt")
|
|
parser.add_argument(
|
|
"--color",
|
|
action="store_true",
|
|
help="colorise output to distinguish prompt and user input from generations",
|
|
dest="use_color"
|
|
)
|
|
parser.add_argument(
|
|
"-i", "--interactive", action="store_true", help="run in interactive mode", dest="interactive"
|
|
)
|
|
|
|
parser.add_argument("--embedding", action="store_true", help="", dest="embedding")
|
|
parser.add_argument(
|
|
"--interactive-first",
|
|
action="store_true",
|
|
help="run in interactive mode and wait for input right away",
|
|
dest="interactive_start"
|
|
)
|
|
|
|
parser.add_argument(
|
|
"-ins",
|
|
"--instruct",
|
|
action="store_true",
|
|
help="run in instruction mode (use with Alpaca or Vicuna models)",
|
|
dest="instruct"
|
|
)
|
|
parser.add_argument("--no-penalize-nl", action="store_false", help="do not penalize newline token", dest="penalize_nl")
|
|
parser.add_argument("--perplexity", action="store_true", help="compute perplexity over the prompt", dest="perplexity")
|
|
parser.add_argument("--no-mmap", action="store_false",help="do not memory-map model (slower load but may reduce pageouts if not using mlock)",dest="use_mmap")
|
|
parser.add_argument("--mlock", action="store_true",help="force system to keep model in RAM rather than swapping or compressing",dest="use_mlock")
|
|
parser.add_argument("--mtest", action="store_true",help="compute maximum memory usage",dest="mem_test")
|
|
parser.add_argument("--verbose-prompt", action="store_true",help="print prompt before generation",dest="verbose_prompt")
|
|
|
|
#Custom args
|
|
parser.add_argument("--fix-prefix", type=str, default="", help="append to input when generated n_predict tokens", dest="fix_prefix")
|
|
parser.add_argument("--out-postfix", type=str, default="", help="append to input", dest="output_postfix")
|
|
parser.add_argument("--input-noecho", action="store_false", help="dont output the input", dest="input_echo")
|
|
|
|
parser.add_argument(
|
|
"--interactive-start",
|
|
action="store_true",
|
|
help="run in interactive mode",
|
|
dest="interactive"
|
|
)
|
|
|
|
args = parser.parse_args(argv)
|
|
|
|
logit_bias_str = args.logit_bias_str
|
|
delattr(args, "logit_bias_str")
|
|
params = GptParams(**vars(args))
|
|
|
|
if (params.lora_adapter):
|
|
params.use_mmap = False
|
|
|
|
if (logit_bias_str != None):
|
|
for i in logit_bias_str:
|
|
if (m := re.match(r"(\d+)([-+]\d+)", i)):
|
|
params.logit_bias[int(m.group(1))] = int(m.group(2))
|
|
|
|
return params
|
|
|
|
def gpt_random_prompt(rng):
|
|
return [
|
|
"So",
|
|
"Once upon a time",
|
|
"When",
|
|
"The",
|
|
"After",
|
|
"If",
|
|
"import",
|
|
"He",
|
|
"She",
|
|
"They",
|
|
][rng % 10]
|
|
|
|
if __name__ == "__main__":
|
|
print(gpt_params_parse())
|