2830 lines
98 KiB
Python
2830 lines
98 KiB
Python
import sys
|
||
import os
|
||
import ctypes
|
||
from ctypes import (
|
||
_Pointer, # type: ignore
|
||
Array,
|
||
)
|
||
import pathlib
|
||
from typing import List, Union, NewType, Optional
|
||
|
||
|
||
# Load the library
|
||
def _load_shared_library(lib_base_name: str):
|
||
# Construct the paths to the possible shared library names
|
||
_base_path = pathlib.Path(os.path.abspath(os.path.dirname(__file__)))
|
||
# Searching for the library in the current directory under the name "libllama" (default name
|
||
# for llamacpp) and "llama" (default name for this repo)
|
||
_lib_paths: List[pathlib.Path] = []
|
||
# Determine the file extension based on the platform
|
||
if sys.platform.startswith("linux"):
|
||
_lib_paths += [
|
||
_base_path / f"lib{lib_base_name}.so",
|
||
]
|
||
elif sys.platform == "darwin":
|
||
_lib_paths += [
|
||
_base_path / f"lib{lib_base_name}.so",
|
||
_base_path / f"lib{lib_base_name}.dylib",
|
||
]
|
||
elif sys.platform == "win32":
|
||
_lib_paths += [
|
||
_base_path / f"{lib_base_name}.dll",
|
||
_base_path / f"lib{lib_base_name}.dll",
|
||
]
|
||
else:
|
||
raise RuntimeError("Unsupported platform")
|
||
|
||
if "LLAMA_CPP_LIB" in os.environ:
|
||
lib_base_name = os.environ["LLAMA_CPP_LIB"]
|
||
_lib = pathlib.Path(lib_base_name)
|
||
_base_path = _lib.parent.resolve()
|
||
_lib_paths = [_lib.resolve()]
|
||
|
||
cdll_args = dict() # type: ignore
|
||
# Add the library directory to the DLL search path on Windows (if needed)
|
||
if sys.platform == "win32" and sys.version_info >= (3, 8):
|
||
os.add_dll_directory(str(_base_path))
|
||
if "CUDA_PATH" in os.environ:
|
||
os.add_dll_directory(os.path.join(os.environ["CUDA_PATH"], "bin"))
|
||
os.add_dll_directory(os.path.join(os.environ["CUDA_PATH"], "lib"))
|
||
if "HIP_PATH" in os.environ:
|
||
os.add_dll_directory(os.path.join(os.environ["HIP_PATH"], "bin"))
|
||
os.add_dll_directory(os.path.join(os.environ["HIP_PATH"], "lib"))
|
||
cdll_args["winmode"] = ctypes.RTLD_GLOBAL
|
||
|
||
# Try to load the shared library, handling potential errors
|
||
for _lib_path in _lib_paths:
|
||
if _lib_path.exists():
|
||
try:
|
||
return ctypes.CDLL(str(_lib_path), **cdll_args) # type: ignore
|
||
except Exception as e:
|
||
raise RuntimeError(f"Failed to load shared library '{_lib_path}': {e}")
|
||
|
||
raise FileNotFoundError(
|
||
f"Shared library with base name '{lib_base_name}' not found"
|
||
)
|
||
|
||
|
||
# Specify the base name of the shared library to load
|
||
_lib_base_name = "llama"
|
||
|
||
# Load the library
|
||
_lib = _load_shared_library(_lib_base_name)
|
||
|
||
# Misc
|
||
c_float_p = ctypes.POINTER(ctypes.c_float)
|
||
c_uint8_p = ctypes.POINTER(ctypes.c_uint8)
|
||
c_size_t_p = ctypes.POINTER(ctypes.c_size_t)
|
||
|
||
# from ggml-backend.h
|
||
# typedef bool (*ggml_backend_sched_eval_callback)(struct ggml_tensor * t, bool ask, void * user_data);
|
||
ggml_backend_sched_eval_callback = ctypes.CFUNCTYPE(ctypes.c_bool, ctypes.c_void_p, ctypes.c_bool, ctypes.c_void_p)
|
||
|
||
# llama.h bindings
|
||
|
||
_lib.llama_max_devices.argtypes = []
|
||
_lib.llama_max_devices.restype = ctypes.c_size_t
|
||
|
||
LLAMA_MAX_DEVICES = _lib.llama_max_devices()
|
||
|
||
# define LLAMA_DEFAULT_SEED 0xFFFFFFFF
|
||
LLAMA_DEFAULT_SEED = 0xFFFFFFFF
|
||
|
||
# define LLAMA_MAX_RNG_STATE (64*1024)
|
||
LLAMA_MAX_RNG_STATE = 64 * 1024
|
||
|
||
# define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
|
||
LLAMA_FILE_MAGIC_GGLA = 0x67676C61
|
||
|
||
# define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
|
||
LLAMA_FILE_MAGIC_GGSN = 0x6767736E
|
||
|
||
# define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
|
||
LLAMA_SESSION_MAGIC = LLAMA_FILE_MAGIC_GGSN
|
||
# define LLAMA_SESSION_VERSION 4
|
||
LLAMA_SESSION_VERSION = 4
|
||
|
||
|
||
# struct llama_model;
|
||
llama_model_p = NewType("llama_model_p", int)
|
||
llama_model_p_ctypes = ctypes.c_void_p
|
||
|
||
# struct llama_context;
|
||
llama_context_p = NewType("llama_context_p", int)
|
||
llama_context_p_ctypes = ctypes.c_void_p
|
||
|
||
|
||
# typedef int32_t llama_pos;
|
||
llama_pos = ctypes.c_int32
|
||
# typedef int32_t llama_token;
|
||
llama_token = ctypes.c_int32
|
||
llama_token_p = ctypes.POINTER(llama_token)
|
||
# typedef int32_t llama_seq_id;
|
||
llama_seq_id = ctypes.c_int32
|
||
|
||
|
||
# enum llama_vocab_type {
|
||
# LLAMA_VOCAB_TYPE_SPM = 0, // SentencePiece
|
||
# LLAMA_VOCAB_TYPE_BPE = 1, // Byte Pair Encoding
|
||
# LLAMA_VOCAB_TYPE_WPM = 2, // WordPiece
|
||
# };
|
||
LLAMA_VOCAB_TYPE_SPM = 0
|
||
LLAMA_VOCAB_TYPE_BPE = 1
|
||
LLAMA_VOCAB_TYPE_WPM = 2
|
||
|
||
|
||
# enum llama_token_type {
|
||
# LLAMA_TOKEN_TYPE_UNDEFINED = 0,
|
||
# LLAMA_TOKEN_TYPE_NORMAL = 1,
|
||
# LLAMA_TOKEN_TYPE_UNKNOWN = 2,
|
||
# LLAMA_TOKEN_TYPE_CONTROL = 3,
|
||
# LLAMA_TOKEN_TYPE_USER_DEFINED = 4,
|
||
# LLAMA_TOKEN_TYPE_UNUSED = 5,
|
||
# LLAMA_TOKEN_TYPE_BYTE = 6,
|
||
# };
|
||
LLAMA_TOKEN_TYPE_UNDEFINED = 0
|
||
LLAMA_TOKEN_TYPE_NORMAL = 1
|
||
LLAMA_TOKEN_TYPE_UNKNOWN = 2
|
||
LLAMA_TOKEN_TYPE_CONTROL = 3
|
||
LLAMA_TOKEN_TYPE_USER_DEFINED = 4
|
||
LLAMA_TOKEN_TYPE_UNUSED = 5
|
||
LLAMA_TOKEN_TYPE_BYTE = 6
|
||
|
||
|
||
# // model file types
|
||
# enum llama_ftype {
|
||
# LLAMA_FTYPE_ALL_F32 = 0,
|
||
# LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
|
||
# LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
|
||
# LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
|
||
# LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
|
||
# // LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
|
||
# // LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
|
||
# LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
|
||
# LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
|
||
# LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
|
||
# LLAMA_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
|
||
# LLAMA_FTYPE_MOSTLY_Q3_K_S = 11, // except 1d tensors
|
||
# LLAMA_FTYPE_MOSTLY_Q3_K_M = 12, // except 1d tensors
|
||
# LLAMA_FTYPE_MOSTLY_Q3_K_L = 13, // except 1d tensors
|
||
# LLAMA_FTYPE_MOSTLY_Q4_K_S = 14, // except 1d tensors
|
||
# LLAMA_FTYPE_MOSTLY_Q4_K_M = 15, // except 1d tensors
|
||
# LLAMA_FTYPE_MOSTLY_Q5_K_S = 16, // except 1d tensors
|
||
# LLAMA_FTYPE_MOSTLY_Q5_K_M = 17, // except 1d tensors
|
||
# LLAMA_FTYPE_MOSTLY_Q6_K = 18, // except 1d tensors
|
||
# LLAMA_FTYPE_MOSTLY_IQ2_XXS = 19, // except 1d tensors
|
||
# LLAMA_FTYPE_MOSTLY_IQ2_XS = 20, // except 1d tensors
|
||
# LLAMA_FTYPE_MOSTLY_Q2_K_S = 21, // except 1d tensors
|
||
# LLAMA_FTYPE_MOSTLY_Q3_K_XS = 22, // except 1d tensors
|
||
# LLAMA_FTYPE_MOSTLY_IQ3_XXS = 23, // except 1d tensors
|
||
# LLAMA_FTYPE_MOSTLY_IQ1_S = 24, // except 1d tensors
|
||
# LLAMA_FTYPE_MOSTLY_IQ4_NL = 25, // except 1d tensors
|
||
|
||
# LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
|
||
# };
|
||
LLAMA_FTYPE_ALL_F32 = 0
|
||
LLAMA_FTYPE_MOSTLY_F16 = 1
|
||
LLAMA_FTYPE_MOSTLY_Q4_0 = 2
|
||
LLAMA_FTYPE_MOSTLY_Q4_1 = 3
|
||
LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4
|
||
LLAMA_FTYPE_MOSTLY_Q8_0 = 7
|
||
LLAMA_FTYPE_MOSTLY_Q5_0 = 8
|
||
LLAMA_FTYPE_MOSTLY_Q5_1 = 9
|
||
LLAMA_FTYPE_MOSTLY_Q2_K = 10
|
||
LLAMA_FTYPE_MOSTLY_Q3_K_S = 11
|
||
LLAMA_FTYPE_MOSTLY_Q3_K_M = 12
|
||
LLAMA_FTYPE_MOSTLY_Q3_K_L = 13
|
||
LLAMA_FTYPE_MOSTLY_Q4_K_S = 14
|
||
LLAMA_FTYPE_MOSTLY_Q4_K_M = 15
|
||
LLAMA_FTYPE_MOSTLY_Q5_K_S = 16
|
||
LLAMA_FTYPE_MOSTLY_Q5_K_M = 17
|
||
LLAMA_FTYPE_MOSTLY_Q6_K = 18
|
||
LLAMA_FTYPE_MOSTLY_IQ2_XXS = 19
|
||
LLAMA_FTYPE_MOSTLY_IQ2_XS = 20
|
||
LLAMA_FTYPE_MOSTLY_Q2_K_S = 21
|
||
LLAMA_FTYPE_MOSTLY_Q3_K_XS = 22
|
||
LLAMA_FTYPE_MOSTLY_IQ3_XXS = 23
|
||
LLAMA_FTYPE_MOSTLY_IQ1_S = 24
|
||
LLAMA_FTYPE_MOSTLY_IQ4_NL = 25
|
||
LLAMA_FTYPE_GUESSED = 1024
|
||
|
||
# enum llama_rope_scaling_type {
|
||
# LLAMA_ROPE_SCALING_UNSPECIFIED = -1,
|
||
# LLAMA_ROPE_SCALING_NONE = 0,
|
||
# LLAMA_ROPE_SCALING_LINEAR = 1,
|
||
# LLAMA_ROPE_SCALING_YARN = 2,
|
||
# LLAMA_ROPE_SCALING_MAX_VALUE = LLAMA_ROPE_SCALING_YARN,
|
||
# };
|
||
LLAMA_ROPE_SCALING_UNSPECIFIED = -1
|
||
LLAMA_ROPE_SCALING_NONE = 0
|
||
LLAMA_ROPE_SCALING_LINEAR = 1
|
||
LLAMA_ROPE_SCALING_YARN = 2
|
||
LLAMA_ROPE_SCALING_MAX_VALUE = LLAMA_ROPE_SCALING_YARN
|
||
|
||
# enum llama_pooling_type {
|
||
# LLAMA_POOLING_NONE = 0,
|
||
# LLAMA_POOLING_MEAN = 1,
|
||
# LLAMA_POOLING_CLS = 2,
|
||
# };
|
||
LLAMA_POOLING_NONE = 0
|
||
LLAMA_POOLING_MEAN = 1
|
||
LLAMA_POOLING_CLS = 2
|
||
|
||
# enum llama_split_mode {
|
||
# LLAMA_SPLIT_NONE = 0, // single GPU
|
||
# LLAMA_SPLIT_LAYER = 1, // split layers and KV across GPUs
|
||
# LLAMA_SPLIT_ROW = 2, // split rows across GPUs
|
||
# };
|
||
LLAMA_SPLIT_NONE = 0
|
||
LLAMA_SPLIT_LAYER = 1
|
||
LLAMA_SPLIT_ROW = 2
|
||
|
||
|
||
# typedef struct llama_token_data {
|
||
# llama_token id; // token id
|
||
# float logit; // log-odds of the token
|
||
# float p; // probability of the token
|
||
# } llama_token_data;
|
||
class llama_token_data(ctypes.Structure):
|
||
"""Used to store token data
|
||
|
||
Attributes:
|
||
id (llama_token): token id
|
||
logit (float): log-odds of the token
|
||
p (float): probability of the token"""
|
||
|
||
_fields_ = [
|
||
("id", llama_token),
|
||
("logit", ctypes.c_float),
|
||
("p", ctypes.c_float),
|
||
]
|
||
|
||
|
||
llama_token_data_p = ctypes.POINTER(llama_token_data)
|
||
|
||
|
||
# typedef struct llama_token_data_array {
|
||
# llama_token_data * data;
|
||
# size_t size;
|
||
# bool sorted;
|
||
# } llama_token_data_array;
|
||
class llama_token_data_array(ctypes.Structure):
|
||
"""Used to sample tokens given logits
|
||
|
||
Attributes:
|
||
data (ctypes.Array[llama_token_data]): token data
|
||
size (int): size of the array
|
||
sorted (bool): whether the array is sorted"""
|
||
|
||
_fields_ = [
|
||
("data", llama_token_data_p),
|
||
("size", ctypes.c_size_t),
|
||
("sorted", ctypes.c_bool),
|
||
]
|
||
|
||
|
||
llama_token_data_array_p = ctypes.POINTER(llama_token_data_array)
|
||
|
||
# typedef bool (*llama_progress_callback)(float progress, void *ctx);
|
||
llama_progress_callback = ctypes.CFUNCTYPE(ctypes.c_bool, ctypes.c_float, ctypes.c_void_p)
|
||
|
||
|
||
# // Input data for llama_decode
|
||
# // A llama_batch object can contain input about one or many sequences
|
||
# // The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
|
||
# //
|
||
# // - token : the token ids of the input (used when embd is NULL)
|
||
# // - embd : token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
|
||
# // - pos : the positions of the respective token in the sequence
|
||
# // - seq_id : the sequence to which the respective token belongs
|
||
# // - logits : if zero, the logits for the respective token will not be output
|
||
# //
|
||
# typedef struct llama_batch {
|
||
# int32_t n_tokens;
|
||
|
||
# llama_token * token;
|
||
# float * embd;
|
||
# llama_pos * pos;
|
||
# int32_t * n_seq_id;
|
||
# llama_seq_id ** seq_id;
|
||
# int8_t * logits;
|
||
|
||
|
||
# // NOTE: helpers for smooth API transition - can be deprecated in the future
|
||
# // for future-proof code, use the above fields instead and ignore everything below
|
||
# //
|
||
# // pos[i] = all_pos_0 + i*all_pos_1
|
||
# //
|
||
# llama_pos all_pos_0; // used if pos == NULL
|
||
# llama_pos all_pos_1; // used if pos == NULL
|
||
# llama_seq_id all_seq_id; // used if seq_id == NULL
|
||
# } llama_batch;
|
||
class llama_batch(ctypes.Structure):
|
||
"""Input data for llama_decode
|
||
|
||
A llama_batch object can contain input about one or many sequences
|
||
|
||
The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
|
||
|
||
Attributes:
|
||
token (ctypes.Array[llama_token]): the token ids of the input (used when embd is NULL)
|
||
embd (ctypes.Array[ctypes.ctypes.c_float]): token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
|
||
pos (ctypes.Array[ctypes.Array[llama_pos]]): the positions of the respective token in the sequence
|
||
seq_id (ctypes.Array[ctypes.Array[llama_seq_id]]): the sequence to which the respective token belongs
|
||
"""
|
||
|
||
_fields_ = [
|
||
("n_tokens", ctypes.c_int32),
|
||
("token", ctypes.POINTER(llama_token)),
|
||
("embd", c_float_p),
|
||
("pos", ctypes.POINTER(llama_pos)),
|
||
("n_seq_id", ctypes.POINTER(ctypes.c_int32)),
|
||
("seq_id", ctypes.POINTER(ctypes.POINTER(llama_seq_id))),
|
||
("logits", ctypes.POINTER(ctypes.c_int8)),
|
||
("all_pos_0", llama_pos),
|
||
("all_pos_1", llama_pos),
|
||
("all_seq_id", llama_seq_id),
|
||
]
|
||
|
||
|
||
# enum llama_model_kv_override_type {
|
||
# LLAMA_KV_OVERRIDE_INT,
|
||
# LLAMA_KV_OVERRIDE_FLOAT,
|
||
# LLAMA_KV_OVERRIDE_BOOL,
|
||
# };
|
||
LLAMA_KV_OVERRIDE_INT = 0
|
||
LLAMA_KV_OVERRIDE_FLOAT = 1
|
||
LLAMA_KV_OVERRIDE_BOOL = 2
|
||
|
||
|
||
# struct llama_model_kv_override {
|
||
# char key[128];
|
||
# enum llama_model_kv_override_type tag;
|
||
# union {
|
||
# int64_t int_value;
|
||
# double float_value;
|
||
# bool bool_value;
|
||
# };
|
||
# };
|
||
class llama_model_kv_override_value(ctypes.Union):
|
||
_fields_ = [
|
||
("int_value", ctypes.c_int64),
|
||
("float_value", ctypes.c_double),
|
||
("bool_value", ctypes.c_bool),
|
||
]
|
||
|
||
|
||
class llama_model_kv_override(ctypes.Structure):
|
||
_fields_ = [
|
||
("key", ctypes.c_char * 128),
|
||
("tag", ctypes.c_int),
|
||
("value", llama_model_kv_override_value),
|
||
]
|
||
|
||
|
||
# struct llama_model_params {
|
||
# int32_t n_gpu_layers; // number of layers to store in VRAM
|
||
# enum llama_split_mode split_mode; // how to split the model across multiple GPUs
|
||
|
||
# // main_gpu interpretation depends on split_mode:
|
||
# // LLAMA_SPLIT_NONE: the GPU that is used for the entire model
|
||
# // LLAMA_SPLIT_ROW: the GPU that is used for small tensors and intermediate results
|
||
# // LLAMA_SPLIT_LAYER: ignored
|
||
# int32_t main_gpu;
|
||
|
||
# // proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
|
||
# const float * tensor_split;
|
||
|
||
# // Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
|
||
# // If the provided progress_callback returns true, model loading continues.
|
||
# // If it returns false, model loading is immediately aborted.
|
||
# llama_progress_callback progress_callback;
|
||
|
||
# // context pointer passed to the progress callback
|
||
# void * progress_callback_user_data;
|
||
|
||
# // override key-value pairs of the model meta data
|
||
# const struct llama_model_kv_override * kv_overrides;
|
||
|
||
|
||
# // Keep the booleans together to avoid misalignment during copy-by-value.
|
||
# bool vocab_only; // only load the vocabulary, no weights
|
||
# bool use_mmap; // use mmap if possible
|
||
# bool use_mlock; // force system to keep model in RAM
|
||
# };
|
||
class llama_model_params(ctypes.Structure):
|
||
"""Parameters for llama_model
|
||
|
||
Attributes:
|
||
n_gpu_layers (int): number of layers to store in VRAM
|
||
split_mode (int): how to split the model across multiple GPUs
|
||
main_gpu (int): the GPU that is used for the entire model. main_gpu interpretation depends on split_mode: LLAMA_SPLIT_NONE: the GPU that is used for the entire model LLAMA_SPLIT_ROW: the GPU that is used for small tensors and intermediate results LLAMA_SPLIT_LAYER: ignored
|
||
tensor_split (ctypes.Array[ctypes.ctypes.c_float]): proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
|
||
progress_callback (llama_progress_callback): called with a progress value between 0.0 and 1.0. Pass NULL to disable. If the provided progress_callback returns true, model loading continues. If it returns false, model loading is immediately aborted.
|
||
progress_callback_user_data (ctypes.ctypes.c_void_p): context pointer passed to the progress callback
|
||
kv_overrides (ctypes.Array[llama_model_kv_override]): override key-value pairs of the model meta data
|
||
vocab_only (bool): only load the vocabulary, no weights
|
||
use_mmap (bool): use mmap if possible
|
||
use_mlock (bool): force system to keep model in RAM"""
|
||
|
||
_fields_ = [
|
||
("n_gpu_layers", ctypes.c_int32),
|
||
("split_mode", ctypes.c_int),
|
||
("main_gpu", ctypes.c_int32),
|
||
("tensor_split", c_float_p),
|
||
("progress_callback", llama_progress_callback),
|
||
("progress_callback_user_data", ctypes.c_void_p),
|
||
("kv_overrides", ctypes.POINTER(llama_model_kv_override)),
|
||
("vocab_only", ctypes.c_bool),
|
||
("use_mmap", ctypes.c_bool),
|
||
("use_mlock", ctypes.c_bool),
|
||
]
|
||
|
||
|
||
# struct llama_context_params {
|
||
# uint32_t seed; // RNG seed, -1 for random
|
||
# uint32_t n_ctx; // text context, 0 = from model
|
||
# uint32_t n_batch; // prompt processing maximum batch size
|
||
# uint32_t n_threads; // number of threads to use for generation
|
||
# uint32_t n_threads_batch; // number of threads to use for batch processing
|
||
# int32_t rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
|
||
|
||
# // ref: https://github.com/ggerganov/llama.cpp/pull/2054
|
||
# float rope_freq_base; // RoPE base frequency, 0 = from model
|
||
# float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model
|
||
# float yarn_ext_factor; // YaRN extrapolation mix factor, negative = from model
|
||
# float yarn_attn_factor; // YaRN magnitude scaling factor
|
||
# float yarn_beta_fast; // YaRN low correction dim
|
||
# float yarn_beta_slow; // YaRN high correction dim
|
||
# uint32_t yarn_orig_ctx; // YaRN original context size
|
||
|
||
# ggml_backend_sched_eval_callback cb_eval;
|
||
# void * cb_eval_user_data;
|
||
|
||
# enum ggml_type type_k; // data type for K cache
|
||
# enum ggml_type type_v; // data type for V cache
|
||
|
||
|
||
# // Keep the booleans together to avoid misalignment during copy-by-value.
|
||
# bool mul_mat_q; // if true, use experimental mul_mat_q kernels (DEPRECATED - always true)
|
||
# bool logits_all; // the llama_eval() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
|
||
# bool embedding; // embedding mode only
|
||
# bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
|
||
# bool do_pooling; // whether to pool (sum) embedding results by sequence id (ignored if no pooling layer)
|
||
# };
|
||
class llama_context_params(ctypes.Structure):
|
||
"""Parameters for llama_context
|
||
|
||
Attributes:
|
||
seed (int): RNG seed, -1 for random
|
||
n_ctx (int): text context, 0 = from model
|
||
n_batch (int): prompt processing maximum batch size
|
||
n_threads (int): number of threads to use for generation
|
||
n_threads_batch (int): number of threads to use for batch processing
|
||
rope_scaling_type (int): RoPE scaling type, from `enum llama_rope_scaling_type`
|
||
rope_freq_base (float): RoPE base frequency, 0 = from model
|
||
rope_freq_scale (float): RoPE frequency scaling factor, 0 = from model
|
||
yarn_ext_factor (float): YaRN extrapolation mix factor, negative = from model
|
||
yarn_attn_factor (float): YaRN magnitude scaling factor
|
||
yarn_beta_fast (float): YaRN low correction dim
|
||
yarn_beta_slow (float): YaRN high correction dim
|
||
yarn_orig_ctx (int): YaRN original context size
|
||
cb_eval (ggml_backend_sched_eval_callback): callback for scheduling eval
|
||
cb_eval_user_data (ctypes.ctypes.c_void_p): user data for cb_eval
|
||
type_k (int): data type for K cache
|
||
type_v (int): data type for V cache
|
||
mul_mat_q (bool): if true, use experimental mul_mat_q kernels (DEPRECATED - always true)
|
||
logits_all (bool): the llama_eval() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
|
||
embedding (bool): embedding mode only
|
||
offload_kqv (bool): whether to offload the KQV ops (including the KV cache) to GPU
|
||
do_pooling (bool): whether to pool (sum) embedding results by sequence id (ignored if no pooling layer)
|
||
"""
|
||
|
||
_fields_ = [
|
||
("seed", ctypes.c_uint32),
|
||
("n_ctx", ctypes.c_uint32),
|
||
("n_batch", ctypes.c_uint32),
|
||
("n_threads", ctypes.c_uint32),
|
||
("n_threads_batch", ctypes.c_uint32),
|
||
("rope_scaling_type", ctypes.c_int32),
|
||
("rope_freq_base", ctypes.c_float),
|
||
("rope_freq_scale", ctypes.c_float),
|
||
("yarn_ext_factor", ctypes.c_float),
|
||
("yarn_attn_factor", ctypes.c_float),
|
||
("yarn_beta_fast", ctypes.c_float),
|
||
("yarn_beta_slow", ctypes.c_float),
|
||
("yarn_orig_ctx", ctypes.c_uint32),
|
||
("cb_eval", ggml_backend_sched_eval_callback),
|
||
("cb_eval_user_data", ctypes.c_void_p),
|
||
("type_k", ctypes.c_int),
|
||
("type_v", ctypes.c_int),
|
||
("mul_mat_q", ctypes.c_bool),
|
||
("logits_all", ctypes.c_bool),
|
||
("embedding", ctypes.c_bool),
|
||
("offload_kqv", ctypes.c_bool),
|
||
("do_pooling", ctypes.c_bool),
|
||
]
|
||
|
||
|
||
# // Signature for logging events
|
||
# // Note that text includes the new line character at the end for most events.
|
||
# // If your logging mechanism cannot handle that, check if the last character is '\n' and strip it
|
||
# // if it exists.
|
||
# // It might not exist for progress report where '.' is output repeatedly.
|
||
# typedef void (*llama_log_callback)(enum llama_log_level level, const char * text, void * user_data);
|
||
llama_log_callback = ctypes.CFUNCTYPE(None, ctypes.c_int, ctypes.c_char_p, ctypes.c_void_p)
|
||
"""Signature for logging events
|
||
Note that text includes the new line character at the end for most events.
|
||
If your logging mechanism cannot handle that, check if the last character is '\n' and strip it
|
||
if it exists.
|
||
It might not exist for progress report where '.' is output repeatedly."""
|
||
|
||
|
||
# // model quantization parameters
|
||
# typedef struct llama_model_quantize_params {
|
||
# int32_t nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
|
||
# enum llama_ftype ftype; // quantize to this llama_ftype
|
||
# bool allow_requantize; // allow quantizing non-f32/f16 tensors
|
||
# bool quantize_output_tensor; // quantize output.weight
|
||
# bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
|
||
# bool pure; // disable k-quant mixtures and quantize all tensors to the same type
|
||
# void * imatrix; // pointer to importance matrix data
|
||
# } llama_model_quantize_params;
|
||
class llama_model_quantize_params(ctypes.Structure):
|
||
"""Parameters for llama_model_quantize
|
||
|
||
Attributes:
|
||
nthread (int): number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
|
||
ftype (int): quantize to this llama_ftype
|
||
allow_requantize (bool): allow quantizing non-f32/f16 tensors
|
||
quantize_output_tensor (bool): quantize output.weight
|
||
only_copy (bool): only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
|
||
pure (bool): disable k-quant mixtures and quantize all tensors to the same type
|
||
imatrix (ctypes.ctypes.c_void_p): pointer to importance matrix data
|
||
"""
|
||
|
||
_fields_ = [
|
||
("nthread", ctypes.c_int32),
|
||
("ftype", ctypes.c_int),
|
||
("allow_requantize", ctypes.c_bool),
|
||
("quantize_output_tensor", ctypes.c_bool),
|
||
("only_copy", ctypes.c_bool),
|
||
("pure", ctypes.c_bool),
|
||
("imatrix", ctypes.c_void_p),
|
||
]
|
||
|
||
|
||
# // grammar types
|
||
# struct llama_grammar;
|
||
llama_grammar_p = ctypes.c_void_p
|
||
|
||
# // grammar element type
|
||
# enum llama_gretype {
|
||
# // end of rule definition
|
||
# LLAMA_GRETYPE_END = 0,
|
||
|
||
# // start of alternate definition for rule
|
||
# LLAMA_GRETYPE_ALT = 1,
|
||
|
||
# // non-terminal element: reference to rule
|
||
# LLAMA_GRETYPE_RULE_REF = 2,
|
||
|
||
# // terminal element: character (code point)
|
||
# LLAMA_GRETYPE_CHAR = 3,
|
||
|
||
# // inverse char(s) ([^a], [^a-b] [^abc])
|
||
# LLAMA_GRETYPE_CHAR_NOT = 4,
|
||
|
||
# // modifies a preceding LLAMA_GRETYPE_CHAR or LLAMA_GRETYPE_CHAR_ALT to
|
||
# // be an inclusive range ([a-z])
|
||
# LLAMA_GRETYPE_CHAR_RNG_UPPER = 5,
|
||
|
||
# // modifies a preceding LLAMA_GRETYPE_CHAR or
|
||
# // LLAMA_GRETYPE_CHAR_RNG_UPPER to add an alternate char to match ([ab], [a-zA])
|
||
# LLAMA_GRETYPE_CHAR_ALT = 6,
|
||
# };
|
||
LLAMA_GRETYPE_END = 0
|
||
LLAMA_GRETYPE_ALT = 1
|
||
LLAMA_GRETYPE_RULE_REF = 2
|
||
LLAMA_GRETYPE_CHAR = 3
|
||
LLAMA_GRETYPE_CHAR_NOT = 4
|
||
LLAMA_GRETYPE_CHAR_RNG_UPPER = 5
|
||
LLAMA_GRETYPE_CHAR_ALT = 6
|
||
|
||
|
||
# typedef struct llama_grammar_element {
|
||
# enum llama_gretype type;
|
||
# uint32_t value; // Unicode code point or rule ID
|
||
# } llama_grammar_element;
|
||
class llama_grammar_element(ctypes.Structure):
|
||
_fields_ = [
|
||
("type", ctypes.c_int),
|
||
("value", ctypes.c_uint32),
|
||
]
|
||
|
||
|
||
llama_grammar_element_p = ctypes.POINTER(llama_grammar_element)
|
||
|
||
# // performance timing information
|
||
# struct llama_timings {
|
||
# double t_start_ms;
|
||
# double t_end_ms;
|
||
# double t_load_ms;
|
||
# double t_sample_ms;
|
||
# double t_p_eval_ms;
|
||
# double t_eval_ms;
|
||
|
||
|
||
# int32_t n_sample;
|
||
# int32_t n_p_eval;
|
||
# int32_t n_eval;
|
||
# };
|
||
class llama_timings(ctypes.Structure):
|
||
_fields_ = [
|
||
("t_start_ms", ctypes.c_double),
|
||
("t_end_ms", ctypes.c_double),
|
||
("t_load_ms", ctypes.c_double),
|
||
("t_sample_ms", ctypes.c_double),
|
||
("t_p_eval_ms", ctypes.c_double),
|
||
("t_eval_ms", ctypes.c_double),
|
||
("n_sample", ctypes.c_int32),
|
||
("n_p_eval", ctypes.c_int32),
|
||
("n_eval", ctypes.c_int32),
|
||
]
|
||
|
||
|
||
# // used in chat template
|
||
# typedef struct llama_chat_message {
|
||
# const char * role;
|
||
# const char * content;
|
||
# } llama_chat_message;
|
||
class llama_chat_message(ctypes.Structure):
|
||
_fields_ = [
|
||
("role", ctypes.c_char_p),
|
||
("content", ctypes.c_char_p),
|
||
]
|
||
|
||
|
||
# // Helpers for getting default parameters
|
||
# LLAMA_API struct llama_model_params llama_model_default_params(void);
|
||
def llama_model_default_params() -> llama_model_params:
|
||
"""Get default parameters for llama_model"""
|
||
...
|
||
|
||
|
||
llama_model_default_params = _lib.llama_model_default_params
|
||
llama_model_default_params.argtypes = []
|
||
llama_model_default_params.restype = llama_model_params
|
||
|
||
|
||
# LLAMA_API struct llama_context_params llama_context_default_params(void);
|
||
def llama_context_default_params() -> llama_context_params:
|
||
"""Get default parameters for llama_context"""
|
||
...
|
||
|
||
|
||
llama_context_default_params = _lib.llama_context_default_params
|
||
llama_context_default_params.argtypes = []
|
||
llama_context_default_params.restype = llama_context_params
|
||
|
||
|
||
# LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
|
||
def llama_model_quantize_default_params() -> llama_model_quantize_params:
|
||
"""Get default parameters for llama_model_quantize"""
|
||
...
|
||
|
||
|
||
llama_model_quantize_default_params = _lib.llama_model_quantize_default_params
|
||
llama_model_quantize_default_params.argtypes = []
|
||
llama_model_quantize_default_params.restype = llama_model_quantize_params
|
||
|
||
|
||
# // Initialize the llama + ggml backend
|
||
# // If numa is true, use NUMA optimizations
|
||
# // Call once at the start of the program
|
||
# LLAMA_API void llama_backend_init(bool numa);
|
||
# LLAMA_API void llama_backend_init(void);
|
||
def llama_backend_init():
|
||
"""Initialize the llama + ggml backend
|
||
If numa is true, use NUMA optimizations
|
||
Call once at the start of the program"""
|
||
...
|
||
|
||
|
||
llama_backend_init = _lib.llama_backend_init
|
||
llama_backend_init.argtypes = []
|
||
llama_backend_init.restype = None
|
||
|
||
|
||
# // numa strategies
|
||
# enum ggml_numa_strategy {
|
||
# GGML_NUMA_STRATEGY_DISABLED = 0,
|
||
# GGML_NUMA_STRATEGY_DISTRIBUTE = 1,
|
||
# GGML_NUMA_STRATEGY_ISOLATE = 2,
|
||
# GGML_NUMA_STRATEGY_NUMACTL = 3,
|
||
# GGML_NUMA_STRATEGY_MIRROR = 4,
|
||
# GGML_NUMA_STRATEGY_COUNT
|
||
# };
|
||
GGML_NUMA_STRATEGY_DISABLED = 0
|
||
GGML_NUMA_STRATEGY_DISTRIBUTE = 1
|
||
GGML_NUMA_STRATEGY_ISOLATE = 2
|
||
GGML_NUMA_STRATEGY_NUMACTL = 3
|
||
GGML_NUMA_STRATEGY_MIRROR = 4
|
||
GGML_NUMA_STRATEGY_COUNT = 5
|
||
|
||
|
||
# //optional:
|
||
# LLAMA_API void llama_numa_init(enum ggml_numa_strategy numa);
|
||
def llama_numa_init(numa: int, /):
|
||
...
|
||
|
||
|
||
llama_numa_init = _lib.llama_numa_init
|
||
llama_numa_init.argtypes = [ctypes.c_int]
|
||
llama_numa_init.restype = None
|
||
|
||
|
||
# // Call once at the end of the program - currently only used for MPI
|
||
# LLAMA_API void llama_backend_free(void);
|
||
def llama_backend_free():
|
||
"""Call once at the end of the program - currently only used for MPI"""
|
||
...
|
||
|
||
|
||
llama_backend_free = _lib.llama_backend_free
|
||
llama_backend_free.argtypes = []
|
||
llama_backend_free.restype = None
|
||
|
||
|
||
# LLAMA_API struct llama_model * llama_load_model_from_file(
|
||
# const char * path_model,
|
||
# struct llama_model_params params);
|
||
def llama_load_model_from_file(
|
||
path_model: bytes, params: llama_model_params, /
|
||
) -> Optional[llama_model_p]:
|
||
...
|
||
|
||
|
||
llama_load_model_from_file = _lib.llama_load_model_from_file
|
||
llama_load_model_from_file.argtypes = [ctypes.c_char_p, llama_model_params]
|
||
llama_load_model_from_file.restype = llama_model_p_ctypes
|
||
|
||
|
||
# LLAMA_API void llama_free_model(struct llama_model * model);
|
||
def llama_free_model(model: llama_model_p, /):
|
||
...
|
||
|
||
|
||
llama_free_model = _lib.llama_free_model
|
||
llama_free_model.argtypes = [llama_model_p_ctypes]
|
||
llama_free_model.restype = None
|
||
|
||
|
||
# LLAMA_API struct llama_context * llama_new_context_with_model(
|
||
# struct llama_model * model,
|
||
# struct llama_context_params params);
|
||
def llama_new_context_with_model(
|
||
model: llama_model_p, params: llama_context_params, /
|
||
) -> Optional[llama_context_p]:
|
||
...
|
||
|
||
|
||
llama_new_context_with_model = _lib.llama_new_context_with_model
|
||
llama_new_context_with_model.argtypes = [llama_model_p_ctypes, llama_context_params]
|
||
llama_new_context_with_model.restype = llama_context_p_ctypes
|
||
|
||
|
||
# // Frees all allocated memory
|
||
# LLAMA_API void llama_free(struct llama_context * ctx);
|
||
def llama_free(ctx: llama_context_p, /):
|
||
"""Frees all allocated memory"""
|
||
...
|
||
|
||
|
||
llama_free = _lib.llama_free
|
||
llama_free.argtypes = [llama_context_p_ctypes]
|
||
llama_free.restype = None
|
||
|
||
|
||
# LLAMA_API int64_t llama_time_us(void);
|
||
def llama_time_us() -> int:
|
||
...
|
||
|
||
|
||
llama_time_us = _lib.llama_time_us
|
||
llama_time_us.argtypes = []
|
||
llama_time_us.restype = ctypes.c_int64
|
||
|
||
|
||
# LLAMA_API size_t llama_max_devices(void);
|
||
def llama_max_devices() -> int:
|
||
...
|
||
|
||
|
||
llama_max_devices = _lib.llama_max_devices
|
||
llama_max_devices.argtypes = []
|
||
llama_max_devices.restype = ctypes.c_size_t
|
||
|
||
|
||
# LLAMA_API bool llama_supports_mmap (void);
|
||
def llama_supports_mmap() -> bool:
|
||
...
|
||
|
||
|
||
llama_supports_mmap = _lib.llama_supports_mmap
|
||
llama_supports_mmap.argtypes = []
|
||
llama_supports_mmap.restype = ctypes.c_bool
|
||
|
||
|
||
# LLAMA_API bool llama_supports_mlock (void);
|
||
def llama_supports_mlock() -> bool:
|
||
...
|
||
|
||
|
||
llama_supports_mlock = _lib.llama_supports_mlock
|
||
llama_supports_mlock.argtypes = []
|
||
llama_supports_mlock.restype = ctypes.c_bool
|
||
|
||
|
||
# LLAMA_API bool llama_supports_gpu_offload(void);
|
||
def llama_supports_gpu_offload() -> bool:
|
||
...
|
||
|
||
|
||
llama_supports_gpu_offload = _lib.llama_supports_gpu_offload
|
||
llama_supports_gpu_offload.argtypes = []
|
||
llama_supports_gpu_offload.restype = ctypes.c_bool
|
||
|
||
|
||
# LLAMA_API DEPRECATED(bool llama_mmap_supported (void), "use llama_supports_mmap() instead");
|
||
def llama_mmap_supported() -> bool:
|
||
...
|
||
|
||
|
||
llama_mmap_supported = _lib.llama_mmap_supported
|
||
llama_mmap_supported.argtypes = []
|
||
llama_mmap_supported.restype = ctypes.c_bool
|
||
|
||
|
||
# LLAMA_API DEPRECATED(bool llama_mlock_supported(void), "use llama_supports_mlock() instead");
|
||
def llama_mlock_supported() -> bool:
|
||
...
|
||
|
||
|
||
llama_mlock_supported = _lib.llama_mlock_supported
|
||
llama_mlock_supported.argtypes = []
|
||
llama_mlock_supported.restype = ctypes.c_bool
|
||
|
||
|
||
# LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
|
||
def llama_get_model(ctx: llama_context_p, /) -> Optional[llama_model_p]:
|
||
...
|
||
|
||
|
||
llama_get_model = _lib.llama_get_model
|
||
llama_get_model.argtypes = [llama_context_p_ctypes]
|
||
llama_get_model.restype = llama_model_p_ctypes
|
||
|
||
|
||
# LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx);
|
||
def llama_n_ctx(ctx: llama_context_p, /) -> int:
|
||
...
|
||
|
||
|
||
llama_n_ctx = _lib.llama_n_ctx
|
||
llama_n_ctx.argtypes = [llama_context_p_ctypes]
|
||
llama_n_ctx.restype = ctypes.c_uint32
|
||
|
||
|
||
# LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx);
|
||
def llama_n_batch(ctx: llama_context_p, /) -> int:
|
||
...
|
||
|
||
|
||
llama_n_batch = _lib.llama_n_batch
|
||
llama_n_batch.argtypes = [llama_context_p_ctypes]
|
||
llama_n_batch.restype = ctypes.c_uint32
|
||
|
||
|
||
# LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_model * model);
|
||
def llama_vocab_type(model: llama_model_p, /) -> int:
|
||
...
|
||
|
||
|
||
llama_vocab_type = _lib.llama_vocab_type
|
||
llama_vocab_type.argtypes = [llama_model_p_ctypes]
|
||
llama_vocab_type.restype = ctypes.c_int
|
||
|
||
|
||
# LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
|
||
def llama_n_vocab(model: llama_model_p, /) -> int:
|
||
...
|
||
|
||
|
||
llama_n_vocab = _lib.llama_n_vocab
|
||
llama_n_vocab.argtypes = [llama_model_p_ctypes]
|
||
llama_n_vocab.restype = ctypes.c_int32
|
||
|
||
|
||
# LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
|
||
def llama_n_ctx_train(model: llama_model_p, /) -> int:
|
||
...
|
||
|
||
|
||
llama_n_ctx_train = _lib.llama_n_ctx_train
|
||
llama_n_ctx_train.argtypes = [llama_model_p_ctypes]
|
||
llama_n_ctx_train.restype = ctypes.c_int32
|
||
|
||
|
||
# LLAMA_API int32_t llama_n_embd (const struct llama_model * model);
|
||
def llama_n_embd(model: llama_model_p, /) -> int:
|
||
...
|
||
|
||
|
||
llama_n_embd = _lib.llama_n_embd
|
||
llama_n_embd.argtypes = [llama_model_p_ctypes]
|
||
llama_n_embd.restype = ctypes.c_int32
|
||
|
||
|
||
# // Get the model's RoPE frequency scaling factor
|
||
# LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
|
||
def llama_rope_freq_scale_train(model: llama_model_p, /) -> float:
|
||
"""Get the model's RoPE frequency scaling factor"""
|
||
...
|
||
|
||
|
||
llama_rope_freq_scale_train = _lib.llama_rope_freq_scale_train
|
||
llama_rope_freq_scale_train.argtypes = [llama_model_p_ctypes]
|
||
llama_rope_freq_scale_train.restype = ctypes.c_float
|
||
|
||
# // Functions to access the model's GGUF metadata scalar values
|
||
# // - The functions return the length of the string on success, or -1 on failure
|
||
# // - The output string is always null-terminated and cleared on failure
|
||
# // - GGUF array values are not supported by these functions
|
||
|
||
|
||
# // Get metadata value as a string by key name
|
||
# LLAMA_API int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size);
|
||
def llama_model_meta_val_str(
|
||
model: llama_model_p, key: Union[ctypes.c_char_p, bytes], buf: bytes, buf_size: int, /
|
||
) -> int:
|
||
"""Get metadata value as a string by key name"""
|
||
...
|
||
|
||
|
||
llama_model_meta_val_str = _lib.llama_model_meta_val_str
|
||
llama_model_meta_val_str.argtypes = [llama_model_p_ctypes, ctypes.c_char_p, ctypes.c_char_p, ctypes.c_size_t]
|
||
llama_model_meta_val_str.restype = ctypes.c_int32
|
||
|
||
|
||
# // Get the number of metadata key/value pairs
|
||
# LLAMA_API int32_t llama_model_meta_count(const struct llama_model * model);
|
||
def llama_model_meta_count(model: llama_model_p, /) -> int:
|
||
"""Get the number of metadata key/value pairs"""
|
||
...
|
||
|
||
|
||
llama_model_meta_count = _lib.llama_model_meta_count
|
||
llama_model_meta_count.argtypes = [llama_model_p_ctypes]
|
||
llama_model_meta_count.restype = ctypes.c_int32
|
||
|
||
|
||
# // Get metadata key name by index
|
||
# LLAMA_API int32_t llama_model_meta_key_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
|
||
def llama_model_meta_key_by_index(
|
||
model: llama_model_p, i: Union[ctypes.c_int, int], buf: bytes, buf_size: int, /
|
||
) -> int:
|
||
"""Get metadata key name by index"""
|
||
...
|
||
|
||
|
||
llama_model_meta_key_by_index = _lib.llama_model_meta_key_by_index
|
||
llama_model_meta_key_by_index.argtypes = [
|
||
llama_model_p_ctypes,
|
||
ctypes.c_int32,
|
||
ctypes.c_char_p,
|
||
ctypes.c_size_t,
|
||
]
|
||
llama_model_meta_key_by_index.restype = ctypes.c_int32
|
||
|
||
|
||
# // Get metadata value as a string by index
|
||
# LLAMA_API int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
|
||
def llama_model_meta_val_str_by_index(
|
||
model: llama_model_p, i: Union[ctypes.c_int, int], buf: bytes, buf_size: int, /
|
||
) -> int:
|
||
"""Get metadata value as a string by index"""
|
||
...
|
||
|
||
|
||
llama_model_meta_val_str_by_index = _lib.llama_model_meta_val_str_by_index
|
||
llama_model_meta_val_str_by_index.argtypes = [
|
||
llama_model_p_ctypes,
|
||
ctypes.c_int32,
|
||
ctypes.c_char_p,
|
||
ctypes.c_size_t,
|
||
]
|
||
llama_model_meta_val_str_by_index.restype = ctypes.c_int32
|
||
|
||
|
||
# // Get a string describing the model type
|
||
# LLAMA_API int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
|
||
def llama_model_desc(
|
||
model: llama_model_p, buf: bytes, buf_size: Union[ctypes.c_size_t, int], /
|
||
) -> int:
|
||
"""Get a string describing the model type"""
|
||
...
|
||
|
||
|
||
llama_model_desc = _lib.llama_model_desc
|
||
llama_model_desc.argtypes = [llama_model_p_ctypes, ctypes.c_char_p, ctypes.c_size_t]
|
||
llama_model_desc.restype = ctypes.c_int32
|
||
|
||
|
||
# // Returns the total size of all the tensors in the model in bytes
|
||
# LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
|
||
def llama_model_size(model: llama_model_p, /) -> int:
|
||
"""Returns the total size of all the tensors in the model in bytes"""
|
||
...
|
||
|
||
|
||
llama_model_size = _lib.llama_model_size
|
||
llama_model_size.argtypes = [llama_model_p_ctypes]
|
||
llama_model_size.restype = ctypes.c_uint64
|
||
|
||
|
||
# // Returns the total number of parameters in the model
|
||
# LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
|
||
def llama_model_n_params(model: llama_model_p, /) -> int:
|
||
"""Returns the total number of parameters in the model"""
|
||
...
|
||
|
||
|
||
llama_model_n_params = _lib.llama_model_n_params
|
||
llama_model_n_params.argtypes = [llama_model_p_ctypes]
|
||
llama_model_n_params.restype = ctypes.c_uint64
|
||
|
||
|
||
# // Get a llama model tensor
|
||
# LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name);
|
||
def llama_get_model_tensor(
|
||
model: llama_model_p, name: Union[ctypes.c_char_p, bytes], /
|
||
) -> ctypes.c_void_p:
|
||
"""Get a llama model tensor"""
|
||
...
|
||
|
||
|
||
llama_get_model_tensor = _lib.llama_get_model_tensor
|
||
llama_get_model_tensor.argtypes = [llama_model_p_ctypes, ctypes.c_char_p]
|
||
llama_get_model_tensor.restype = ctypes.c_void_p
|
||
|
||
|
||
# // Returns 0 on success
|
||
# LLAMA_API uint32_t llama_model_quantize(
|
||
# const char * fname_inp,
|
||
# const char * fname_out,
|
||
# const llama_model_quantize_params * params);
|
||
def llama_model_quantize(
|
||
fname_inp: bytes,
|
||
fname_out: bytes,
|
||
params, # type: ctypes.POINTER(llama_model_quantize_params) # type: ignore
|
||
/
|
||
) -> int:
|
||
"""Returns 0 on success"""
|
||
...
|
||
|
||
|
||
llama_model_quantize = _lib.llama_model_quantize
|
||
llama_model_quantize.argtypes = [
|
||
ctypes.c_char_p,
|
||
ctypes.c_char_p,
|
||
ctypes.POINTER(llama_model_quantize_params),
|
||
]
|
||
llama_model_quantize.restype = ctypes.c_uint32
|
||
|
||
|
||
# // Apply a LoRA adapter to a loaded model
|
||
# // path_base_model is the path to a higher quality model to use as a base for
|
||
# // the layers modified by the adapter. Can be NULL to use the current loaded model.
|
||
# // The model needs to be reloaded before applying a new adapter, otherwise the adapter
|
||
# // will be applied on top of the previous one
|
||
# // Returns 0 on success
|
||
# LLAMA_API DEPRECATED(int32_t llama_apply_lora_from_file(
|
||
# struct llama_context * ctx,
|
||
# const char * path_lora,
|
||
# float scale,
|
||
# const char * path_base_model,
|
||
# int32_t n_threads),
|
||
# "use llama_model_apply_lora_from_file instead");
|
||
def llama_apply_lora_from_file(
|
||
ctx: llama_context_p,
|
||
path_lora: Union[ctypes.c_char_p, bytes],
|
||
scale: Union[ctypes.c_float, float],
|
||
path_base_model: Union[ctypes.c_char_p, bytes],
|
||
n_threads: Union[ctypes.c_int, int],
|
||
/
|
||
) -> int:
|
||
"""Apply a LoRA adapter to a loaded model
|
||
path_base_model is the path to a higher quality model to use as a base for
|
||
the layers modified by the adapter. Can be NULL to use the current loaded model.
|
||
The model needs to be reloaded before applying a new adapter, otherwise the adapter
|
||
will be applied on top of the previous one
|
||
Returns 0 on success"""
|
||
...
|
||
|
||
|
||
llama_apply_lora_from_file = _lib.llama_apply_lora_from_file
|
||
llama_apply_lora_from_file.argtypes = [
|
||
llama_context_p_ctypes,
|
||
ctypes.c_char_p,
|
||
ctypes.c_float,
|
||
ctypes.c_char_p,
|
||
ctypes.c_int32,
|
||
]
|
||
llama_apply_lora_from_file.restype = ctypes.c_int32
|
||
|
||
|
||
# LLAMA_API int32_t llama_model_apply_lora_from_file(
|
||
# const struct llama_model * model,
|
||
# const char * path_lora,
|
||
# float scale,
|
||
# const char * path_base_model,
|
||
# int32_t n_threads);
|
||
def llama_model_apply_lora_from_file(
|
||
model: llama_model_p,
|
||
path_lora: Union[ctypes.c_char_p, bytes],
|
||
scale: Union[ctypes.c_float, float],
|
||
path_base_model: Union[ctypes.c_char_p, bytes],
|
||
n_threads: Union[ctypes.c_int, int],
|
||
/
|
||
) -> int:
|
||
...
|
||
|
||
|
||
llama_model_apply_lora_from_file = _lib.llama_model_apply_lora_from_file
|
||
llama_model_apply_lora_from_file.argtypes = [
|
||
llama_model_p_ctypes,
|
||
ctypes.c_char_p,
|
||
ctypes.c_float,
|
||
ctypes.c_char_p,
|
||
ctypes.c_int32,
|
||
]
|
||
llama_model_apply_lora_from_file.restype = ctypes.c_int32
|
||
|
||
# //
|
||
# // KV cache
|
||
# //
|
||
|
||
|
||
# // Information associated with an individual cell in the KV cache view.
|
||
# struct llama_kv_cache_view_cell {
|
||
# // The position for this cell. Takes KV cache shifts into account.
|
||
# // May be negative if the cell is not populated.
|
||
# llama_pos pos;
|
||
# };
|
||
class llama_kv_cache_view_cell(ctypes.Structure):
|
||
_fields_ = [("pos", llama_pos)]
|
||
|
||
|
||
# // An updateable view of the KV cache.
|
||
# struct llama_kv_cache_view {
|
||
# // Number of KV cache cells. This will be the same as the context size.
|
||
# int32_t n_cells;
|
||
|
||
# // Maximum number of sequences that can exist in a cell. It's not an error
|
||
# // if there are more sequences in a cell than this value, however they will
|
||
# // not be visible in the view cells_sequences.
|
||
# int32_t n_max_seq;
|
||
|
||
# // Number of tokens in the cache. For example, if there are two populated
|
||
# // cells, the first with 1 sequence id in it and the second with 2 sequence
|
||
# // ids then you'll have 3 tokens.
|
||
# int32_t token_count;
|
||
|
||
# // Number of populated cache cells.
|
||
# int32_t used_cells;
|
||
|
||
# // Maximum contiguous empty slots in the cache.
|
||
# int32_t max_contiguous;
|
||
|
||
# // Index to the start of the max_contiguous slot range. Can be negative
|
||
# // when cache is full.
|
||
# int32_t max_contiguous_idx;
|
||
|
||
# // Information for an individual cell.
|
||
# struct llama_kv_cache_view_cell * cells;
|
||
|
||
|
||
# // The sequences for each cell. There will be n_max_seq items per cell.
|
||
# llama_seq_id * cells_sequences;
|
||
# };
|
||
class llama_kv_cache_view(ctypes.Structure):
|
||
_fields_ = [
|
||
("n_cells", ctypes.c_int32),
|
||
("n_max_seq", ctypes.c_int32),
|
||
("token_count", ctypes.c_int32),
|
||
("used_cells", ctypes.c_int32),
|
||
("max_contiguous", ctypes.c_int32),
|
||
("max_contiguous_idx", ctypes.c_int32),
|
||
("cells", ctypes.POINTER(llama_kv_cache_view_cell)),
|
||
("cells_sequences", ctypes.POINTER(llama_seq_id)),
|
||
]
|
||
|
||
|
||
llama_kv_cache_view_p = ctypes.POINTER(llama_kv_cache_view)
|
||
|
||
|
||
# // Create an empty KV cache view. (use only for debugging purposes)
|
||
# LLAMA_API struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_max_seq);
|
||
def llama_kv_cache_view_init(
|
||
ctx: llama_context_p, n_max_seq: Union[ctypes.c_int32, int], /
|
||
) -> llama_kv_cache_view:
|
||
"""Create an empty KV cache view. (use only for debugging purposes)"""
|
||
...
|
||
|
||
|
||
llama_kv_cache_view_init = _lib.llama_kv_cache_view_init
|
||
llama_kv_cache_view_init.argtypes = [llama_context_p_ctypes, ctypes.c_int32]
|
||
llama_kv_cache_view_init.restype = llama_kv_cache_view
|
||
|
||
|
||
# // Free a KV cache view. (use only for debugging purposes)
|
||
# LLAMA_API void llama_kv_cache_view_free(struct llama_kv_cache_view * view);
|
||
def llama_kv_cache_view_free(view: "ctypes.pointer[llama_kv_cache_view]", /): # type: ignore
|
||
"""Free a KV cache view. (use only for debugging purposes)"""
|
||
...
|
||
|
||
|
||
llama_kv_cache_view_free = _lib.llama_kv_cache_view_free
|
||
llama_kv_cache_view_free.argtypes = [llama_kv_cache_view_p]
|
||
llama_kv_cache_view_free.restype = None
|
||
|
||
|
||
# // Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes)
|
||
# LLAMA_API void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view);
|
||
def llama_kv_cache_view_update(ctx: llama_context_p, view: "ctypes.pointer[llama_kv_cache_view]", /): # type: ignore
|
||
"""Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes)"""
|
||
...
|
||
|
||
|
||
llama_kv_cache_view_update = _lib.llama_kv_cache_view_update
|
||
llama_kv_cache_view_update.argtypes = [llama_context_p_ctypes, llama_kv_cache_view_p]
|
||
llama_kv_cache_view_update.restype = None
|
||
|
||
|
||
# // Returns the number of tokens in the KV cache (slow, use only for debug)
|
||
# // If a KV cell has multiple sequences assigned to it, it will be counted multiple times
|
||
# LLAMA_API int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx);
|
||
def llama_get_kv_cache_token_count(ctx: llama_context_p, /) -> int:
|
||
"""Returns the number of tokens in the KV cache (slow, use only for debug)
|
||
If a KV cell has multiple sequences assigned to it, it will be counted multiple times
|
||
"""
|
||
...
|
||
|
||
|
||
llama_get_kv_cache_token_count = _lib.llama_get_kv_cache_token_count
|
||
llama_get_kv_cache_token_count.argtypes = [llama_context_p_ctypes]
|
||
llama_get_kv_cache_token_count.restype = ctypes.c_int32
|
||
|
||
|
||
# // Returns the number of used KV cells (i.e. have at least one sequence assigned to them)
|
||
# LLAMA_API int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx);
|
||
def llama_get_kv_cache_used_cells(ctx: llama_context_p, /) -> int:
|
||
"""Returns the number of used KV cells (i.e. have at least one sequence assigned to them)"""
|
||
...
|
||
|
||
|
||
llama_get_kv_cache_used_cells = _lib.llama_get_kv_cache_used_cells
|
||
llama_get_kv_cache_used_cells.argtypes = [llama_context_p_ctypes]
|
||
llama_get_kv_cache_used_cells.restype = ctypes.c_int32
|
||
|
||
|
||
# // Clear the KV cache
|
||
# LLAMA_API void llama_kv_cache_clear(
|
||
# struct llama_context * ctx);
|
||
def llama_kv_cache_clear(ctx: llama_context_p, /):
|
||
"""Clear the KV cache"""
|
||
...
|
||
|
||
|
||
llama_kv_cache_clear = _lib.llama_kv_cache_clear
|
||
llama_kv_cache_clear.argtypes = [llama_context_p_ctypes]
|
||
llama_kv_cache_clear.restype = None
|
||
|
||
|
||
# // Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
|
||
# // seq_id < 0 : match any sequence
|
||
# // p0 < 0 : [0, p1]
|
||
# // p1 < 0 : [p0, inf)
|
||
# LLAMA_API void llama_kv_cache_seq_rm(
|
||
# struct llama_context * ctx,
|
||
# llama_seq_id seq_id,
|
||
# llama_pos p0,
|
||
# llama_pos p1);
|
||
def llama_kv_cache_seq_rm(
|
||
ctx: llama_context_p,
|
||
seq_id: Union[llama_seq_id, int],
|
||
p0: Union[llama_pos, int],
|
||
p1: Union[llama_pos, int],
|
||
/
|
||
):
|
||
"""Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
|
||
seq_id < 0 : match any sequence
|
||
p0 < 0 : [0, p1]
|
||
p1 < 0 : [p0, inf)"""
|
||
...
|
||
|
||
|
||
llama_kv_cache_seq_rm = _lib.llama_kv_cache_seq_rm
|
||
llama_kv_cache_seq_rm.argtypes = [
|
||
llama_context_p_ctypes,
|
||
llama_seq_id,
|
||
llama_pos,
|
||
llama_pos,
|
||
]
|
||
llama_kv_cache_seq_rm.restype = None
|
||
|
||
|
||
# // Copy all tokens that belong to the specified sequence to another sequence
|
||
# // Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
|
||
# // p0 < 0 : [0, p1]
|
||
# // p1 < 0 : [p0, inf)
|
||
# LLAMA_API void llama_kv_cache_seq_cp(
|
||
# struct llama_context * ctx,
|
||
# llama_seq_id seq_id_src,
|
||
# llama_seq_id seq_id_dst,
|
||
# llama_pos p0,
|
||
# llama_pos p1);
|
||
def llama_kv_cache_seq_cp(
|
||
ctx: llama_context_p,
|
||
seq_id_src: Union[llama_seq_id, int],
|
||
seq_id_dst: Union[llama_seq_id, int],
|
||
p0: Union[llama_pos, int],
|
||
p1: Union[llama_pos, int],
|
||
/
|
||
):
|
||
"""Copy all tokens that belong to the specified sequence to another sequence
|
||
Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
|
||
p0 < 0 : [0, p1]
|
||
p1 < 0 : [p0, inf)"""
|
||
...
|
||
|
||
|
||
llama_kv_cache_seq_cp = _lib.llama_kv_cache_seq_cp
|
||
llama_kv_cache_seq_cp.argtypes = [
|
||
llama_context_p_ctypes,
|
||
llama_seq_id,
|
||
llama_seq_id,
|
||
llama_pos,
|
||
llama_pos,
|
||
]
|
||
llama_kv_cache_seq_cp.restype = None
|
||
|
||
|
||
# // Removes all tokens that do not belong to the specified sequence
|
||
# LLAMA_API void llama_kv_cache_seq_keep(
|
||
# struct llama_context * ctx,
|
||
# llama_seq_id seq_id);
|
||
def llama_kv_cache_seq_keep(
|
||
ctx: llama_context_p,
|
||
seq_id: Union[llama_seq_id, int],
|
||
/
|
||
):
|
||
"""Removes all tokens that do not belong to the specified sequence"""
|
||
...
|
||
|
||
|
||
llama_kv_cache_seq_keep = _lib.llama_kv_cache_seq_keep
|
||
llama_kv_cache_seq_keep.argtypes = [llama_context_p_ctypes, llama_seq_id]
|
||
llama_kv_cache_seq_keep.restype = None
|
||
|
||
|
||
# // Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
|
||
# // If the KV cache is RoPEd, the KV data is updated accordingly
|
||
# // p0 < 0 : [0, p1]
|
||
# // p1 < 0 : [p0, inf)
|
||
# LLAMA_API void llama_kv_cache_seq_shift(
|
||
# struct llama_context * ctx,
|
||
# llama_seq_id seq_id,
|
||
# llama_pos p0,
|
||
# llama_pos p1,
|
||
# llama_pos delta);
|
||
def llama_kv_cache_seq_shift(
|
||
ctx: llama_context_p,
|
||
seq_id: Union[llama_seq_id, int],
|
||
p0: Union[llama_pos, int],
|
||
p1: Union[llama_pos, int],
|
||
delta: Union[llama_pos, int],
|
||
/
|
||
):
|
||
"""Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
|
||
If the KV cache is RoPEd, the KV data is updated accordingly
|
||
p0 < 0 : [0, p1]
|
||
p1 < 0 : [p0, inf)"""
|
||
...
|
||
|
||
|
||
llama_kv_cache_seq_shift = _lib.llama_kv_cache_seq_shift
|
||
llama_kv_cache_seq_shift.argtypes = [
|
||
llama_context_p_ctypes,
|
||
llama_seq_id,
|
||
llama_pos,
|
||
llama_pos,
|
||
llama_pos,
|
||
]
|
||
llama_kv_cache_seq_shift.restype = None
|
||
|
||
|
||
# // Integer division of the positions by factor of `d > 1`
|
||
# // If the KV cache is RoPEd, the KV data is updated accordingly
|
||
# // p0 < 0 : [0, p1]
|
||
# // p1 < 0 : [p0, inf)
|
||
# LLAMA_API void llama_kv_cache_seq_div(
|
||
# struct llama_context * ctx,
|
||
# llama_seq_id seq_id,
|
||
# llama_pos p0,
|
||
# llama_pos p1,
|
||
# int d);
|
||
def llama_kv_cache_seq_div(
|
||
ctx: llama_context_p,
|
||
seq_id: Union[llama_seq_id, int],
|
||
p0: Union[llama_pos, int],
|
||
p1: Union[llama_pos, int],
|
||
d: Union[ctypes.c_int, int],
|
||
/
|
||
):
|
||
"""Integer division of the positions by factor of `d > 1`
|
||
If the KV cache is RoPEd, the KV data is updated accordingly
|
||
p0 < 0 : [0, p1]
|
||
p1 < 0 : [p0, inf)"""
|
||
...
|
||
|
||
|
||
llama_kv_cache_seq_div = _lib.llama_kv_cache_seq_div
|
||
llama_kv_cache_seq_div.argtypes = [
|
||
llama_context_p_ctypes,
|
||
llama_seq_id,
|
||
llama_pos,
|
||
llama_pos,
|
||
ctypes.c_int,
|
||
]
|
||
llama_kv_cache_seq_div.restype = None
|
||
|
||
# //
|
||
# // State / sessions
|
||
# //
|
||
|
||
|
||
# Returns the maximum size in bytes of the state (rng, logits, embedding
|
||
# and kv_cache) - will often be smaller after compacting tokens
|
||
# LLAMA_API size_t llama_get_state_size(const struct llama_context * ctx);
|
||
def llama_get_state_size(ctx: llama_context_p, /) -> int:
|
||
"""Returns the maximum size in bytes of the state (rng, logits, embedding
|
||
and kv_cache) - will often be smaller after compacting tokens"""
|
||
...
|
||
|
||
|
||
llama_get_state_size = _lib.llama_get_state_size
|
||
llama_get_state_size.argtypes = [llama_context_p_ctypes]
|
||
llama_get_state_size.restype = ctypes.c_size_t
|
||
|
||
|
||
# Copies the state to the specified destination address.
|
||
# Destination needs to have allocated enough memory.
|
||
# Returns the number of bytes copied
|
||
# LLAMA_API size_t llama_copy_state_data(
|
||
# struct llama_context * ctx,
|
||
# uint8_t * dst);
|
||
def llama_copy_state_data(
|
||
ctx: llama_context_p, dst, # type: Array[ctypes.c_uint8]
|
||
/
|
||
) -> int:
|
||
"""Copies the state to the specified destination address.
|
||
Destination needs to have allocated enough memory.
|
||
Returns the number of bytes copied"""
|
||
...
|
||
|
||
|
||
llama_copy_state_data = _lib.llama_copy_state_data
|
||
llama_copy_state_data.argtypes = [llama_context_p_ctypes, c_uint8_p]
|
||
llama_copy_state_data.restype = ctypes.c_size_t
|
||
|
||
|
||
# Set the state reading from the specified address
|
||
# Returns the number of bytes read
|
||
# LLAMA_API size_t llama_set_state_data(
|
||
# struct llama_context * ctx,
|
||
# uint8_t * src);
|
||
def llama_set_state_data(
|
||
ctx: llama_context_p, src, # type: Array[ctypes.c_uint8]
|
||
/
|
||
) -> int:
|
||
"""Set the state reading from the specified address"""
|
||
...
|
||
|
||
|
||
llama_set_state_data = _lib.llama_set_state_data
|
||
llama_set_state_data.argtypes = [llama_context_p_ctypes, c_uint8_p]
|
||
llama_set_state_data.restype = ctypes.c_size_t
|
||
|
||
|
||
# Save/load session file
|
||
# LLAMA_API bool llama_load_session_file(
|
||
# struct llama_context * ctx,
|
||
# const char * path_session,
|
||
# llama_token * tokens_out,
|
||
# size_t n_token_capacity,
|
||
# size_t * n_token_count_out);
|
||
def llama_load_session_file(
|
||
ctx: llama_context_p,
|
||
path_session: bytes,
|
||
tokens_out, # type: Array[llama_token]
|
||
n_token_capacity: Union[ctypes.c_size_t, int],
|
||
n_token_count_out, # type: _Pointer[ctypes.c_size_t]
|
||
/
|
||
) -> int:
|
||
...
|
||
|
||
|
||
llama_load_session_file = _lib.llama_load_session_file
|
||
llama_load_session_file.argtypes = [
|
||
llama_context_p_ctypes,
|
||
ctypes.c_char_p,
|
||
llama_token_p,
|
||
ctypes.c_size_t,
|
||
c_size_t_p,
|
||
]
|
||
llama_load_session_file.restype = ctypes.c_size_t
|
||
|
||
|
||
# LLAMA_API bool llama_save_session_file(
|
||
# struct llama_context * ctx,
|
||
# const char * path_session,
|
||
# const llama_token * tokens,
|
||
# size_t n_token_count);
|
||
def llama_save_session_file(
|
||
ctx: llama_context_p,
|
||
path_session: bytes,
|
||
tokens, # type: Array[llama_token]
|
||
n_token_count: Union[ctypes.c_size_t, int],
|
||
/
|
||
) -> int:
|
||
...
|
||
|
||
|
||
llama_save_session_file = _lib.llama_save_session_file
|
||
llama_save_session_file.argtypes = [
|
||
llama_context_p_ctypes,
|
||
ctypes.c_char_p,
|
||
llama_token_p,
|
||
ctypes.c_size_t,
|
||
]
|
||
llama_save_session_file.restype = ctypes.c_size_t
|
||
|
||
# //
|
||
# // Decoding
|
||
# //
|
||
|
||
|
||
# // Run the llama inference to obtain the logits and probabilities for the next token(s).
|
||
# // tokens + n_tokens is the provided batch of new tokens to process
|
||
# // n_past is the number of tokens to use from previous eval calls
|
||
# // Returns 0 on success
|
||
# // DEPRECATED: use llama_decode() instead
|
||
# LLAMA_API DEPRECATED(int llama_eval(
|
||
# struct llama_context * ctx,
|
||
# llama_token * tokens,
|
||
# int32_t n_tokens,
|
||
# int32_t n_past),
|
||
# "use llama_decode() instead");
|
||
def llama_eval(
|
||
ctx: llama_context_p,
|
||
tokens, # type: Array[llama_token]
|
||
n_tokens: Union[ctypes.c_int, int],
|
||
n_past: Union[ctypes.c_int, int],
|
||
/
|
||
) -> int:
|
||
"""Run the llama inference to obtain the logits and probabilities for the next token(s).
|
||
tokens + n_tokens is the provided batch of new tokens to process
|
||
n_past is the number of tokens to use from previous eval calls
|
||
Returns 0 on success
|
||
DEPRECATED: use llama_decode() instead"""
|
||
...
|
||
|
||
|
||
llama_eval = _lib.llama_eval
|
||
llama_eval.argtypes = [llama_context_p_ctypes, llama_token_p, ctypes.c_int32, ctypes.c_int32]
|
||
llama_eval.restype = ctypes.c_int
|
||
|
||
|
||
# // Same as llama_eval, but use float matrix input directly.
|
||
# // DEPRECATED: use llama_decode() instead
|
||
# LLAMA_API DEPRECATED(int llama_eval_embd(
|
||
# struct llama_context * ctx,
|
||
# float * embd,
|
||
# int32_t n_tokens,
|
||
# int32_t n_past),
|
||
# "use llama_decode() instead");
|
||
def llama_eval_embd(
|
||
ctx: llama_context_p,
|
||
embd, # type: Array[ctypes.c_float]
|
||
n_tokens: Union[ctypes.c_int, int],
|
||
n_past: Union[ctypes.c_int, int],
|
||
/
|
||
) -> int:
|
||
"""Same as llama_eval, but use float matrix input directly.
|
||
DEPRECATED: use llama_decode() instead"""
|
||
...
|
||
|
||
|
||
llama_eval_embd = _lib.llama_eval_embd
|
||
llama_eval_embd.argtypes = [llama_context_p_ctypes, c_float_p, ctypes.c_int32, ctypes.c_int32]
|
||
llama_eval_embd.restype = ctypes.c_int
|
||
|
||
|
||
# // Return batch for single sequence of tokens starting at pos_0
|
||
# //
|
||
# // NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it
|
||
# //
|
||
# LLAMA_API struct llama_batch llama_batch_get_one(
|
||
# llama_token * tokens,
|
||
# int32_t n_tokens,
|
||
# llama_pos pos_0,
|
||
# llama_seq_id seq_id);
|
||
def llama_batch_get_one(
|
||
tokens, # type: Array[llama_token]
|
||
n_tokens: Union[ctypes.c_int, int],
|
||
pos_0: Union[llama_pos, int],
|
||
seq_id: llama_seq_id,
|
||
/
|
||
) -> llama_batch:
|
||
"""Return batch for single sequence of tokens starting at pos_0
|
||
|
||
NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it
|
||
"""
|
||
...
|
||
|
||
|
||
llama_batch_get_one = _lib.llama_batch_get_one
|
||
llama_batch_get_one.argtypes = [
|
||
llama_token_p,
|
||
ctypes.c_int,
|
||
llama_pos,
|
||
llama_seq_id,
|
||
]
|
||
llama_batch_get_one.restype = llama_batch
|
||
|
||
|
||
# // Allocates a batch of tokens on the heap that can hold a maximum of n_tokens
|
||
# // Each token can be assigned up to n_seq_max sequence ids
|
||
# // The batch has to be freed with llama_batch_free()
|
||
# // If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
|
||
# // Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
|
||
# // The rest of the llama_batch members are allocated with size n_tokens
|
||
# // All members are left uninitialized
|
||
# LLAMA_API struct llama_batch llama_batch_init(
|
||
# int32_t n_tokens,
|
||
# int32_t embd,
|
||
# int32_t n_seq_max);
|
||
def llama_batch_init(
|
||
n_tokens: Union[ctypes.c_int32, int],
|
||
embd: Union[ctypes.c_int32, int],
|
||
n_seq_max: Union[ctypes.c_int32, int],
|
||
/
|
||
) -> llama_batch:
|
||
"""Allocates a batch of tokens on the heap that can hold a maximum of n_tokens
|
||
Each token can be assigned up to n_seq_max sequence ids
|
||
The batch has to be freed with llama_batch_free()
|
||
If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
|
||
Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
|
||
The rest of the llama_batch members are allocated with size n_tokens
|
||
All members are left uninitialized"""
|
||
...
|
||
|
||
|
||
llama_batch_init = _lib.llama_batch_init
|
||
llama_batch_init.argtypes = [ctypes.c_int32, ctypes.c_int32, ctypes.c_int32]
|
||
llama_batch_init.restype = llama_batch
|
||
|
||
|
||
# // Frees a batch of tokens allocated with llama_batch_init()
|
||
# LLAMA_API void llama_batch_free(struct llama_batch batch);
|
||
def llama_batch_free(batch: llama_batch, /):
|
||
"""Frees a batch of tokens allocated with llama_batch_init()"""
|
||
...
|
||
|
||
|
||
llama_batch_free = _lib.llama_batch_free
|
||
llama_batch_free.argtypes = [llama_batch]
|
||
llama_batch_free.restype = None
|
||
|
||
|
||
# // Positive return values does not mean a fatal error, but rather a warning.
|
||
# // 0 - success
|
||
# // 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
|
||
# // < 0 - error
|
||
# LLAMA_API int32_t llama_decode(
|
||
# struct llama_context * ctx,
|
||
# struct llama_batch batch);
|
||
def llama_decode(ctx: llama_context_p, batch: llama_batch, /) -> int:
|
||
"""Positive return values does not mean a fatal error, but rather a warning.
|
||
0 - success
|
||
1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
|
||
< 0 - error"""
|
||
...
|
||
|
||
|
||
llama_decode = _lib.llama_decode
|
||
llama_decode.argtypes = [llama_context_p_ctypes, llama_batch]
|
||
llama_decode.restype = ctypes.c_int32
|
||
|
||
|
||
# // Set the number of threads used for decoding
|
||
# // n_threads is the number of threads used for generation (single token)
|
||
# // n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
|
||
# LLAMA_API void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch);
|
||
def llama_set_n_threads(
|
||
ctx: llama_context_p,
|
||
n_threads: Union[ctypes.c_uint32, int],
|
||
n_threads_batch: Union[ctypes.c_uint32, int],
|
||
/
|
||
):
|
||
"""Set the number of threads used for decoding
|
||
n_threads is the number of threads used for generation (single token)
|
||
n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
|
||
"""
|
||
...
|
||
|
||
|
||
llama_set_n_threads = _lib.llama_set_n_threads
|
||
llama_set_n_threads.argtypes = [llama_context_p_ctypes, ctypes.c_uint32, ctypes.c_uint32]
|
||
llama_set_n_threads.restype = None
|
||
|
||
|
||
# // Token logits obtained from the last call to llama_eval()
|
||
# // The logits for the last token are stored in the last row
|
||
# // Logits for which llama_batch.logits[i] == 0 are undefined
|
||
# // Rows: n_tokens provided with llama_batch
|
||
# // Cols: n_vocab
|
||
# LLAMA_API float * llama_get_logits(struct llama_context * ctx);
|
||
def llama_get_logits(
|
||
ctx: llama_context_p,
|
||
/
|
||
): # type: (...) -> Array[float] # type: ignore
|
||
"""Token logits obtained from the last call to llama_eval()
|
||
The logits for the last token are stored in the last row
|
||
Logits for which llama_batch.logits[i] == 0 are undefined
|
||
Rows: n_tokens provided with llama_batch
|
||
Cols: n_vocab"""
|
||
...
|
||
|
||
|
||
llama_get_logits = _lib.llama_get_logits
|
||
llama_get_logits.argtypes = [llama_context_p_ctypes]
|
||
llama_get_logits.restype = c_float_p
|
||
|
||
|
||
# // Logits for the ith token. Equivalent to:
|
||
# // llama_get_logits(ctx) + i*n_vocab
|
||
# LLAMA_API float * llama_get_logits_ith(struct llama_context * ctx, int32_t i);
|
||
def llama_get_logits_ith(
|
||
ctx: llama_context_p, i: Union[ctypes.c_int32, int]
|
||
, /
|
||
): # type: (...) -> Array[float] # type: ignore
|
||
"""Logits for the ith token. Equivalent to:
|
||
llama_get_logits(ctx) + i*n_vocab"""
|
||
...
|
||
|
||
|
||
llama_get_logits_ith = _lib.llama_get_logits_ith
|
||
llama_get_logits_ith.argtypes = [llama_context_p_ctypes, ctypes.c_int32]
|
||
llama_get_logits_ith.restype = c_float_p
|
||
|
||
|
||
# Get the embeddings for the input
|
||
# shape: [n_embd] (1-dimensional)
|
||
# LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
|
||
def llama_get_embeddings(
|
||
ctx: llama_context_p, /
|
||
): # type: (...) -> Array[float] # type: ignore
|
||
"""Get the embeddings for the input
|
||
shape: [n_embd] (1-dimensional)"""
|
||
...
|
||
|
||
|
||
llama_get_embeddings = _lib.llama_get_embeddings
|
||
llama_get_embeddings.argtypes = [llama_context_p_ctypes]
|
||
llama_get_embeddings.restype = c_float_p
|
||
|
||
|
||
# // Get the embeddings for the ith sequence
|
||
# // llama_get_embeddings(ctx) + i*n_embd
|
||
# LLAMA_API float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i);
|
||
def llama_get_embeddings_ith(
|
||
ctx: llama_context_p, i: Union[ctypes.c_int32, int], /
|
||
): # type: (...) -> Array[float] # type: ignore
|
||
"""Get the embeddings for the ith sequence
|
||
llama_get_embeddings(ctx) + i*n_embd"""
|
||
...
|
||
|
||
|
||
llama_get_embeddings_ith = _lib.llama_get_embeddings_ith
|
||
llama_get_embeddings_ith.argtypes = [llama_context_p_ctypes, ctypes.c_int32]
|
||
llama_get_embeddings_ith.restype = c_float_p
|
||
|
||
|
||
# //
|
||
# // Vocab
|
||
# //
|
||
|
||
|
||
# LLAMA_API const char * llama_token_get_text(const struct llama_model * model, llama_token token);
|
||
def llama_token_get_text(model: llama_model_p, token: Union[llama_token, int], /) -> bytes:
|
||
...
|
||
|
||
|
||
llama_token_get_text = _lib.llama_token_get_text
|
||
llama_token_get_text.argtypes = [llama_model_p_ctypes, llama_token]
|
||
llama_token_get_text.restype = ctypes.c_char_p
|
||
|
||
|
||
# LLAMA_API float llama_token_get_score(const struct llama_model * model, llama_token token);
|
||
def llama_token_get_score(
|
||
model: llama_model_p, token: Union[llama_token, int], /
|
||
) -> float:
|
||
...
|
||
|
||
|
||
llama_token_get_score = _lib.llama_token_get_score
|
||
llama_token_get_score.argtypes = [llama_model_p_ctypes, llama_token]
|
||
llama_token_get_score.restype = ctypes.c_float
|
||
|
||
|
||
# LLAMA_API enum llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token);
|
||
def llama_token_get_type(model: llama_model_p, token: Union[llama_token, int], /) -> int:
|
||
...
|
||
|
||
|
||
llama_token_get_type = _lib.llama_token_get_type
|
||
llama_token_get_type.argtypes = [llama_model_p_ctypes, llama_token]
|
||
llama_token_get_type.restype = ctypes.c_int
|
||
|
||
|
||
# // Special tokens
|
||
|
||
|
||
# LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence
|
||
def llama_token_bos(model: llama_model_p, /) -> int:
|
||
"""beginning-of-sentence"""
|
||
...
|
||
|
||
|
||
llama_token_bos = _lib.llama_token_bos
|
||
llama_token_bos.argtypes = [llama_model_p_ctypes]
|
||
llama_token_bos.restype = llama_token
|
||
|
||
|
||
# LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
|
||
def llama_token_eos(model: llama_model_p, /) -> int:
|
||
"""end-of-sentence"""
|
||
...
|
||
|
||
|
||
llama_token_eos = _lib.llama_token_eos
|
||
llama_token_eos.argtypes = [llama_model_p_ctypes]
|
||
llama_token_eos.restype = llama_token
|
||
|
||
|
||
# LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
|
||
def llama_token_nl(model: llama_model_p, /) -> int:
|
||
"""next-line"""
|
||
...
|
||
|
||
|
||
llama_token_nl = _lib.llama_token_nl
|
||
llama_token_nl.argtypes = [llama_model_p_ctypes]
|
||
llama_token_nl.restype = llama_token
|
||
|
||
|
||
# // Returns -1 if unknown, 1 for true or 0 for false.
|
||
# LLAMA_API int32_t llama_add_bos_token(const struct llama_model * model);
|
||
def llama_add_bos_token(model: llama_model_p, /) -> int:
|
||
"""Returns -1 if unknown, 1 for true or 0 for false."""
|
||
...
|
||
|
||
|
||
llama_add_bos_token = _lib.llama_add_bos_token
|
||
llama_add_bos_token.argtypes = [llama_model_p_ctypes]
|
||
llama_add_bos_token.restype = ctypes.c_int32
|
||
|
||
|
||
# // Returns -1 if unknown, 1 for true or 0 for false.
|
||
# LLAMA_API int32_t llama_add_eos_token(const struct llama_model * model);
|
||
def llama_add_eos_token(model: llama_model_p, /) -> int:
|
||
"""Returns -1 if unknown, 1 for true or 0 for false."""
|
||
...
|
||
|
||
|
||
llama_add_eos_token = _lib.llama_add_eos_token
|
||
llama_add_eos_token.argtypes = [llama_model_p_ctypes]
|
||
llama_add_eos_token.restype = ctypes.c_int32
|
||
|
||
|
||
# // codellama infill tokens
|
||
# LLAMA_API llama_token llama_token_prefix(const struct llama_model * model); // Beginning of infill prefix
|
||
def llama_token_prefix(model: llama_model_p) -> int:
|
||
"""codellama infill tokens"""
|
||
...
|
||
|
||
|
||
llama_token_prefix = _lib.llama_token_prefix
|
||
llama_token_prefix.argtypes = [llama_model_p_ctypes]
|
||
llama_token_prefix.restype = llama_token
|
||
|
||
|
||
# LLAMA_API llama_token llama_token_middle(const struct llama_model * model); // Beginning of infill middle
|
||
def llama_token_middle(model: llama_model_p, /) -> int:
|
||
...
|
||
|
||
|
||
llama_token_middle = _lib.llama_token_middle
|
||
llama_token_middle.argtypes = [llama_model_p_ctypes]
|
||
llama_token_middle.restype = llama_token
|
||
|
||
|
||
# LLAMA_API llama_token llama_token_suffix(const struct llama_model * model); // Beginning of infill suffix
|
||
def llama_token_suffix(model: llama_model_p, /) -> int:
|
||
...
|
||
|
||
|
||
llama_token_suffix = _lib.llama_token_suffix
|
||
llama_token_suffix.argtypes = [llama_model_p_ctypes]
|
||
llama_token_suffix.restype = llama_token
|
||
|
||
|
||
# LLAMA_API llama_token llama_token_eot (const struct llama_model * model); // End of infill middle
|
||
def llama_token_eot(model: llama_model_p, /) -> int:
|
||
...
|
||
|
||
|
||
llama_token_eot = _lib.llama_token_eot
|
||
llama_token_eot.argtypes = [llama_model_p_ctypes]
|
||
llama_token_eot.restype = llama_token
|
||
|
||
|
||
# //
|
||
# // Tokenization
|
||
# //
|
||
|
||
|
||
# /// @details Convert the provided text into tokens.
|
||
# /// @param tokens The tokens pointer must be large enough to hold the resulting tokens.
|
||
# /// @return Returns the number of tokens on success, no more than n_max_tokens
|
||
# /// @return Returns a negative number on failure - the number of tokens that would have been returned
|
||
# /// @param special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated as plaintext.
|
||
# /// Does not insert a leading space.
|
||
# LLAMA_API int32_t llama_tokenize(
|
||
# const struct llama_model * model,
|
||
# const char * text,
|
||
# int32_t text_len,
|
||
# llama_token * tokens,
|
||
# int32_t n_max_tokens,
|
||
# bool add_bos,
|
||
# bool special);
|
||
def llama_tokenize(
|
||
model: llama_model_p,
|
||
text: bytes,
|
||
text_len: Union[ctypes.c_int, int],
|
||
tokens, # type: Array[llama_token]
|
||
n_max_tokens: Union[ctypes.c_int, int],
|
||
add_bos: Union[ctypes.c_bool, bool],
|
||
special: Union[ctypes.c_bool, bool],
|
||
/
|
||
) -> int:
|
||
"""Convert the provided text into tokens."""
|
||
...
|
||
|
||
|
||
llama_tokenize = _lib.llama_tokenize
|
||
llama_tokenize.argtypes = [
|
||
llama_model_p_ctypes,
|
||
ctypes.c_char_p,
|
||
ctypes.c_int32,
|
||
llama_token_p,
|
||
ctypes.c_int32,
|
||
ctypes.c_bool,
|
||
ctypes.c_bool,
|
||
]
|
||
llama_tokenize.restype = ctypes.c_int32
|
||
|
||
|
||
# // Token Id -> Piece.
|
||
# // Uses the vocabulary in the provided context.
|
||
# // Does not write null terminator to the buffer.
|
||
# // User code is responsible to remove the leading whitespace of the first non-BOS token when decoding multiple tokens.
|
||
# LLAMA_API int32_t llama_token_to_piece(
|
||
# const struct llama_model * model,
|
||
# llama_token token,
|
||
# char * buf,
|
||
# int32_t length);
|
||
def llama_token_to_piece(
|
||
model: llama_model_p,
|
||
token: Union[llama_token, int],
|
||
buf: Union[ctypes.c_char_p, bytes],
|
||
length: Union[ctypes.c_int, int],
|
||
/
|
||
) -> int:
|
||
"""Token Id -> Piece.
|
||
Uses the vocabulary in the provided context.
|
||
Does not write null terminator to the buffer.
|
||
User code is responsible to remove the leading whitespace of the first non-BOS token when decoding multiple tokens.
|
||
"""
|
||
...
|
||
|
||
|
||
llama_token_to_piece = _lib.llama_token_to_piece
|
||
llama_token_to_piece.argtypes = [llama_model_p_ctypes, llama_token, ctypes.c_char_p, ctypes.c_int32]
|
||
llama_token_to_piece.restype = ctypes.c_int32
|
||
|
||
|
||
# /// Apply chat template. Inspired by hf apply_chat_template() on python.
|
||
# /// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model"
|
||
# /// NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
|
||
# /// @param tmpl A Jinja template to use for this chat. If this is nullptr, the model’s default chat template will be used instead.
|
||
# /// @param chat Pointer to a list of multiple llama_chat_message
|
||
# /// @param n_msg Number of llama_chat_message in this chat
|
||
# /// @param add_ass Whether to end the prompt with the token(s) that indicate the start of an assistant message.
|
||
# /// @param buf A buffer to hold the output formatted prompt. The recommended alloc size is 2 * (total number of characters of all messages)
|
||
# /// @param length The size of the allocated buffer
|
||
# /// @return The total number of bytes of the formatted prompt. If is it larger than the size of buffer, you may need to re-alloc it and then re-apply the template.
|
||
# LLAMA_API int32_t llama_chat_apply_template(
|
||
# const struct llama_model * model,
|
||
# const char * tmpl,
|
||
# const struct llama_chat_message * chat,
|
||
# size_t n_msg,
|
||
# bool add_ass,
|
||
# char * buf,
|
||
# int32_t length);
|
||
def llama_chat_apply_template(
|
||
model: llama_model_p,
|
||
tmpl: bytes,
|
||
chat: "ctypes._Pointer[llama_chat_message]", # type: ignore
|
||
n_msg: int,
|
||
/
|
||
) -> int:
|
||
...
|
||
|
||
llama_chat_apply_template = _lib.llama_chat_apply_template
|
||
llama_chat_apply_template.argtypes = [
|
||
ctypes.c_void_p,
|
||
ctypes.c_char_p,
|
||
ctypes.POINTER(llama_chat_message),
|
||
ctypes.c_size_t
|
||
]
|
||
llama_chat_apply_template.restype = ctypes.c_int32
|
||
|
||
|
||
|
||
# //
|
||
# // Grammar
|
||
# //
|
||
|
||
|
||
# LLAMA_API struct llama_grammar * llama_grammar_init(
|
||
# const llama_grammar_element ** rules,
|
||
# size_t n_rules,
|
||
# size_t start_rule_index);
|
||
def llama_grammar_init(
|
||
rules, # type: Array[llama_grammar_element_p] # type: ignore
|
||
n_rules: Union[ctypes.c_size_t, int],
|
||
start_rule_index: Union[ctypes.c_size_t, int],
|
||
/
|
||
) -> llama_grammar_p:
|
||
"""Initialize a grammar from a set of rules."""
|
||
...
|
||
|
||
|
||
llama_grammar_init = _lib.llama_grammar_init
|
||
llama_grammar_init.argtypes = [
|
||
ctypes.POINTER(llama_grammar_element_p),
|
||
ctypes.c_size_t,
|
||
ctypes.c_size_t,
|
||
]
|
||
llama_grammar_init.restype = llama_grammar_p
|
||
|
||
|
||
# LLAMA_API void llama_grammar_free(struct llama_grammar * grammar);
|
||
def llama_grammar_free(grammar: llama_grammar_p, /):
|
||
"""Free a grammar."""
|
||
...
|
||
|
||
|
||
llama_grammar_free = _lib.llama_grammar_free
|
||
llama_grammar_free.argtypes = [llama_grammar_p]
|
||
llama_grammar_free.restype = None
|
||
|
||
|
||
# LLAMA_API struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar);
|
||
def llama_grammar_copy(grammar: llama_grammar_p, /) -> llama_grammar_p:
|
||
"""Copy a grammar."""
|
||
...
|
||
|
||
|
||
llama_grammar_copy = _lib.llama_grammar_copy
|
||
llama_grammar_copy.argtypes = [llama_grammar_p]
|
||
llama_grammar_copy.restype = llama_grammar_p
|
||
|
||
# //
|
||
# // Sampling functions
|
||
# //
|
||
|
||
|
||
# // Sets the current rng seed.
|
||
# LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed);
|
||
def llama_set_rng_seed(ctx: llama_context_p, seed: Union[ctypes.c_uint32, int], /):
|
||
"""Sets the current rng seed."""
|
||
...
|
||
|
||
|
||
llama_set_rng_seed = _lib.llama_set_rng_seed
|
||
llama_set_rng_seed.argtypes = [llama_context_p_ctypes, ctypes.c_uint32]
|
||
llama_set_rng_seed.restype = None
|
||
|
||
|
||
# /// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
|
||
# /// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
|
||
# LLAMA_API void llama_sample_repetition_penalties(
|
||
# struct llama_context * ctx,
|
||
# llama_token_data_array * candidates,
|
||
# const llama_token * last_tokens,
|
||
# size_t penalty_last_n,
|
||
# float penalty_repeat,
|
||
# float penalty_freq,
|
||
# float penalty_present);
|
||
def llama_sample_repetition_penalties(
|
||
ctx: llama_context_p,
|
||
candidates, # type: _Pointer[llama_token_data_array]
|
||
last_tokens_data, # type: Array[llama_token]
|
||
penalty_last_n: Union[ctypes.c_size_t, int],
|
||
penalty_repeat: Union[ctypes.c_float, float],
|
||
penalty_freq: Union[ctypes.c_float, float],
|
||
penalty_present: Union[ctypes.c_float, float],
|
||
/
|
||
):
|
||
"""Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
|
||
Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
|
||
"""
|
||
...
|
||
|
||
|
||
llama_sample_repetition_penalties = _lib.llama_sample_repetition_penalties
|
||
llama_sample_repetition_penalties.argtypes = [
|
||
llama_context_p_ctypes,
|
||
llama_token_data_array_p,
|
||
llama_token_p,
|
||
ctypes.c_size_t,
|
||
ctypes.c_float,
|
||
ctypes.c_float,
|
||
ctypes.c_float,
|
||
]
|
||
llama_sample_repetition_penalties.restype = None
|
||
|
||
|
||
# /// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
|
||
# /// @param logits Logits extracted from the original generation context.
|
||
# /// @param logits_guidance Logits extracted from a separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
|
||
# /// @param scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
|
||
# LLAMA_API void llama_sample_apply_guidance(
|
||
# struct llama_context * ctx,
|
||
# float * logits,
|
||
# float * logits_guidance,
|
||
# float scale);
|
||
def llama_sample_apply_guidance(
|
||
ctx: llama_context_p,
|
||
logits, # type: _Pointer[ctypes.c_float]
|
||
logits_guidance, # type: _Pointer[ctypes.c_float]
|
||
scale: Union[ctypes.c_float, float],
|
||
/
|
||
):
|
||
"""Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806"""
|
||
...
|
||
|
||
|
||
llama_sample_apply_guidance = _lib.llama_sample_apply_guidance
|
||
llama_sample_apply_guidance.argtypes = [
|
||
llama_context_p_ctypes,
|
||
c_float_p,
|
||
c_float_p,
|
||
ctypes.c_float,
|
||
]
|
||
llama_sample_apply_guidance.restype = None
|
||
|
||
|
||
# LLAMA_API DEPRECATED(void llama_sample_classifier_free_guidance(
|
||
# struct llama_context * ctx,
|
||
# llama_token_data_array * candidates,
|
||
# struct llama_context * guidance_ctx,
|
||
# float scale),
|
||
# "use llama_sample_apply_guidance() instead");
|
||
def llama_sample_classifier_free_guidance(
|
||
ctx: llama_context_p,
|
||
candidates, # type: _Pointer[llama_token_data_array]
|
||
guidance_ctx: llama_context_p,
|
||
scale: Union[ctypes.c_float, float],
|
||
/
|
||
):
|
||
"""Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806"""
|
||
...
|
||
|
||
|
||
llama_sample_classifier_free_guidance = _lib.llama_sample_classifier_free_guidance
|
||
llama_sample_classifier_free_guidance.argtypes = [
|
||
llama_context_p_ctypes,
|
||
llama_token_data_array_p,
|
||
llama_context_p_ctypes,
|
||
ctypes.c_float,
|
||
]
|
||
llama_sample_classifier_free_guidance.restype = None
|
||
|
||
|
||
# /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
|
||
# LLAMA_API void llama_sample_softmax(
|
||
# struct llama_context * ctx,
|
||
# llama_token_data_array * candidates);
|
||
def llama_sample_softmax(
|
||
ctx: llama_context_p, candidates, # type: _Pointer[llama_token_data]
|
||
/
|
||
):
|
||
"""Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits."""
|
||
...
|
||
|
||
|
||
llama_sample_softmax = _lib.llama_sample_softmax
|
||
llama_sample_softmax.argtypes = [
|
||
llama_context_p_ctypes,
|
||
llama_token_data_array_p,
|
||
]
|
||
llama_sample_softmax.restype = None
|
||
|
||
|
||
# /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
||
# LLAMA_API void llama_sample_top_k(
|
||
# struct llama_context * ctx,
|
||
# llama_token_data_array * candidates,
|
||
# int32_t k,
|
||
# size_t min_keep);
|
||
def llama_sample_top_k(
|
||
ctx: llama_context_p,
|
||
candidates, # type: _Pointer[llama_token_data_array]
|
||
k: Union[ctypes.c_int, int],
|
||
min_keep: Union[ctypes.c_size_t, int],
|
||
/
|
||
):
|
||
"""Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751"""
|
||
...
|
||
|
||
|
||
llama_sample_top_k = _lib.llama_sample_top_k
|
||
llama_sample_top_k.argtypes = [
|
||
llama_context_p_ctypes,
|
||
llama_token_data_array_p,
|
||
ctypes.c_int32,
|
||
ctypes.c_size_t,
|
||
]
|
||
llama_sample_top_k.restype = None
|
||
|
||
|
||
# /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
||
# LLAMA_API void llama_sample_top_p(
|
||
# struct llama_context * ctx,
|
||
# llama_token_data_array * candidates,
|
||
# float p,
|
||
# size_t min_keep);
|
||
def llama_sample_top_p(
|
||
ctx: llama_context_p,
|
||
candidates, # type: _Pointer[llama_token_data_array]
|
||
p: Union[ctypes.c_float, float],
|
||
min_keep: Union[ctypes.c_size_t, int],
|
||
/
|
||
):
|
||
"""Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751"""
|
||
...
|
||
|
||
|
||
llama_sample_top_p = _lib.llama_sample_top_p
|
||
llama_sample_top_p.argtypes = [
|
||
llama_context_p_ctypes,
|
||
llama_token_data_array_p,
|
||
ctypes.c_float,
|
||
ctypes.c_size_t,
|
||
]
|
||
llama_sample_top_p.restype = None
|
||
|
||
|
||
# /// @details Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
|
||
# LLAMA_API void llama_sample_min_p(
|
||
# struct llama_context * ctx,
|
||
# llama_token_data_array * candidates,
|
||
# float p,
|
||
# size_t min_keep);
|
||
def llama_sample_min_p(
|
||
ctx: llama_context_p,
|
||
candidates, # type: _Pointer[llama_token_data_array]
|
||
p: Union[ctypes.c_float, float],
|
||
min_keep: Union[ctypes.c_size_t, int],
|
||
/
|
||
):
|
||
"""Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841"""
|
||
...
|
||
|
||
|
||
llama_sample_min_p = _lib.llama_sample_min_p
|
||
llama_sample_min_p.argtypes = [
|
||
llama_context_p_ctypes,
|
||
llama_token_data_array_p,
|
||
ctypes.c_float,
|
||
ctypes.c_size_t,
|
||
]
|
||
llama_sample_min_p.restype = None
|
||
|
||
|
||
# /// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
|
||
# LLAMA_API void llama_sample_tail_free(
|
||
# struct llama_context * ctx,
|
||
# llama_token_data_array * candidates,
|
||
# float z,
|
||
# size_t min_keep);
|
||
def llama_sample_tail_free(
|
||
ctx: llama_context_p,
|
||
candidates, # type: _Pointer[llama_token_data_array]
|
||
z: Union[ctypes.c_float, float],
|
||
min_keep: Union[ctypes.c_size_t, int],
|
||
/
|
||
):
|
||
"""Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/."""
|
||
...
|
||
|
||
|
||
llama_sample_tail_free = _lib.llama_sample_tail_free
|
||
llama_sample_tail_free.argtypes = [
|
||
llama_context_p_ctypes,
|
||
llama_token_data_array_p,
|
||
ctypes.c_float,
|
||
ctypes.c_size_t,
|
||
]
|
||
llama_sample_tail_free.restype = None
|
||
|
||
|
||
# /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
|
||
# LLAMA_API void llama_sample_typical(
|
||
# struct llama_context * ctx,
|
||
# llama_token_data_array * candidates,
|
||
# float p,
|
||
# size_t min_keep);
|
||
def llama_sample_typical(
|
||
ctx: llama_context_p,
|
||
candidates, # type: _Pointer[llama_token_data_array]
|
||
p: Union[ctypes.c_float, float],
|
||
min_keep: Union[ctypes.c_size_t, int],
|
||
/
|
||
):
|
||
"""Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666."""
|
||
...
|
||
|
||
|
||
llama_sample_typical = _lib.llama_sample_typical
|
||
llama_sample_typical.argtypes = [
|
||
llama_context_p_ctypes,
|
||
llama_token_data_array_p,
|
||
ctypes.c_float,
|
||
ctypes.c_size_t,
|
||
]
|
||
llama_sample_typical.restype = None
|
||
|
||
|
||
# /// @details Dynamic temperature implementation described in the paper https://arxiv.org/abs/2309.02772.
|
||
# LLAMA_API void llama_sample_entropy(
|
||
# struct llama_context * ctx,
|
||
# llama_token_data_array * candidates_p,
|
||
# float min_temp,
|
||
# float max_temp,
|
||
# float exponent_val);
|
||
def llama_sample_entropy(
|
||
ctx: llama_context_p,
|
||
candidates, # type: _Pointer[llama_token_data_array]
|
||
min_temp: Union[ctypes.c_float, float],
|
||
max_temp: Union[ctypes.c_float, float],
|
||
exponent_val: Union[ctypes.c_float, float],
|
||
/
|
||
):
|
||
"""Dynamic temperature implementation described in the paper https://arxiv.org/abs/2309.02772."""
|
||
...
|
||
|
||
|
||
llama_sample_entropy = _lib.llama_sample_entropy
|
||
llama_sample_entropy.argtypes = [
|
||
llama_context_p_ctypes,
|
||
llama_token_data_array_p,
|
||
ctypes.c_float,
|
||
ctypes.c_float,
|
||
ctypes.c_float,
|
||
]
|
||
llama_sample_entropy.restype = None
|
||
|
||
|
||
# LLAMA_API void llama_sample_temp(
|
||
# struct llama_context * ctx,
|
||
# llama_token_data_array * candidates,
|
||
# float temp);
|
||
def llama_sample_temp(
|
||
ctx: llama_context_p,
|
||
candidates, # type: _Pointer[llama_token_data_array]
|
||
temp: Union[ctypes.c_float, float],
|
||
/
|
||
):
|
||
"""Temperature sampling described in academic paper "Generating Long Sequences with Sparse Transformers" https://arxiv.org/abs/1904.10509
|
||
|
||
Parameters:
|
||
candidates: A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
|
||
temp: The temperature value to use for the sampling. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
|
||
"""
|
||
...
|
||
|
||
|
||
llama_sample_temp = _lib.llama_sample_temp
|
||
llama_sample_temp.argtypes = [
|
||
llama_context_p_ctypes,
|
||
llama_token_data_array_p,
|
||
ctypes.c_float,
|
||
]
|
||
llama_sample_temp.restype = None
|
||
|
||
|
||
# LLAMA_API DEPRECATED(void llama_sample_temperature(
|
||
# struct llama_context * ctx,
|
||
# llama_token_data_array * candidates,
|
||
# float temp),
|
||
# "use llama_sample_temp instead");
|
||
def llama_sample_temperature(
|
||
ctx: llama_context_p,
|
||
candidates, # type: _Pointer[llama_token_data_array]
|
||
temp: Union[ctypes.c_float, float],
|
||
/
|
||
):
|
||
"""use llama_sample_temp instead"""
|
||
...
|
||
|
||
|
||
llama_sample_temperature = _lib.llama_sample_temperature
|
||
llama_sample_temperature.argtypes = [
|
||
llama_context_p_ctypes,
|
||
llama_token_data_array_p,
|
||
ctypes.c_float,
|
||
]
|
||
llama_sample_temperature.restype = None
|
||
|
||
|
||
# /// @details Apply constraints from grammar
|
||
# LLAMA_API void llama_sample_grammar(
|
||
# struct llama_context * ctx,
|
||
# llama_token_data_array * candidates,
|
||
# const struct llama_grammar * grammar);
|
||
def llama_sample_grammar(
|
||
ctx: llama_context_p,
|
||
candidates, # type: _Pointer[llama_token_data_array]
|
||
grammar, # type: llama_grammar_p
|
||
/
|
||
):
|
||
"""Apply constraints from grammar
|
||
|
||
Parameters:
|
||
candidates: A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
|
||
grammar: A grammar object containing the rules and constraints to apply to the generated text.
|
||
"""
|
||
...
|
||
|
||
|
||
llama_sample_grammar = _lib.llama_sample_grammar
|
||
llama_sample_grammar.argtypes = [
|
||
llama_context_p_ctypes,
|
||
llama_token_data_array_p,
|
||
llama_grammar_p,
|
||
]
|
||
llama_sample_grammar.restype = None
|
||
|
||
|
||
# /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
|
||
# /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
|
||
# /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
|
||
# /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
|
||
# /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
|
||
# /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
|
||
# LLAMA_API llama_token llama_sample_token_mirostat(
|
||
# struct llama_context * ctx,
|
||
# llama_token_data_array * candidates,
|
||
# float tau,
|
||
# float eta,
|
||
# int32_t m,
|
||
# float * mu);
|
||
def llama_sample_token_mirostat(
|
||
ctx: llama_context_p,
|
||
candidates, # type: _Pointer[llama_token_data_array]
|
||
tau: Union[ctypes.c_float, float],
|
||
eta: Union[ctypes.c_float, float],
|
||
m: Union[ctypes.c_int, int],
|
||
mu, # type: _Pointer[ctypes.c_float]
|
||
/
|
||
) -> int:
|
||
"""Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
|
||
|
||
Parameters:
|
||
candidates: A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
|
||
tau: The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
|
||
eta: The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
|
||
m: The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
|
||
mu: Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
|
||
"""
|
||
...
|
||
|
||
|
||
llama_sample_token_mirostat = _lib.llama_sample_token_mirostat
|
||
llama_sample_token_mirostat.argtypes = [
|
||
llama_context_p_ctypes,
|
||
llama_token_data_array_p,
|
||
ctypes.c_float,
|
||
ctypes.c_float,
|
||
ctypes.c_int32,
|
||
c_float_p,
|
||
]
|
||
llama_sample_token_mirostat.restype = llama_token
|
||
|
||
|
||
# /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
|
||
# /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
|
||
# /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
|
||
# /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
|
||
# /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
|
||
# LLAMA_API llama_token llama_sample_token_mirostat_v2(
|
||
# struct llama_context * ctx,
|
||
# llama_token_data_array * candidates,
|
||
# float tau,
|
||
# float eta,
|
||
# float * mu);
|
||
def llama_sample_token_mirostat_v2(
|
||
ctx: llama_context_p,
|
||
candidates, # type: _Pointer[llama_token_data_array]
|
||
tau: Union[ctypes.c_float, float],
|
||
eta: Union[ctypes.c_float, float],
|
||
mu, # type: _Pointer[ctypes.c_float]
|
||
/
|
||
) -> int:
|
||
"""Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
|
||
|
||
Parameters:
|
||
candidates: A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
|
||
tau: The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
|
||
eta: The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
|
||
mu: Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
|
||
"""
|
||
...
|
||
|
||
|
||
llama_sample_token_mirostat_v2 = _lib.llama_sample_token_mirostat_v2
|
||
llama_sample_token_mirostat_v2.argtypes = [
|
||
llama_context_p_ctypes,
|
||
llama_token_data_array_p,
|
||
ctypes.c_float,
|
||
ctypes.c_float,
|
||
c_float_p,
|
||
]
|
||
llama_sample_token_mirostat_v2.restype = llama_token
|
||
|
||
|
||
# /// @details Selects the token with the highest probability.
|
||
# /// Does not compute the token probabilities. Use llama_sample_softmax() instead.
|
||
# LLAMA_API llama_token llama_sample_token_greedy(
|
||
# struct llama_context * ctx,
|
||
# llama_token_data_array * candidates);
|
||
def llama_sample_token_greedy(
|
||
ctx: llama_context_p,
|
||
candidates, # type: _Pointer[llama_token_data_array]
|
||
/
|
||
) -> int:
|
||
"""Selects the token with the highest probability."""
|
||
...
|
||
|
||
|
||
llama_sample_token_greedy = _lib.llama_sample_token_greedy
|
||
llama_sample_token_greedy.argtypes = [
|
||
llama_context_p_ctypes,
|
||
llama_token_data_array_p,
|
||
]
|
||
llama_sample_token_greedy.restype = llama_token
|
||
|
||
|
||
# /// @details Randomly selects a token from the candidates based on their probabilities.
|
||
# LLAMA_API llama_token llama_sample_token(
|
||
# struct llama_context * ctx,
|
||
# llama_token_data_array * candidates);
|
||
def llama_sample_token(
|
||
ctx: llama_context_p,
|
||
candidates, # type: _Pointer[llama_token_data_array]
|
||
/
|
||
) -> int:
|
||
"""Randomly selects a token from the candidates based on their probabilities."""
|
||
...
|
||
|
||
|
||
llama_sample_token = _lib.llama_sample_token
|
||
llama_sample_token.argtypes = [
|
||
llama_context_p_ctypes,
|
||
llama_token_data_array_p,
|
||
]
|
||
llama_sample_token.restype = llama_token
|
||
|
||
|
||
# /// @details Accepts the sampled token into the grammar
|
||
# LLAMA_API void llama_grammar_accept_token(
|
||
# struct llama_context * ctx,
|
||
# struct llama_grammar * grammar,
|
||
# llama_token token);
|
||
def llama_grammar_accept_token(
|
||
ctx: llama_context_p,
|
||
grammar: llama_grammar_p,
|
||
token: Union[llama_token, int],
|
||
/
|
||
) -> None:
|
||
"""Accepts the sampled token into the grammar"""
|
||
...
|
||
|
||
|
||
llama_grammar_accept_token = _lib.llama_grammar_accept_token
|
||
llama_grammar_accept_token.argtypes = [
|
||
llama_context_p_ctypes,
|
||
llama_grammar_p,
|
||
llama_token,
|
||
]
|
||
llama_grammar_accept_token.restype = None
|
||
|
||
|
||
# //
|
||
# // Beam search
|
||
# //
|
||
|
||
# struct llama_beam_view {
|
||
# const llama_token * tokens;
|
||
|
||
|
||
# size_t n_tokens;
|
||
# float p; // Cumulative beam probability (renormalized relative to all beams)
|
||
# bool eob; // Callback should set this to true when a beam is at end-of-beam.
|
||
# };
|
||
class llama_beam_view(ctypes.Structure):
|
||
_fields_ = [
|
||
("tokens", llama_token_p),
|
||
("n_tokens", ctypes.c_size_t),
|
||
("p", ctypes.c_float),
|
||
("eob", ctypes.c_bool),
|
||
]
|
||
|
||
|
||
# // Passed to beam_search_callback function.
|
||
# // Whenever 0 < common_prefix_length, this number of tokens should be copied from any of the beams
|
||
# // (e.g. beams[0]) as they will be removed (shifted) from all beams in all subsequent callbacks.
|
||
# // These pointers are valid only during the synchronous callback, so should not be saved.
|
||
# struct llama_beams_state {
|
||
# struct llama_beam_view * beam_views;
|
||
# size_t n_beams; // Number of elements in beam_views[].
|
||
# size_t common_prefix_length; // Current max length of prefix tokens shared by all beams.
|
||
# bool last_call; // True iff this is the last callback invocation.
|
||
# };
|
||
class llama_beams_state(ctypes.Structure):
|
||
_fields_ = [
|
||
("beam_views", ctypes.POINTER(llama_beam_view)),
|
||
("n_beams", ctypes.c_size_t),
|
||
("common_prefix_length", ctypes.c_size_t),
|
||
("last_call", ctypes.c_bool),
|
||
]
|
||
|
||
|
||
# // Type of pointer to the beam_search_callback function.
|
||
# // void* callback_data is any custom data passed to llama_beam_search, that is subsequently
|
||
# // passed back to beam_search_callback. This avoids having to use global variables in the callback.
|
||
# typedef void (*llama_beam_search_callback_fn_t)(void * callback_data, struct llama_beams_state);
|
||
llama_beam_search_callback_fn_t = ctypes.CFUNCTYPE(None, ctypes.c_void_p, llama_beams_state)
|
||
|
||
|
||
# /// @details Deterministically returns entire sentence constructed by a beam search.
|
||
# /// @param ctx Pointer to the llama_context.
|
||
# /// @param callback Invoked for each iteration of the beam_search loop, passing in beams_state.
|
||
# /// @param callback_data A pointer that is simply passed back to callback.
|
||
# /// @param n_beams Number of beams to use.
|
||
# /// @param n_past Number of tokens already evaluated.
|
||
# /// @param n_predict Maximum number of tokens to predict. EOS may occur earlier.
|
||
# /// @param n_threads Number of threads as passed to llama_eval().
|
||
# LLAMA_API void llama_beam_search(
|
||
# struct llama_context * ctx,
|
||
# llama_beam_search_callback_fn_t callback,
|
||
# void * callback_data,
|
||
# size_t n_beams,
|
||
# int32_t n_past,
|
||
# int32_t n_predict);
|
||
def llama_beam_search(
|
||
ctx: llama_context_p,
|
||
callback: "ctypes._CFuncPtr[None, ctypes.c_void_p, llama_beams_state]", # type: ignore
|
||
callback_data: ctypes.c_void_p,
|
||
n_beams: Union[ctypes.c_size_t, int],
|
||
n_past: Union[ctypes.c_int, int],
|
||
n_predict: Union[ctypes.c_int, int],
|
||
/
|
||
):
|
||
...
|
||
|
||
|
||
llama_beam_search = _lib.llama_beam_search
|
||
llama_beam_search.argtypes = [
|
||
llama_context_p_ctypes,
|
||
llama_beam_search_callback_fn_t,
|
||
ctypes.c_void_p,
|
||
ctypes.c_size_t,
|
||
ctypes.c_int32,
|
||
ctypes.c_int32,
|
||
]
|
||
llama_beam_search.restype = None
|
||
|
||
|
||
# Performance information
|
||
|
||
|
||
# LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
|
||
def llama_get_timings(ctx: llama_context_p, /) -> llama_timings:
|
||
"""Get performance information"""
|
||
...
|
||
|
||
|
||
llama_get_timings = _lib.llama_get_timings
|
||
llama_get_timings.argtypes = [llama_context_p_ctypes]
|
||
llama_get_timings.restype = llama_timings
|
||
|
||
|
||
# LLAMA_API void llama_print_timings(struct llama_context * ctx);
|
||
def llama_print_timings(ctx: llama_context_p, /):
|
||
"""Print performance information"""
|
||
...
|
||
|
||
|
||
llama_print_timings = _lib.llama_print_timings
|
||
llama_print_timings.argtypes = [llama_context_p_ctypes]
|
||
llama_print_timings.restype = None
|
||
|
||
|
||
# LLAMA_API void llama_reset_timings(struct llama_context * ctx);
|
||
def llama_reset_timings(ctx: llama_context_p, /):
|
||
"""Reset performance information"""
|
||
...
|
||
|
||
|
||
llama_reset_timings = _lib.llama_reset_timings
|
||
llama_reset_timings.argtypes = [llama_context_p_ctypes]
|
||
llama_reset_timings.restype = None
|
||
|
||
|
||
# Print system information
|
||
# LLAMA_API const char * llama_print_system_info(void);
|
||
def llama_print_system_info() -> bytes:
|
||
"""Print system information"""
|
||
...
|
||
|
||
|
||
llama_print_system_info = _lib.llama_print_system_info
|
||
llama_print_system_info.argtypes = []
|
||
llama_print_system_info.restype = ctypes.c_char_p
|
||
|
||
|
||
# NOTE: THIS IS CURRENTLY BROKEN AS ggml_log_callback IS NOT EXPOSED IN LLAMA.H
|
||
# // Set callback for all future logging events.
|
||
# // If this is not called, or NULL is supplied, everything is output on stderr.
|
||
# LLAMA_API void llama_log_set(ggml_log_callback log_callback, void * user_data);
|
||
def llama_log_set(
|
||
log_callback: Union["ctypes._FuncPointer", ctypes.c_void_p], user_data: ctypes.c_void_p, # type: ignore
|
||
/
|
||
):
|
||
"""Set callback for all future logging events.
|
||
|
||
If this is not called, or NULL is supplied, everything is output on stderr."""
|
||
...
|
||
|
||
|
||
llama_log_set = _lib.llama_log_set
|
||
llama_log_set.argtypes = [ctypes.c_void_p, ctypes.c_void_p]
|
||
llama_log_set.restype = None
|
||
|
||
|
||
# LLAMA_API void llama_dump_timing_info_yaml(FILE * stream, const struct llama_context * ctx);
|
||
def llama_dump_timing_info_yaml(stream: ctypes.c_void_p, ctx: llama_context_p, /):
|
||
...
|
||
|
||
|
||
llama_dump_timing_info_yaml = _lib.llama_dump_timing_info_yaml
|
||
llama_dump_timing_info_yaml.argtypes = [ctypes.c_void_p, llama_context_p_ctypes]
|
||
llama_dump_timing_info_yaml.restype = None
|