027f7bc678
* Templates sometimes have BOS in them, remove duplicate * tokenize chat format prompts before completion This is to ensure that we don't duplicate any special tokens. Hopefully I amended the existing formats correctly? * updated comment * corrected a few * add some missing internals * proper bos/eos detection * just let tokenizer do the job * typo-- * align test with new response * changed to a warning * move to another PR * Use python warnings module --------- Co-authored-by: Andrei Betlen <abetlen@gmail.com>
2112 lines
84 KiB
Python
2112 lines
84 KiB
Python
from __future__ import annotations
|
|
|
|
import os
|
|
import sys
|
|
import uuid
|
|
import time
|
|
import json
|
|
import ctypes
|
|
import typing
|
|
import fnmatch
|
|
import warnings
|
|
import multiprocessing
|
|
|
|
from typing import (
|
|
List,
|
|
Optional,
|
|
Union,
|
|
Generator,
|
|
Sequence,
|
|
Iterator,
|
|
Deque,
|
|
Callable,
|
|
Dict,
|
|
)
|
|
from collections import deque
|
|
from pathlib import Path
|
|
|
|
|
|
from llama_cpp.llama_types import List
|
|
|
|
from .llama_types import *
|
|
from .llama_grammar import LlamaGrammar
|
|
from .llama_cache import (
|
|
BaseLlamaCache,
|
|
LlamaCache, # type: ignore
|
|
LlamaDiskCache, # type: ignore
|
|
LlamaRAMCache, # type: ignore
|
|
)
|
|
from .llama_tokenizer import BaseLlamaTokenizer, LlamaTokenizer
|
|
import llama_cpp.llama_cpp as llama_cpp
|
|
import llama_cpp.llama_chat_format as llama_chat_format
|
|
|
|
from llama_cpp.llama_speculative import LlamaDraftModel
|
|
|
|
import numpy as np
|
|
import numpy.typing as npt
|
|
|
|
from ._internals import (
|
|
_LlamaModel, # type: ignore
|
|
_LlamaContext, # type: ignore
|
|
_LlamaBatch, # type: ignore
|
|
_LlamaTokenDataArray, # type: ignore
|
|
_LlamaSamplingParams, # type: ignore
|
|
_LlamaSamplingContext, # type: ignore
|
|
_normalize_embedding, # type: ignore
|
|
)
|
|
from ._logger import set_verbose
|
|
from ._utils import suppress_stdout_stderr
|
|
|
|
|
|
class Llama:
|
|
"""High-level Python wrapper for a llama.cpp model."""
|
|
|
|
__backend_initialized = False
|
|
|
|
def __init__(
|
|
self,
|
|
model_path: str,
|
|
*,
|
|
# Model Params
|
|
n_gpu_layers: int = 0,
|
|
split_mode: int = llama_cpp.LLAMA_SPLIT_MODE_LAYER,
|
|
main_gpu: int = 0,
|
|
tensor_split: Optional[List[float]] = None,
|
|
vocab_only: bool = False,
|
|
use_mmap: bool = True,
|
|
use_mlock: bool = False,
|
|
kv_overrides: Optional[Dict[str, Union[bool, int, float, str]]] = None,
|
|
# Context Params
|
|
seed: int = llama_cpp.LLAMA_DEFAULT_SEED,
|
|
n_ctx: int = 512,
|
|
n_batch: int = 512,
|
|
n_threads: Optional[int] = None,
|
|
n_threads_batch: Optional[int] = None,
|
|
rope_scaling_type: Optional[int] = llama_cpp.LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
|
|
pooling_type: int = llama_cpp.LLAMA_POOLING_TYPE_UNSPECIFIED,
|
|
rope_freq_base: float = 0.0,
|
|
rope_freq_scale: float = 0.0,
|
|
yarn_ext_factor: float = -1.0,
|
|
yarn_attn_factor: float = 1.0,
|
|
yarn_beta_fast: float = 32.0,
|
|
yarn_beta_slow: float = 1.0,
|
|
yarn_orig_ctx: int = 0,
|
|
logits_all: bool = False,
|
|
embedding: bool = False,
|
|
offload_kqv: bool = True,
|
|
flash_attn: bool = False,
|
|
# Sampling Params
|
|
last_n_tokens_size: int = 64,
|
|
# LoRA Params
|
|
lora_base: Optional[str] = None,
|
|
lora_scale: float = 1.0,
|
|
lora_path: Optional[str] = None,
|
|
# Backend Params
|
|
numa: Union[bool, int] = False,
|
|
# Chat Format Params
|
|
chat_format: Optional[str] = None,
|
|
chat_handler: Optional[llama_chat_format.LlamaChatCompletionHandler] = None,
|
|
# Speculative Decoding
|
|
draft_model: Optional[LlamaDraftModel] = None,
|
|
# Tokenizer Override
|
|
tokenizer: Optional[BaseLlamaTokenizer] = None,
|
|
# KV cache quantization
|
|
type_k: Optional[int] = None,
|
|
type_v: Optional[int] = None,
|
|
# Misc
|
|
verbose: bool = True,
|
|
# Extra Params
|
|
**kwargs, # type: ignore
|
|
):
|
|
"""Load a llama.cpp model from `model_path`.
|
|
|
|
Examples:
|
|
Basic usage
|
|
|
|
>>> import llama_cpp
|
|
>>> model = llama_cpp.Llama(
|
|
... model_path="path/to/model",
|
|
... )
|
|
>>> print(model("The quick brown fox jumps ", stop=["."])["choices"][0]["text"])
|
|
the lazy dog
|
|
|
|
Loading a chat model
|
|
|
|
>>> import llama_cpp
|
|
>>> model = llama_cpp.Llama(
|
|
... model_path="path/to/model",
|
|
... chat_format="llama-2",
|
|
... )
|
|
>>> print(model.create_chat_completion(
|
|
... messages=[{
|
|
... "role": "user",
|
|
... "content": "what is the meaning of life?"
|
|
... }]
|
|
... ))
|
|
|
|
Args:
|
|
model_path: Path to the model.
|
|
n_gpu_layers: Number of layers to offload to GPU (-ngl). If -1, all layers are offloaded.
|
|
split_mode: How to split the model across GPUs. See llama_cpp.LLAMA_SPLIT_* for options.
|
|
main_gpu: main_gpu interpretation depends on split_mode: LLAMA_SPLIT_NONE: the GPU that is used for the entire model. LLAMA_SPLIT_ROW: the GPU that is used for small tensors and intermediate results. LLAMA_SPLIT_LAYER: ignored
|
|
tensor_split: How split tensors should be distributed across GPUs. If None, the model is not split.
|
|
vocab_only: Only load the vocabulary no weights.
|
|
use_mmap: Use mmap if possible.
|
|
use_mlock: Force the system to keep the model in RAM.
|
|
kv_overrides: Key-value overrides for the model.
|
|
seed: RNG seed, -1 for random
|
|
n_ctx: Text context, 0 = from model
|
|
n_batch: Prompt processing maximum batch size
|
|
n_threads: Number of threads to use for generation
|
|
n_threads_batch: Number of threads to use for batch processing
|
|
rope_scaling_type: RoPE scaling type, from `enum llama_rope_scaling_type`. ref: https://github.com/ggerganov/llama.cpp/pull/2054
|
|
pooling_type: Pooling type, from `enum llama_pooling_type`.
|
|
rope_freq_base: RoPE base frequency, 0 = from model
|
|
rope_freq_scale: RoPE frequency scaling factor, 0 = from model
|
|
yarn_ext_factor: YaRN extrapolation mix factor, negative = from model
|
|
yarn_attn_factor: YaRN magnitude scaling factor
|
|
yarn_beta_fast: YaRN low correction dim
|
|
yarn_beta_slow: YaRN high correction dim
|
|
yarn_orig_ctx: YaRN original context size
|
|
logits_all: Return logits for all tokens, not just the last token. Must be True for completion to return logprobs.
|
|
embedding: Embedding mode only.
|
|
offload_kqv: Offload K, Q, V to GPU.
|
|
flash_attn: Use flash attention.
|
|
last_n_tokens_size: Maximum number of tokens to keep in the last_n_tokens deque.
|
|
lora_base: Optional path to base model, useful if using a quantized base model and you want to apply LoRA to an f16 model.
|
|
lora_path: Path to a LoRA file to apply to the model.
|
|
numa: numa policy
|
|
chat_format: String specifying the chat format to use when calling create_chat_completion.
|
|
chat_handler: Optional chat handler to use when calling create_chat_completion.
|
|
draft_model: Optional draft model to use for speculative decoding.
|
|
tokenizer: Optional tokenizer to override the default tokenizer from llama.cpp.
|
|
verbose: Print verbose output to stderr.
|
|
type_k: KV cache data type for K (default: f16)
|
|
type_v: KV cache data type for V (default: f16)
|
|
|
|
Raises:
|
|
ValueError: If the model path does not exist.
|
|
|
|
Returns:
|
|
A Llama instance.
|
|
"""
|
|
self.verbose = verbose
|
|
|
|
set_verbose(verbose)
|
|
|
|
if not Llama.__backend_initialized:
|
|
with suppress_stdout_stderr(disable=verbose):
|
|
llama_cpp.llama_backend_init()
|
|
Llama.__backend_initialized = True
|
|
|
|
if isinstance(numa, bool):
|
|
self.numa = (
|
|
llama_cpp.GGML_NUMA_STRATEGY_DISTRIBUTE
|
|
if numa
|
|
else llama_cpp.GGML_NUMA_STRATEGY_DISABLED
|
|
)
|
|
else:
|
|
self.numa = numa
|
|
|
|
if self.numa != llama_cpp.GGML_NUMA_STRATEGY_DISABLED:
|
|
with suppress_stdout_stderr(disable=verbose):
|
|
llama_cpp.llama_numa_init(self.numa)
|
|
|
|
self.model_path = model_path
|
|
|
|
# Model Params
|
|
self.model_params = llama_cpp.llama_model_default_params()
|
|
self.model_params.n_gpu_layers = (
|
|
0x7FFFFFFF if n_gpu_layers == -1 else n_gpu_layers
|
|
) # 0x7FFFFFFF is INT32 max, will be auto set to all layers
|
|
self.model_params.split_mode = split_mode
|
|
self.model_params.main_gpu = main_gpu
|
|
self.tensor_split = tensor_split
|
|
self._c_tensor_split = None
|
|
if self.tensor_split is not None:
|
|
if len(self.tensor_split) > llama_cpp.LLAMA_MAX_DEVICES:
|
|
raise ValueError(
|
|
f"Attempt to split tensors that exceed maximum supported devices. Current LLAMA_MAX_DEVICES={llama_cpp.LLAMA_MAX_DEVICES}"
|
|
)
|
|
# Type conversion and expand the list to the length of LLAMA_MAX_DEVICES
|
|
FloatArray = ctypes.c_float * llama_cpp.LLAMA_MAX_DEVICES
|
|
self._c_tensor_split = FloatArray(
|
|
*tensor_split # type: ignore
|
|
) # keep a reference to the array so it is not gc'd
|
|
self.model_params.tensor_split = self._c_tensor_split
|
|
self.model_params.vocab_only = vocab_only
|
|
self.model_params.use_mmap = use_mmap if lora_path is None else False
|
|
self.model_params.use_mlock = use_mlock
|
|
|
|
# kv_overrides is the original python dict
|
|
self.kv_overrides = kv_overrides
|
|
if kv_overrides is not None:
|
|
# _kv_overrides_array is a ctypes.Array of llama_model_kv_override Structs
|
|
kvo_array_len = len(kv_overrides) + 1 # for sentinel element
|
|
self._kv_overrides_array = (
|
|
llama_cpp.llama_model_kv_override * kvo_array_len
|
|
)()
|
|
|
|
for i, (k, v) in enumerate(kv_overrides.items()):
|
|
self._kv_overrides_array[i].key = k.encode("utf-8")
|
|
if isinstance(v, bool):
|
|
self._kv_overrides_array[i].tag = llama_cpp.LLAMA_KV_OVERRIDE_TYPE_BOOL
|
|
self._kv_overrides_array[i].value.val_bool = v
|
|
elif isinstance(v, int):
|
|
self._kv_overrides_array[i].tag = llama_cpp.LLAMA_KV_OVERRIDE_TYPE_INT
|
|
self._kv_overrides_array[i].value.val_i64 = v
|
|
elif isinstance(v, float):
|
|
self._kv_overrides_array[i].tag = llama_cpp.LLAMA_KV_OVERRIDE_TYPE_FLOAT
|
|
self._kv_overrides_array[i].value.val_f64 = v
|
|
elif isinstance(v, str): # type: ignore
|
|
v_bytes = v.encode("utf-8")
|
|
if len(v_bytes) > 128: # TODO: Make this a constant
|
|
raise ValueError(f"Value for {k} is too long: {v}")
|
|
v_bytes = v_bytes.ljust(128, b"\0")
|
|
self._kv_overrides_array[i].tag = llama_cpp.LLAMA_KV_OVERRIDE_TYPE_STR
|
|
# copy min(v_bytes, 128) to str_value
|
|
address = typing.cast(int, ctypes.addressof(self._kv_overrides_array[i].value) + llama_cpp.llama_model_kv_override_value.val_str.offset)
|
|
buffer_start = ctypes.cast(address, ctypes.POINTER(ctypes.c_char))
|
|
ctypes.memmove(
|
|
buffer_start,
|
|
v_bytes,
|
|
128,
|
|
)
|
|
else:
|
|
raise ValueError(f"Unknown value type for {k}: {v}")
|
|
|
|
self._kv_overrides_array[-1].key = (
|
|
b"\0" # ensure sentinel element is zeroed
|
|
)
|
|
self.model_params.kv_overrides = self._kv_overrides_array
|
|
|
|
self.n_batch = min(n_ctx, n_batch) # ???
|
|
self.n_threads = n_threads or max(multiprocessing.cpu_count() // 2, 1)
|
|
self.n_threads_batch = n_threads_batch or multiprocessing.cpu_count()
|
|
|
|
# Context Params
|
|
self.context_params = llama_cpp.llama_context_default_params()
|
|
self.context_params.seed = seed
|
|
self.context_params.n_ctx = n_ctx
|
|
self.context_params.n_batch = self.n_batch
|
|
self.context_params.n_threads = self.n_threads
|
|
self.context_params.n_threads_batch = self.n_threads_batch
|
|
self.context_params.rope_scaling_type = (
|
|
rope_scaling_type
|
|
if rope_scaling_type is not None
|
|
else llama_cpp.LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED
|
|
)
|
|
self.context_params.pooling_type = pooling_type
|
|
self.context_params.rope_freq_base = (
|
|
rope_freq_base if rope_freq_base != 0.0 else 0
|
|
)
|
|
self.context_params.rope_freq_scale = (
|
|
rope_freq_scale if rope_freq_scale != 0.0 else 0
|
|
)
|
|
self.context_params.yarn_ext_factor = (
|
|
yarn_ext_factor if yarn_ext_factor != 0.0 else 0
|
|
)
|
|
self.context_params.yarn_attn_factor = (
|
|
yarn_attn_factor if yarn_attn_factor != 0.0 else 0
|
|
)
|
|
self.context_params.yarn_beta_fast = (
|
|
yarn_beta_fast if yarn_beta_fast != 0.0 else 0
|
|
)
|
|
self.context_params.yarn_beta_slow = (
|
|
yarn_beta_slow if yarn_beta_slow != 0.0 else 0
|
|
)
|
|
self.context_params.yarn_orig_ctx = yarn_orig_ctx if yarn_orig_ctx != 0 else 0
|
|
self.context_params.logits_all = (
|
|
logits_all if draft_model is None else True
|
|
) # Must be set to True for speculative decoding
|
|
self.context_params.embeddings = embedding # TODO: Rename to embeddings
|
|
self.context_params.offload_kqv = offload_kqv
|
|
self.context_params.flash_attn = flash_attn
|
|
# KV cache quantization
|
|
if type_k is not None:
|
|
self.context_params.type_k = type_k
|
|
if type_v is not None:
|
|
self.context_params.type_v = type_v
|
|
# Sampling Params
|
|
self.last_n_tokens_size = last_n_tokens_size
|
|
|
|
self.cache: Optional[BaseLlamaCache] = None
|
|
|
|
self.lora_base = lora_base
|
|
self.lora_scale = lora_scale
|
|
self.lora_path = lora_path
|
|
|
|
if not os.path.exists(model_path):
|
|
raise ValueError(f"Model path does not exist: {model_path}")
|
|
|
|
self._model = _LlamaModel(
|
|
path_model=self.model_path, params=self.model_params, verbose=self.verbose
|
|
)
|
|
|
|
# Override tokenizer
|
|
self.tokenizer_ = tokenizer or LlamaTokenizer(self)
|
|
|
|
# Set the default value for the context and correct the batch
|
|
if n_ctx == 0:
|
|
n_ctx = self._model.n_ctx_train()
|
|
self.n_batch = min(n_ctx, n_batch)
|
|
self.context_params.n_ctx = self._model.n_ctx_train()
|
|
self.context_params.n_batch = self.n_batch
|
|
|
|
self._ctx = _LlamaContext(
|
|
model=self._model,
|
|
params=self.context_params,
|
|
verbose=self.verbose,
|
|
)
|
|
|
|
self._batch = _LlamaBatch(
|
|
n_tokens=self.n_batch,
|
|
embd=0,
|
|
n_seq_max=self.context_params.n_ctx,
|
|
verbose=self.verbose,
|
|
)
|
|
|
|
if self.lora_path:
|
|
if self._model.apply_lora_from_file(
|
|
self.lora_path,
|
|
self.lora_scale,
|
|
self.lora_base,
|
|
self.n_threads,
|
|
):
|
|
raise RuntimeError(
|
|
f"Failed to apply LoRA from lora path: {self.lora_path} to base path: {self.lora_base}"
|
|
)
|
|
|
|
if self.verbose:
|
|
print(llama_cpp.llama_print_system_info().decode("utf-8"), file=sys.stderr)
|
|
|
|
self.chat_format = chat_format
|
|
self.chat_handler = chat_handler
|
|
self._chat_handlers: Dict[str, llama_chat_format.LlamaChatCompletionHandler] = {}
|
|
|
|
self.draft_model = draft_model
|
|
|
|
self._n_vocab = self.n_vocab()
|
|
self._n_ctx = self.n_ctx()
|
|
|
|
self._token_nl = self.token_nl()
|
|
self._token_eos = self.token_eos()
|
|
|
|
self._candidates = _LlamaTokenDataArray(n_vocab=self._n_vocab)
|
|
|
|
self.n_tokens = 0
|
|
self.input_ids: npt.NDArray[np.intc] = np.ndarray((n_ctx,), dtype=np.intc)
|
|
self.scores: npt.NDArray[np.single] = np.ndarray(
|
|
(n_ctx, self._n_vocab), dtype=np.single
|
|
)
|
|
|
|
self._mirostat_mu = ctypes.c_float(
|
|
2.0 * 5.0
|
|
) # TODO: Move this to sampling context
|
|
|
|
try:
|
|
self.metadata = self._model.metadata()
|
|
except Exception as e:
|
|
self.metadata = {}
|
|
if self.verbose:
|
|
print(f"Failed to load metadata: {e}", file=sys.stderr)
|
|
|
|
if self.verbose:
|
|
print(f"Model metadata: {self.metadata}", file=sys.stderr)
|
|
|
|
eos_token_id = self.token_eos()
|
|
bos_token_id = self.token_bos()
|
|
|
|
eos_token = self._model.token_get_text(eos_token_id) if eos_token_id != -1 else ""
|
|
bos_token = self._model.token_get_text(bos_token_id) if bos_token_id != -1 else ""
|
|
|
|
# Unfortunately the llama.cpp API does not return metadata arrays, so we can't get template names from tokenizer.chat_templates
|
|
template_choices = dict((name[10:], template) for name, template in self.metadata.items() if name.startswith("tokenizer.chat_template."))
|
|
|
|
if "tokenizer.chat_template" in self.metadata:
|
|
template_choices["chat_template.default"] = self.metadata["tokenizer.chat_template"]
|
|
|
|
if self.verbose and template_choices:
|
|
print(f"Available chat formats from metadata: {', '.join(template_choices.keys())}", file=sys.stderr)
|
|
|
|
for name, template in template_choices.items():
|
|
self._chat_handlers[name] = llama_chat_format.Jinja2ChatFormatter(
|
|
template=template,
|
|
eos_token=eos_token,
|
|
bos_token=bos_token,
|
|
stop_token_ids=[eos_token_id],
|
|
).to_chat_handler()
|
|
|
|
if (
|
|
self.chat_format is None
|
|
and self.chat_handler is None
|
|
and "chat_template.default" in template_choices
|
|
):
|
|
chat_format = llama_chat_format.guess_chat_format_from_gguf_metadata(
|
|
self.metadata
|
|
)
|
|
|
|
if chat_format is not None:
|
|
self.chat_format = chat_format
|
|
if self.verbose:
|
|
print(f"Guessed chat format: {chat_format}", file=sys.stderr)
|
|
else:
|
|
if self.verbose:
|
|
print(f"Using gguf chat template: {template_choices['chat_template.default']}", file=sys.stderr)
|
|
print(f"Using chat eos_token: {eos_token}", file=sys.stderr)
|
|
print(f"Using chat bos_token: {bos_token}", file=sys.stderr)
|
|
|
|
self.chat_format = "chat_template.default"
|
|
|
|
if self.chat_format is None and self.chat_handler is None:
|
|
self.chat_format = "llama-2"
|
|
if self.verbose:
|
|
print(f"Using fallback chat format: {self.chat_format}", file=sys.stderr)
|
|
|
|
@property
|
|
def ctx(self) -> llama_cpp.llama_context_p:
|
|
assert self._ctx.ctx is not None
|
|
return self._ctx.ctx
|
|
|
|
@property
|
|
def model(self) -> llama_cpp.llama_model_p:
|
|
assert self._model.model is not None
|
|
return self._model.model
|
|
|
|
@property
|
|
def _input_ids(self) -> npt.NDArray[np.intc]:
|
|
return self.input_ids[: self.n_tokens]
|
|
|
|
@property
|
|
def _scores(self) -> npt.NDArray[np.single]:
|
|
return self.scores[: self.n_tokens, :]
|
|
|
|
@property
|
|
def eval_tokens(self) -> Deque[int]:
|
|
return deque(self.input_ids[: self.n_tokens].tolist(), maxlen=self._n_ctx)
|
|
|
|
@property
|
|
def eval_logits(self) -> Deque[List[float]]:
|
|
return deque(
|
|
self.scores[: self.n_tokens, :].tolist(),
|
|
maxlen=self._n_ctx if self.context_params.logits_all else 1,
|
|
)
|
|
|
|
def tokenize(
|
|
self, text: bytes, add_bos: bool = True, special: bool = False
|
|
) -> List[int]:
|
|
"""Tokenize a string.
|
|
|
|
Args:
|
|
text: The utf-8 encoded string to tokenize.
|
|
|
|
Raises:
|
|
RuntimeError: If the tokenization failed.
|
|
|
|
Returns:
|
|
A list of tokens.
|
|
"""
|
|
return self.tokenizer_.tokenize(text, add_bos, special)
|
|
|
|
def detokenize(
|
|
self, tokens: List[int], prev_tokens: Optional[List[int]] = None
|
|
) -> bytes:
|
|
"""Detokenize a list of tokens.
|
|
|
|
Args:
|
|
tokens: The list of tokens to detokenize.
|
|
prev_tokens: The list of previous tokens. Offset mapping will be performed if provided
|
|
|
|
Returns:
|
|
The detokenized string.
|
|
"""
|
|
return self.tokenizer_.detokenize(tokens, prev_tokens=prev_tokens)
|
|
|
|
def set_cache(self, cache: Optional[BaseLlamaCache]):
|
|
"""Set the cache.
|
|
|
|
Args:
|
|
cache: The cache to set.
|
|
"""
|
|
self.cache = cache
|
|
|
|
def set_seed(self, seed: int):
|
|
"""Set the random seed.
|
|
|
|
Args:
|
|
seed: The random seed.
|
|
"""
|
|
assert self._ctx.ctx is not None
|
|
llama_cpp.llama_set_rng_seed(self._ctx.ctx, seed)
|
|
|
|
def reset(self):
|
|
"""Reset the model state."""
|
|
self.n_tokens = 0
|
|
|
|
def eval(self, tokens: Sequence[int]):
|
|
"""Evaluate a list of tokens.
|
|
|
|
Args:
|
|
tokens: The list of tokens to evaluate.
|
|
"""
|
|
assert self._ctx.ctx is not None
|
|
assert self._batch.batch is not None
|
|
self._ctx.kv_cache_seq_rm(-1, self.n_tokens, -1)
|
|
for i in range(0, len(tokens), self.n_batch):
|
|
batch = tokens[i : min(len(tokens), i + self.n_batch)]
|
|
n_past = self.n_tokens
|
|
n_tokens = len(batch)
|
|
self._batch.set_batch(
|
|
batch=batch, n_past=n_past, logits_all=self.context_params.logits_all
|
|
)
|
|
self._ctx.decode(self._batch)
|
|
# Save tokens
|
|
self.input_ids[n_past : n_past + n_tokens] = batch
|
|
# Save logits
|
|
if self.context_params.logits_all:
|
|
rows = n_tokens
|
|
cols = self._n_vocab
|
|
logits = np.ctypeslib.as_array(self._ctx.get_logits(), shape=(rows * cols, ))
|
|
self.scores[n_past : n_past + n_tokens, :].reshape(-1)[: :] = logits
|
|
else:
|
|
rows = 1
|
|
cols = self._n_vocab
|
|
logits = np.ctypeslib.as_array(self._ctx.get_logits(), shape=(rows * cols, ))
|
|
self.scores[n_past + n_tokens - 1, :].reshape(-1)[: :] = logits
|
|
# Update n_tokens
|
|
self.n_tokens += n_tokens
|
|
|
|
def sample(
|
|
self,
|
|
top_k: int = 40,
|
|
top_p: float = 0.95,
|
|
min_p: float = 0.05,
|
|
typical_p: float = 1.0,
|
|
temp: float = 0.80,
|
|
repeat_penalty: float = 1.1,
|
|
frequency_penalty: float = 0.0,
|
|
presence_penalty: float = 0.0,
|
|
tfs_z: float = 1.0,
|
|
mirostat_mode: int = 0,
|
|
mirostat_eta: float = 0.1,
|
|
mirostat_tau: float = 5.0,
|
|
penalize_nl: bool = True,
|
|
logits_processor: Optional[LogitsProcessorList] = None,
|
|
grammar: Optional[LlamaGrammar] = None,
|
|
idx: Optional[int] = None,
|
|
):
|
|
"""Sample a token from the model.
|
|
|
|
Args:
|
|
top_k: The top-k sampling parameter.
|
|
top_p: The top-p sampling parameter.
|
|
temp: The temperature parameter.
|
|
repeat_penalty: The repeat penalty parameter.
|
|
|
|
Returns:
|
|
The sampled token.
|
|
"""
|
|
assert self._ctx is not None
|
|
assert self.n_tokens > 0
|
|
|
|
if idx is None:
|
|
logits: npt.NDArray[np.single] = self._scores[-1, :]
|
|
else:
|
|
logits = self._scores[idx, :]
|
|
|
|
if logits_processor is not None:
|
|
logits[:] = (
|
|
logits_processor(self._input_ids, logits)
|
|
if idx is None
|
|
else logits_processor(self._input_ids[: idx + 1], logits)
|
|
)
|
|
|
|
sampling_params = _LlamaSamplingParams(
|
|
top_k=top_k,
|
|
top_p=top_p,
|
|
min_p=min_p,
|
|
tfs_z=tfs_z,
|
|
typical_p=typical_p,
|
|
temp=temp,
|
|
penalty_last_n=self.last_n_tokens_size,
|
|
penalty_repeat=repeat_penalty,
|
|
penalty_freq=frequency_penalty,
|
|
penalty_present=presence_penalty,
|
|
mirostat=mirostat_mode,
|
|
mirostat_tau=mirostat_tau,
|
|
mirostat_eta=mirostat_eta,
|
|
penalize_nl=penalize_nl,
|
|
)
|
|
sampling_context = _LlamaSamplingContext(
|
|
params=sampling_params,
|
|
grammar=grammar,
|
|
)
|
|
sampling_context.prev = list(self.eval_tokens)
|
|
id = sampling_context.sample(ctx_main=self._ctx, logits_array=logits)
|
|
sampling_context.accept(
|
|
ctx_main=self._ctx,
|
|
id=id,
|
|
apply_grammar=grammar is not None,
|
|
)
|
|
return id
|
|
|
|
def generate(
|
|
self,
|
|
tokens: Sequence[int],
|
|
top_k: int = 40,
|
|
top_p: float = 0.95,
|
|
min_p: float = 0.05,
|
|
typical_p: float = 1.0,
|
|
temp: float = 0.80,
|
|
repeat_penalty: float = 1.1,
|
|
reset: bool = True,
|
|
frequency_penalty: float = 0.0,
|
|
presence_penalty: float = 0.0,
|
|
tfs_z: float = 1.0,
|
|
mirostat_mode: int = 0,
|
|
mirostat_tau: float = 5.0,
|
|
mirostat_eta: float = 0.1,
|
|
penalize_nl: bool = True,
|
|
logits_processor: Optional[LogitsProcessorList] = None,
|
|
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
|
grammar: Optional[LlamaGrammar] = None,
|
|
) -> Generator[int, Optional[Sequence[int]], None]:
|
|
"""Create a generator of tokens from a prompt.
|
|
|
|
Examples:
|
|
>>> llama = Llama("models/ggml-7b.bin")
|
|
>>> tokens = llama.tokenize(b"Hello, world!")
|
|
>>> for token in llama.generate(tokens, top_k=40, top_p=0.95, temp=1.0, repeat_penalty=1.1):
|
|
... print(llama.detokenize([token]))
|
|
|
|
Args:
|
|
tokens: The prompt tokens.
|
|
top_k: The top-k sampling parameter.
|
|
top_p: The top-p sampling parameter.
|
|
temp: The temperature parameter.
|
|
repeat_penalty: The repeat penalty parameter.
|
|
reset: Whether to reset the model state.
|
|
|
|
Yields:
|
|
The generated tokens.
|
|
"""
|
|
# Reset mirostat sampling
|
|
self._mirostat_mu = ctypes.c_float(2.0 * mirostat_tau)
|
|
|
|
# Check for kv cache prefix match
|
|
if reset and self.n_tokens > 0:
|
|
longest_prefix = 0
|
|
for a, b in zip(self._input_ids, tokens[:-1]):
|
|
if a == b:
|
|
longest_prefix += 1
|
|
else:
|
|
break
|
|
if longest_prefix > 0:
|
|
if self.verbose:
|
|
print("Llama.generate: prefix-match hit", file=sys.stderr)
|
|
reset = False
|
|
tokens = tokens[longest_prefix:]
|
|
self.n_tokens = longest_prefix
|
|
|
|
# Reset the model state
|
|
if reset:
|
|
self.reset()
|
|
|
|
# Reset the grammar
|
|
if grammar is not None:
|
|
grammar.reset()
|
|
|
|
sample_idx = self.n_tokens + len(tokens) - 1
|
|
tokens = list(tokens)
|
|
|
|
# Eval and sample
|
|
while True:
|
|
self.eval(tokens)
|
|
while sample_idx < self.n_tokens:
|
|
token = self.sample(
|
|
top_k=top_k,
|
|
top_p=top_p,
|
|
min_p=min_p,
|
|
typical_p=typical_p,
|
|
temp=temp,
|
|
repeat_penalty=repeat_penalty,
|
|
frequency_penalty=frequency_penalty,
|
|
presence_penalty=presence_penalty,
|
|
tfs_z=tfs_z,
|
|
mirostat_mode=mirostat_mode,
|
|
mirostat_tau=mirostat_tau,
|
|
mirostat_eta=mirostat_eta,
|
|
logits_processor=logits_processor,
|
|
grammar=grammar,
|
|
penalize_nl=penalize_nl,
|
|
idx=sample_idx,
|
|
)
|
|
|
|
sample_idx += 1
|
|
if stopping_criteria is not None and stopping_criteria(
|
|
self._input_ids, self._scores[-1, :]
|
|
):
|
|
return
|
|
tokens_or_none = yield token
|
|
tokens.clear()
|
|
tokens.append(token)
|
|
if tokens_or_none is not None:
|
|
tokens.extend(tokens_or_none)
|
|
|
|
if sample_idx < self.n_tokens and token != self._input_ids[sample_idx]:
|
|
self.n_tokens = sample_idx
|
|
self._ctx.kv_cache_seq_rm(-1, self.n_tokens, -1)
|
|
break
|
|
|
|
if self.draft_model is not None:
|
|
self.input_ids[self.n_tokens : self.n_tokens + len(tokens)] = tokens
|
|
draft_tokens = self.draft_model(
|
|
self.input_ids[: self.n_tokens + len(tokens)]
|
|
)
|
|
tokens.extend(
|
|
draft_tokens.astype(int)[
|
|
: self._n_ctx - self.n_tokens - len(tokens)
|
|
]
|
|
)
|
|
|
|
def create_embedding(
|
|
self, input: Union[str, List[str]], model: Optional[str] = None
|
|
) -> CreateEmbeddingResponse:
|
|
"""Embed a string.
|
|
|
|
Args:
|
|
input: The utf-8 encoded string to embed.
|
|
|
|
Returns:
|
|
An embedding object.
|
|
"""
|
|
assert self._model.model is not None
|
|
model_name: str = model if model is not None else self.model_path
|
|
|
|
input = input if isinstance(input, list) else [input]
|
|
|
|
# get numeric embeddings
|
|
embeds: Union[List[List[float]], List[List[List[float]]]]
|
|
total_tokens: int
|
|
embeds, total_tokens = self.embed(input, return_count=True) # type: ignore
|
|
|
|
# convert to CreateEmbeddingResponse
|
|
data: List[Embedding] = [
|
|
{
|
|
"object": "embedding",
|
|
"embedding": emb,
|
|
"index": idx,
|
|
}
|
|
for idx, emb in enumerate(embeds)
|
|
]
|
|
|
|
return {
|
|
"object": "list",
|
|
"data": data,
|
|
"model": model_name,
|
|
"usage": {
|
|
"prompt_tokens": total_tokens,
|
|
"total_tokens": total_tokens,
|
|
},
|
|
}
|
|
|
|
def embed(
|
|
self,
|
|
input: Union[str, List[str]],
|
|
normalize: bool = False,
|
|
truncate: bool = True,
|
|
return_count: bool = False,
|
|
):
|
|
"""Embed a string.
|
|
|
|
Args:
|
|
input: The utf-8 encoded string to embed.
|
|
|
|
Returns:
|
|
A list of embeddings
|
|
"""
|
|
assert self._ctx.ctx is not None
|
|
n_embd = self.n_embd()
|
|
n_batch = self.n_batch
|
|
|
|
# get pooling information
|
|
pooling_type = self.pooling_type()
|
|
logits_all = pooling_type == llama_cpp.LLAMA_POOLING_TYPE_NONE
|
|
|
|
if self.context_params.embeddings == False:
|
|
raise RuntimeError(
|
|
"Llama model must be created with embedding=True to call this method"
|
|
)
|
|
|
|
if self.verbose:
|
|
llama_cpp.llama_reset_timings(self._ctx.ctx)
|
|
|
|
if isinstance(input, str):
|
|
inputs = [input]
|
|
else:
|
|
inputs = input
|
|
|
|
# reset batch
|
|
self._batch.reset()
|
|
|
|
# decode and fetch embeddings
|
|
data: Union[List[List[float]], List[List[List[float]]]] = []
|
|
|
|
def decode_batch(seq_sizes: List[int]):
|
|
assert self._ctx.ctx is not None
|
|
llama_cpp.llama_kv_cache_clear(self._ctx.ctx)
|
|
self._ctx.decode(self._batch)
|
|
self._batch.reset()
|
|
|
|
# store embeddings
|
|
if pooling_type == llama_cpp.LLAMA_POOLING_TYPE_NONE:
|
|
pos: int = 0
|
|
for i, size in enumerate(seq_sizes):
|
|
ptr = llama_cpp.llama_get_embeddings(self._ctx.ctx)
|
|
embedding: List[List[float]] = [
|
|
ptr[pos + j * n_embd : pos + (j + 1) * n_embd] for j in range(size)
|
|
]
|
|
if normalize:
|
|
embedding = [_normalize_embedding(e) for e in embedding]
|
|
data.append(embedding)
|
|
pos += size
|
|
else:
|
|
for i in range(len(seq_sizes)):
|
|
ptr = llama_cpp.llama_get_embeddings_seq(self._ctx.ctx, i)
|
|
embedding: List[float] = ptr[:n_embd]
|
|
if normalize:
|
|
embedding = _normalize_embedding(embedding)
|
|
data.append(embedding)
|
|
|
|
# init state
|
|
total_tokens = 0
|
|
s_batch = []
|
|
t_batch = 0
|
|
p_batch = 0
|
|
|
|
# accumulate batches and encode
|
|
for text in inputs:
|
|
tokens = self.tokenize(text.encode("utf-8"))
|
|
if truncate:
|
|
tokens = tokens[:n_batch]
|
|
|
|
n_tokens = len(tokens)
|
|
total_tokens += n_tokens
|
|
|
|
# check for overrun
|
|
if n_tokens > n_batch:
|
|
raise ValueError(
|
|
f"Requested tokens ({n_tokens}) exceed batch size of {n_batch}"
|
|
)
|
|
|
|
# time to eval batch
|
|
if t_batch + n_tokens > n_batch:
|
|
decode_batch(s_batch)
|
|
s_batch = []
|
|
t_batch = 0
|
|
p_batch = 0
|
|
|
|
# add to batch
|
|
self._batch.add_sequence(tokens, p_batch, logits_all)
|
|
|
|
# update batch stats
|
|
s_batch.append(n_tokens)
|
|
t_batch += n_tokens
|
|
p_batch += 1
|
|
|
|
# hanlde last batch
|
|
decode_batch(s_batch)
|
|
|
|
if self.verbose:
|
|
llama_cpp.llama_print_timings(self._ctx.ctx)
|
|
|
|
output = data[0] if isinstance(input, str) else data
|
|
|
|
llama_cpp.llama_kv_cache_clear(self._ctx.ctx)
|
|
self.reset()
|
|
|
|
if return_count:
|
|
return output, total_tokens
|
|
else:
|
|
return output
|
|
|
|
def _create_completion(
|
|
self,
|
|
prompt: Union[str, List[int]],
|
|
suffix: Optional[str] = None,
|
|
max_tokens: Optional[int] = 16,
|
|
temperature: float = 0.8,
|
|
top_p: float = 0.95,
|
|
min_p: float = 0.05,
|
|
typical_p: float = 1.0,
|
|
logprobs: Optional[int] = None,
|
|
echo: bool = False,
|
|
stop: Optional[Union[str, List[str]]] = [],
|
|
frequency_penalty: float = 0.0,
|
|
presence_penalty: float = 0.0,
|
|
repeat_penalty: float = 1.1,
|
|
top_k: int = 40,
|
|
stream: bool = False,
|
|
seed: Optional[int] = None,
|
|
tfs_z: float = 1.0,
|
|
mirostat_mode: int = 0,
|
|
mirostat_tau: float = 5.0,
|
|
mirostat_eta: float = 0.1,
|
|
model: Optional[str] = None,
|
|
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
|
logits_processor: Optional[LogitsProcessorList] = None,
|
|
grammar: Optional[LlamaGrammar] = None,
|
|
logit_bias: Optional[Dict[str, float]] = None,
|
|
) -> Union[
|
|
Iterator[CreateCompletionResponse], Iterator[CreateCompletionStreamResponse]
|
|
]:
|
|
assert self._ctx is not None
|
|
assert suffix is None or suffix.__class__ is str
|
|
|
|
completion_id: str = f"cmpl-{str(uuid.uuid4())}"
|
|
created: int = int(time.time())
|
|
prefix_token_id: int = self._model.token_prefix()
|
|
middle_token_id: int = self._model.token_middle()
|
|
suffix_token_id: int = self._model.token_suffix()
|
|
# If prompt is empty, initialize completion with BOS token to avoid
|
|
# detokenization including a space at the beginning of the completion
|
|
completion_tokens: List[int] = [] if len(prompt) > 0 else [self.token_bos()]
|
|
# Add blank space to start of prompt to match OG llama tokenizer
|
|
prompt_tokens: List[int] = (
|
|
(
|
|
[prefix_token_id]
|
|
if prefix_token_id >= 0 and suffix is not None
|
|
else []
|
|
)
|
|
+
|
|
(
|
|
(
|
|
self.tokenize(prompt.encode("utf-8"), add_bos=(prefix_token_id < 0 or suffix is None), special=(prefix_token_id < 0 or suffix is None))
|
|
if prompt != ""
|
|
else (
|
|
[]
|
|
if prefix_token_id >= 0 and suffix is not None
|
|
else [self.token_bos()]
|
|
)
|
|
)
|
|
if isinstance(prompt, str)
|
|
else prompt
|
|
)
|
|
+
|
|
(
|
|
(
|
|
[suffix_token_id]
|
|
+
|
|
(
|
|
self.tokenize(suffix.encode("utf-8"), add_bos=False, special=False)
|
|
if suffix
|
|
else []
|
|
)
|
|
)
|
|
if suffix_token_id >= 0 and suffix is not None
|
|
else []
|
|
)
|
|
+
|
|
(
|
|
[middle_token_id]
|
|
if middle_token_id >= 0 and suffix is not None
|
|
else []
|
|
)
|
|
)
|
|
text: bytes = b""
|
|
returned_tokens: int = 0
|
|
stop = (
|
|
stop if isinstance(stop, list) else [stop] if isinstance(stop, str) else []
|
|
)
|
|
model_name: str = model if model is not None else self.model_path
|
|
|
|
if prompt_tokens[:2] == [self.token_bos()] * 2:
|
|
warnings.warn(
|
|
f'Detected duplicate leading "{self._model.token_get_text(self.token_bos())}" in prompt, this will likely reduce response quality, consider removing it...',
|
|
RuntimeWarning,
|
|
)
|
|
|
|
# NOTE: This likely doesn't work correctly for the first token in the prompt
|
|
# because of the extra space added to the start of the prompt_tokens
|
|
if logit_bias is not None:
|
|
logit_bias_map = {int(k): float(v) for k, v in logit_bias.items()}
|
|
|
|
def logit_bias_processor(
|
|
input_ids: npt.NDArray[np.intc],
|
|
scores: npt.NDArray[np.single],
|
|
) -> npt.NDArray[np.single]:
|
|
new_scores = np.copy(
|
|
scores
|
|
) # Does it make sense to copy the whole array or can we just overwrite the original one?
|
|
for input_id, score in logit_bias_map.items():
|
|
new_scores[input_id] = score + scores[input_id]
|
|
return new_scores
|
|
|
|
_logit_bias_processor = LogitsProcessorList([logit_bias_processor])
|
|
if logits_processor is None:
|
|
logits_processor = _logit_bias_processor
|
|
else:
|
|
logits_processor = logits_processor.extend(_logit_bias_processor)
|
|
|
|
if self.verbose:
|
|
self._ctx.reset_timings()
|
|
|
|
if len(prompt_tokens) >= self._n_ctx:
|
|
raise ValueError(
|
|
f"Requested tokens ({len(prompt_tokens)}) exceed context window of {llama_cpp.llama_n_ctx(self.ctx)}"
|
|
)
|
|
|
|
if max_tokens is None or max_tokens <= 0:
|
|
# Unlimited, depending on n_ctx.
|
|
max_tokens = self._n_ctx - len(prompt_tokens)
|
|
|
|
# Truncate max_tokens if requested tokens would exceed the context window
|
|
max_tokens = (
|
|
max_tokens
|
|
if max_tokens + len(prompt_tokens) < self._n_ctx
|
|
else (self._n_ctx - len(prompt_tokens))
|
|
)
|
|
|
|
if stop != []:
|
|
stop_sequences = [s.encode("utf-8") for s in stop]
|
|
else:
|
|
stop_sequences = []
|
|
|
|
if logprobs is not None and self.context_params.logits_all is False:
|
|
raise ValueError(
|
|
"logprobs is not supported for models created with logits_all=False"
|
|
)
|
|
|
|
if self.cache:
|
|
try:
|
|
cache_item = self.cache[prompt_tokens]
|
|
cache_prefix_len = Llama.longest_token_prefix(
|
|
cache_item.input_ids.tolist(), prompt_tokens
|
|
)
|
|
eval_prefix_len = Llama.longest_token_prefix(
|
|
self._input_ids.tolist(), prompt_tokens
|
|
)
|
|
if cache_prefix_len > eval_prefix_len:
|
|
self.load_state(cache_item)
|
|
if self.verbose:
|
|
print("Llama._create_completion: cache hit", file=sys.stderr)
|
|
except KeyError:
|
|
if self.verbose:
|
|
print("Llama._create_completion: cache miss", file=sys.stderr)
|
|
|
|
if seed is not None:
|
|
self._ctx.set_rng_seed(seed)
|
|
|
|
finish_reason = "length"
|
|
multibyte_fix = 0
|
|
for token in self.generate(
|
|
prompt_tokens,
|
|
top_k=top_k,
|
|
top_p=top_p,
|
|
min_p=min_p,
|
|
typical_p=typical_p,
|
|
temp=temperature,
|
|
tfs_z=tfs_z,
|
|
mirostat_mode=mirostat_mode,
|
|
mirostat_tau=mirostat_tau,
|
|
mirostat_eta=mirostat_eta,
|
|
frequency_penalty=frequency_penalty,
|
|
presence_penalty=presence_penalty,
|
|
repeat_penalty=repeat_penalty,
|
|
stopping_criteria=stopping_criteria,
|
|
logits_processor=logits_processor,
|
|
grammar=grammar,
|
|
):
|
|
assert self._model.model is not None
|
|
if llama_cpp.llama_token_is_eog(self._model.model, token):
|
|
text = self.detokenize(completion_tokens, prev_tokens=prompt_tokens)
|
|
finish_reason = "stop"
|
|
break
|
|
|
|
completion_tokens.append(token)
|
|
|
|
all_text = self.detokenize(completion_tokens, prev_tokens=prompt_tokens)
|
|
|
|
# Contains multi-byte UTF8
|
|
for k, char in enumerate(all_text[-3:]):
|
|
k = 3 - k
|
|
for num, pattern in [(2, 192), (3, 224), (4, 240)]:
|
|
# Bitwise AND check
|
|
if num > k and pattern & char == pattern:
|
|
multibyte_fix = num - k
|
|
|
|
# Stop incomplete bytes from passing
|
|
if multibyte_fix > 0:
|
|
multibyte_fix -= 1
|
|
continue
|
|
|
|
any_stop = [s for s in stop_sequences if s in all_text]
|
|
if len(any_stop) > 0:
|
|
first_stop = any_stop[0]
|
|
text = all_text[: all_text.index(first_stop)]
|
|
finish_reason = "stop"
|
|
break
|
|
|
|
if stream:
|
|
remaining_tokens = completion_tokens[returned_tokens:]
|
|
remaining_text = self.detokenize(remaining_tokens, prev_tokens=prompt_tokens + completion_tokens[:returned_tokens])
|
|
remaining_length = len(remaining_text)
|
|
|
|
# We want to avoid yielding any characters from
|
|
# the generated text if they are part of a stop
|
|
# sequence.
|
|
first_stop_position = 0
|
|
for s in stop_sequences:
|
|
for i in range(min(len(s), remaining_length), 0, -1):
|
|
if remaining_text.endswith(s[:i]):
|
|
if i > first_stop_position:
|
|
first_stop_position = i
|
|
break
|
|
|
|
token_end_position = 0
|
|
|
|
if logprobs is not None:
|
|
# not sure how to handle this branch when dealing
|
|
# with CJK output, so keep it unchanged
|
|
for token in remaining_tokens:
|
|
if token == self.token_bos():
|
|
continue
|
|
token_end_position += len(self.detokenize([token], prev_tokens=prompt_tokens + completion_tokens[:returned_tokens]))
|
|
# Check if stop sequence is in the token
|
|
if token_end_position > (
|
|
remaining_length - first_stop_position
|
|
):
|
|
break
|
|
token_str = self.detokenize([token], prev_tokens=prompt_tokens + completion_tokens[:returned_tokens]).decode(
|
|
"utf-8", errors="ignore"
|
|
)
|
|
text_offset = len(prompt) + len(
|
|
self.detokenize(completion_tokens[:returned_tokens], prev_tokens=prompt_tokens + completion_tokens[:returned_tokens]).decode(
|
|
"utf-8", errors="ignore"
|
|
)
|
|
)
|
|
token_offset = len(prompt_tokens) + returned_tokens
|
|
logits = self._scores[token_offset - 1, :]
|
|
current_logprobs = Llama.logits_to_logprobs(logits).tolist()
|
|
sorted_logprobs = list(
|
|
sorted(
|
|
zip(current_logprobs, range(len(current_logprobs))),
|
|
reverse=True,
|
|
)
|
|
)
|
|
top_logprob = {
|
|
self.detokenize([i]).decode(
|
|
"utf-8", errors="ignore"
|
|
): logprob
|
|
for logprob, i in sorted_logprobs[:logprobs]
|
|
}
|
|
top_logprob.update({token_str: current_logprobs[int(token)]})
|
|
logprobs_or_none = {
|
|
"tokens": [
|
|
self.detokenize([token], prev_tokens=prompt_tokens + completion_tokens[:returned_tokens]).decode(
|
|
"utf-8", errors="ignore"
|
|
)
|
|
],
|
|
"text_offset": [text_offset],
|
|
"token_logprobs": [current_logprobs[int(token)]],
|
|
"top_logprobs": [top_logprob],
|
|
}
|
|
returned_tokens += 1
|
|
yield {
|
|
"id": completion_id,
|
|
"object": "text_completion",
|
|
"created": created,
|
|
"model": model_name,
|
|
"choices": [
|
|
{
|
|
"text": self.detokenize([token], prev_tokens=prompt_tokens + completion_tokens[:returned_tokens]).decode(
|
|
"utf-8", errors="ignore"
|
|
),
|
|
"index": 0,
|
|
"logprobs": logprobs_or_none,
|
|
"finish_reason": None,
|
|
}
|
|
],
|
|
}
|
|
else:
|
|
while len(remaining_tokens) > 0:
|
|
decode_success = False
|
|
for i in range(1, len(remaining_tokens) + 1):
|
|
try:
|
|
bs = self.detokenize(remaining_tokens[:i], prev_tokens=prompt_tokens + completion_tokens[:returned_tokens])
|
|
ts = bs.decode("utf-8")
|
|
decode_success = True
|
|
break
|
|
except UnicodeError:
|
|
pass
|
|
else:
|
|
break
|
|
if not decode_success:
|
|
# all remaining tokens cannot be decoded to a UTF-8 character
|
|
break
|
|
token_end_position += len(bs)
|
|
if token_end_position > (
|
|
remaining_length - first_stop_position
|
|
):
|
|
break
|
|
remaining_tokens = remaining_tokens[i:]
|
|
returned_tokens += i
|
|
|
|
yield {
|
|
"id": completion_id,
|
|
"object": "text_completion",
|
|
"created": created,
|
|
"model": model_name,
|
|
"choices": [
|
|
{
|
|
"text": ts,
|
|
"index": 0,
|
|
"logprobs": None,
|
|
"finish_reason": None,
|
|
}
|
|
],
|
|
}
|
|
|
|
if len(completion_tokens) >= max_tokens:
|
|
text = self.detokenize(completion_tokens, prev_tokens=prompt_tokens)
|
|
finish_reason = "length"
|
|
break
|
|
|
|
if stopping_criteria is not None and stopping_criteria(
|
|
self._input_ids, self._scores[-1, :]
|
|
):
|
|
text = self.detokenize(completion_tokens, prev_tokens=prompt_tokens)
|
|
finish_reason = "stop"
|
|
|
|
if self.verbose:
|
|
self._ctx.print_timings()
|
|
|
|
if stream:
|
|
remaining_tokens = completion_tokens[returned_tokens:]
|
|
all_text = self.detokenize(remaining_tokens, prev_tokens=prompt_tokens + completion_tokens[:returned_tokens])
|
|
any_stop = [s for s in stop_sequences if s in all_text]
|
|
if len(any_stop) > 0:
|
|
end = min(all_text.index(stop) for stop in any_stop)
|
|
else:
|
|
end = len(all_text)
|
|
|
|
token_end_position = 0
|
|
for token in remaining_tokens:
|
|
token_end_position += len(self.detokenize([token], prev_tokens=prompt_tokens + completion_tokens[:returned_tokens]))
|
|
|
|
logprobs_or_none: Optional[CompletionLogprobs] = None
|
|
if logprobs is not None:
|
|
if token == self.token_bos():
|
|
continue
|
|
token_str = self.detokenize([token]).decode(
|
|
"utf-8", errors="ignore"
|
|
)
|
|
text_offset = len(prompt) + len(
|
|
self.detokenize(completion_tokens[:returned_tokens], prev_tokens=prompt_tokens + completion_tokens[:returned_tokens])
|
|
)
|
|
token_offset = len(prompt_tokens) + returned_tokens - 1
|
|
logits = self._scores[token_offset, :]
|
|
current_logprobs = Llama.logits_to_logprobs(logits).tolist()
|
|
sorted_logprobs = list(
|
|
sorted(
|
|
zip(current_logprobs, range(len(current_logprobs))),
|
|
reverse=True,
|
|
)
|
|
)
|
|
top_logprob = {
|
|
self.detokenize([i]).decode("utf-8", errors="ignore"): logprob
|
|
for logprob, i in sorted_logprobs[:logprobs]
|
|
}
|
|
top_logprob.update({token_str: current_logprobs[int(token)]})
|
|
logprobs_or_none = {
|
|
"tokens": [
|
|
self.detokenize([token]).decode("utf-8", errors="ignore")
|
|
],
|
|
"text_offset": [text_offset],
|
|
"token_logprobs": [current_logprobs[int(token)]],
|
|
"top_logprobs": [top_logprob],
|
|
}
|
|
|
|
if token_end_position >= end:
|
|
last_text = self.detokenize([token])
|
|
if token_end_position == end - 1:
|
|
break
|
|
returned_tokens += 1
|
|
yield {
|
|
"id": completion_id,
|
|
"object": "text_completion",
|
|
"created": created,
|
|
"model": model_name,
|
|
"choices": [
|
|
{
|
|
"text": last_text[
|
|
: len(last_text) - (token_end_position - end)
|
|
].decode("utf-8", errors="ignore"),
|
|
"index": 0,
|
|
"logprobs": logprobs_or_none,
|
|
"finish_reason": None,
|
|
}
|
|
],
|
|
}
|
|
break
|
|
returned_tokens += 1
|
|
yield {
|
|
"id": completion_id,
|
|
"object": "text_completion",
|
|
"created": created,
|
|
"model": model_name,
|
|
"choices": [
|
|
{
|
|
"text": self.detokenize([token]).decode(
|
|
"utf-8", errors="ignore"
|
|
),
|
|
"index": 0,
|
|
"logprobs": logprobs_or_none,
|
|
"finish_reason": None,
|
|
}
|
|
],
|
|
}
|
|
yield {
|
|
"id": completion_id,
|
|
"object": "text_completion",
|
|
"created": created,
|
|
"model": model_name,
|
|
"choices": [
|
|
{
|
|
"text": "",
|
|
"index": 0,
|
|
"logprobs": None,
|
|
"finish_reason": finish_reason,
|
|
}
|
|
],
|
|
}
|
|
if self.cache:
|
|
if self.verbose:
|
|
print("Llama._create_completion: cache save", file=sys.stderr)
|
|
self.cache[prompt_tokens + completion_tokens] = self.save_state()
|
|
print("Llama._create_completion: cache saved", file=sys.stderr)
|
|
return
|
|
|
|
if self.cache:
|
|
if self.verbose:
|
|
print("Llama._create_completion: cache save", file=sys.stderr)
|
|
self.cache[prompt_tokens + completion_tokens] = self.save_state()
|
|
|
|
text_str = text.decode("utf-8", errors="ignore")
|
|
|
|
if echo:
|
|
text_str = prompt + text_str
|
|
|
|
if suffix_token_id < 0 and suffix is not None:
|
|
text_str = text_str + suffix
|
|
|
|
logprobs_or_none: Optional[CompletionLogprobs] = None
|
|
if logprobs is not None:
|
|
text_offset = 0 if echo else len(prompt)
|
|
token_offset = 0 if echo else len(prompt_tokens[1:])
|
|
text_offsets: List[int] = []
|
|
token_logprobs: List[Optional[float]] = []
|
|
tokens: List[str] = []
|
|
top_logprobs: List[Optional[Dict[str, float]]] = []
|
|
|
|
if echo:
|
|
# Remove leading BOS token
|
|
all_tokens = prompt_tokens[1:] + completion_tokens
|
|
else:
|
|
all_tokens = completion_tokens
|
|
|
|
all_token_strs = [
|
|
self.detokenize([token], prev_tokens=all_tokens[:i]).decode("utf-8", errors="ignore")
|
|
for i, token in enumerate(all_tokens)
|
|
]
|
|
all_logprobs = Llama.logits_to_logprobs(self._scores)[token_offset:]
|
|
# TODO: may be able to change this loop to use np.take_along_dim
|
|
for idx, (token, token_str, logprobs_token) in enumerate(
|
|
zip(all_tokens, all_token_strs, all_logprobs)
|
|
):
|
|
if token == self.token_bos():
|
|
continue
|
|
text_offsets.append(
|
|
text_offset
|
|
+ len(
|
|
self.detokenize(all_tokens[:idx]).decode(
|
|
"utf-8", errors="ignore"
|
|
)
|
|
)
|
|
)
|
|
tokens.append(token_str)
|
|
sorted_logprobs = list(
|
|
sorted(
|
|
zip(logprobs_token, range(len(logprobs_token))), reverse=True
|
|
)
|
|
)
|
|
token_logprobs.append(logprobs_token[int(token)])
|
|
top_logprob: Optional[Dict[str, float]] = {
|
|
self.detokenize([i], prev_tokens=all_tokens[:idx]).decode("utf-8", errors="ignore"): logprob
|
|
for logprob, i in sorted_logprobs[:logprobs]
|
|
}
|
|
top_logprob.update({token_str: logprobs_token[int(token)]})
|
|
top_logprobs.append(top_logprob)
|
|
# Weird idosincracy of the OpenAI API where
|
|
# token_logprobs and top_logprobs are null for
|
|
# the first token.
|
|
if echo and len(all_tokens) > 0:
|
|
token_logprobs[0] = None
|
|
top_logprobs[0] = None
|
|
logprobs_or_none = {
|
|
"tokens": tokens,
|
|
"text_offset": text_offsets,
|
|
"token_logprobs": token_logprobs,
|
|
"top_logprobs": top_logprobs,
|
|
}
|
|
|
|
yield {
|
|
"id": completion_id,
|
|
"object": "text_completion",
|
|
"created": created,
|
|
"model": model_name,
|
|
"choices": [
|
|
{
|
|
"text": text_str,
|
|
"index": 0,
|
|
"logprobs": logprobs_or_none,
|
|
"finish_reason": finish_reason,
|
|
}
|
|
],
|
|
"usage": {
|
|
"prompt_tokens": len(prompt_tokens),
|
|
"completion_tokens": len(completion_tokens),
|
|
"total_tokens": len(prompt_tokens) + len(completion_tokens),
|
|
},
|
|
}
|
|
|
|
def create_completion(
|
|
self,
|
|
prompt: Union[str, List[int]],
|
|
suffix: Optional[str] = None,
|
|
max_tokens: Optional[int] = 16,
|
|
temperature: float = 0.8,
|
|
top_p: float = 0.95,
|
|
min_p: float = 0.05,
|
|
typical_p: float = 1.0,
|
|
logprobs: Optional[int] = None,
|
|
echo: bool = False,
|
|
stop: Optional[Union[str, List[str]]] = [],
|
|
frequency_penalty: float = 0.0,
|
|
presence_penalty: float = 0.0,
|
|
repeat_penalty: float = 1.1,
|
|
top_k: int = 40,
|
|
stream: bool = False,
|
|
seed: Optional[int] = None,
|
|
tfs_z: float = 1.0,
|
|
mirostat_mode: int = 0,
|
|
mirostat_tau: float = 5.0,
|
|
mirostat_eta: float = 0.1,
|
|
model: Optional[str] = None,
|
|
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
|
logits_processor: Optional[LogitsProcessorList] = None,
|
|
grammar: Optional[LlamaGrammar] = None,
|
|
logit_bias: Optional[Dict[str, float]] = None,
|
|
) -> Union[CreateCompletionResponse, Iterator[CreateCompletionStreamResponse]]:
|
|
"""Generate text from a prompt.
|
|
|
|
Args:
|
|
prompt: The prompt to generate text from.
|
|
suffix: A suffix to append to the generated text. If None, no suffix is appended.
|
|
max_tokens: The maximum number of tokens to generate. If max_tokens <= 0 or None, the maximum number of tokens to generate is unlimited and depends on n_ctx.
|
|
temperature: The temperature to use for sampling.
|
|
top_p: The top-p value to use for nucleus sampling. Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
|
min_p: The min-p value to use for minimum p sampling. Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
|
|
typical_p: The typical-p value to use for sampling. Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
|
|
logprobs: The number of logprobs to return. If None, no logprobs are returned.
|
|
echo: Whether to echo the prompt.
|
|
stop: A list of strings to stop generation when encountered.
|
|
frequency_penalty: The penalty to apply to tokens based on their frequency in the prompt.
|
|
presence_penalty: The penalty to apply to tokens based on their presence in the prompt.
|
|
repeat_penalty: The penalty to apply to repeated tokens.
|
|
top_k: The top-k value to use for sampling. Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
|
stream: Whether to stream the results.
|
|
seed: The seed to use for sampling.
|
|
tfs_z: The tail-free sampling parameter. Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
|
|
mirostat_mode: The mirostat sampling mode.
|
|
mirostat_tau: The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
|
|
mirostat_eta: The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
|
|
model: The name to use for the model in the completion object.
|
|
stopping_criteria: A list of stopping criteria to use.
|
|
logits_processor: A list of logits processors to use.
|
|
grammar: A grammar to use for constrained sampling.
|
|
logit_bias: A logit bias to use.
|
|
|
|
Raises:
|
|
ValueError: If the requested tokens exceed the context window.
|
|
RuntimeError: If the prompt fails to tokenize or the model fails to evaluate the prompt.
|
|
|
|
Returns:
|
|
Response object containing the generated text.
|
|
"""
|
|
completion_or_chunks = self._create_completion(
|
|
prompt=prompt,
|
|
suffix=suffix,
|
|
max_tokens=-1 if max_tokens is None else max_tokens,
|
|
temperature=temperature,
|
|
top_p=top_p,
|
|
min_p=min_p,
|
|
typical_p=typical_p,
|
|
logprobs=logprobs,
|
|
echo=echo,
|
|
stop=stop,
|
|
frequency_penalty=frequency_penalty,
|
|
presence_penalty=presence_penalty,
|
|
repeat_penalty=repeat_penalty,
|
|
top_k=top_k,
|
|
stream=stream,
|
|
seed=seed,
|
|
tfs_z=tfs_z,
|
|
mirostat_mode=mirostat_mode,
|
|
mirostat_tau=mirostat_tau,
|
|
mirostat_eta=mirostat_eta,
|
|
model=model,
|
|
stopping_criteria=stopping_criteria,
|
|
logits_processor=logits_processor,
|
|
grammar=grammar,
|
|
logit_bias=logit_bias,
|
|
)
|
|
if stream:
|
|
chunks: Iterator[CreateCompletionStreamResponse] = completion_or_chunks
|
|
return chunks
|
|
completion: Completion = next(completion_or_chunks) # type: ignore
|
|
return completion
|
|
|
|
def __call__(
|
|
self,
|
|
prompt: str,
|
|
suffix: Optional[str] = None,
|
|
max_tokens: Optional[int] = 16,
|
|
temperature: float = 0.8,
|
|
top_p: float = 0.95,
|
|
min_p: float = 0.05,
|
|
typical_p: float = 1.0,
|
|
logprobs: Optional[int] = None,
|
|
echo: bool = False,
|
|
stop: Optional[Union[str, List[str]]] = [],
|
|
frequency_penalty: float = 0.0,
|
|
presence_penalty: float = 0.0,
|
|
repeat_penalty: float = 1.1,
|
|
top_k: int = 40,
|
|
stream: bool = False,
|
|
seed: Optional[int] = None,
|
|
tfs_z: float = 1.0,
|
|
mirostat_mode: int = 0,
|
|
mirostat_tau: float = 5.0,
|
|
mirostat_eta: float = 0.1,
|
|
model: Optional[str] = None,
|
|
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
|
logits_processor: Optional[LogitsProcessorList] = None,
|
|
grammar: Optional[LlamaGrammar] = None,
|
|
logit_bias: Optional[Dict[str, float]] = None,
|
|
) -> Union[CreateCompletionResponse, Iterator[CreateCompletionStreamResponse]]:
|
|
"""Generate text from a prompt.
|
|
|
|
Args:
|
|
prompt: The prompt to generate text from.
|
|
suffix: A suffix to append to the generated text. If None, no suffix is appended.
|
|
max_tokens: The maximum number of tokens to generate. If max_tokens <= 0 or None, the maximum number of tokens to generate is unlimited and depends on n_ctx.
|
|
temperature: The temperature to use for sampling.
|
|
top_p: The top-p value to use for nucleus sampling. Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
|
min_p: The min-p value to use for minimum p sampling. Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
|
|
typical_p: The typical-p value to use for sampling. Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
|
|
logprobs: The number of logprobs to return. If None, no logprobs are returned.
|
|
echo: Whether to echo the prompt.
|
|
stop: A list of strings to stop generation when encountered.
|
|
frequency_penalty: The penalty to apply to tokens based on their frequency in the prompt.
|
|
presence_penalty: The penalty to apply to tokens based on their presence in the prompt.
|
|
repeat_penalty: The penalty to apply to repeated tokens.
|
|
top_k: The top-k value to use for sampling. Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
|
stream: Whether to stream the results.
|
|
seed: The seed to use for sampling.
|
|
tfs_z: The tail-free sampling parameter. Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
|
|
mirostat_mode: The mirostat sampling mode.
|
|
mirostat_tau: The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
|
|
mirostat_eta: The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
|
|
model: The name to use for the model in the completion object.
|
|
stopping_criteria: A list of stopping criteria to use.
|
|
logits_processor: A list of logits processors to use.
|
|
grammar: A grammar to use for constrained sampling.
|
|
logit_bias: A logit bias to use.
|
|
|
|
Raises:
|
|
ValueError: If the requested tokens exceed the context window.
|
|
RuntimeError: If the prompt fails to tokenize or the model fails to evaluate the prompt.
|
|
|
|
Returns:
|
|
Response object containing the generated text.
|
|
"""
|
|
return self.create_completion(
|
|
prompt=prompt,
|
|
suffix=suffix,
|
|
max_tokens=max_tokens,
|
|
temperature=temperature,
|
|
top_p=top_p,
|
|
min_p=min_p,
|
|
typical_p=typical_p,
|
|
logprobs=logprobs,
|
|
echo=echo,
|
|
stop=stop,
|
|
frequency_penalty=frequency_penalty,
|
|
presence_penalty=presence_penalty,
|
|
repeat_penalty=repeat_penalty,
|
|
top_k=top_k,
|
|
stream=stream,
|
|
seed=seed,
|
|
tfs_z=tfs_z,
|
|
mirostat_mode=mirostat_mode,
|
|
mirostat_tau=mirostat_tau,
|
|
mirostat_eta=mirostat_eta,
|
|
model=model,
|
|
stopping_criteria=stopping_criteria,
|
|
logits_processor=logits_processor,
|
|
grammar=grammar,
|
|
logit_bias=logit_bias,
|
|
)
|
|
|
|
def create_chat_completion(
|
|
self,
|
|
messages: List[ChatCompletionRequestMessage],
|
|
functions: Optional[List[ChatCompletionFunction]] = None,
|
|
function_call: Optional[ChatCompletionRequestFunctionCall] = None,
|
|
tools: Optional[List[ChatCompletionTool]] = None,
|
|
tool_choice: Optional[ChatCompletionToolChoiceOption] = None,
|
|
temperature: float = 0.2,
|
|
top_p: float = 0.95,
|
|
top_k: int = 40,
|
|
min_p: float = 0.05,
|
|
typical_p: float = 1.0,
|
|
stream: bool = False,
|
|
stop: Optional[Union[str, List[str]]] = [],
|
|
seed: Optional[int] = None,
|
|
response_format: Optional[ChatCompletionRequestResponseFormat] = None,
|
|
max_tokens: Optional[int] = None,
|
|
presence_penalty: float = 0.0,
|
|
frequency_penalty: float = 0.0,
|
|
repeat_penalty: float = 1.1,
|
|
tfs_z: float = 1.0,
|
|
mirostat_mode: int = 0,
|
|
mirostat_tau: float = 5.0,
|
|
mirostat_eta: float = 0.1,
|
|
model: Optional[str] = None,
|
|
logits_processor: Optional[LogitsProcessorList] = None,
|
|
grammar: Optional[LlamaGrammar] = None,
|
|
logit_bias: Optional[Dict[str, float]] = None,
|
|
logprobs: Optional[bool] = None,
|
|
top_logprobs: Optional[int] = None,
|
|
) -> Union[
|
|
CreateChatCompletionResponse, Iterator[CreateChatCompletionStreamResponse]
|
|
]:
|
|
"""Generate a chat completion from a list of messages.
|
|
|
|
Args:
|
|
messages: A list of messages to generate a response for.
|
|
functions: A list of functions to use for the chat completion.
|
|
function_call: A function call to use for the chat completion.
|
|
tools: A list of tools to use for the chat completion.
|
|
tool_choice: A tool choice to use for the chat completion.
|
|
temperature: The temperature to use for sampling.
|
|
top_p: The top-p value to use for nucleus sampling. Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
|
top_k: The top-k value to use for sampling. Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
|
min_p: The min-p value to use for minimum p sampling. Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
|
|
typical_p: The typical-p value to use for sampling. Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
|
|
stream: Whether to stream the results.
|
|
stop: A list of strings to stop generation when encountered.
|
|
seed: The seed to use for sampling.
|
|
response_format: The response format to use for the chat completion. Use { "type": "json_object" } to contstrain output to only valid json.
|
|
max_tokens: The maximum number of tokens to generate. If max_tokens <= 0 or None, the maximum number of tokens to generate is unlimited and depends on n_ctx.
|
|
presence_penalty: The penalty to apply to tokens based on their presence in the prompt.
|
|
frequency_penalty: The penalty to apply to tokens based on their frequency in the prompt.
|
|
repeat_penalty: The penalty to apply to repeated tokens.
|
|
tfs_z: The tail-free sampling parameter.
|
|
mirostat_mode: The mirostat sampling mode.
|
|
mirostat_tau: The mirostat sampling tau parameter.
|
|
mirostat_eta: The mirostat sampling eta parameter.
|
|
model: The name to use for the model in the completion object.
|
|
logits_processor: A list of logits processors to use.
|
|
grammar: A grammar to use.
|
|
logit_bias: A logit bias to use.
|
|
|
|
Returns:
|
|
Generated chat completion or a stream of chat completion chunks.
|
|
"""
|
|
handler = self.chat_handler or self._chat_handlers.get(self.chat_format) or llama_chat_format.get_chat_completion_handler(
|
|
self.chat_format
|
|
)
|
|
return handler(
|
|
llama=self,
|
|
messages=messages,
|
|
functions=functions,
|
|
function_call=function_call,
|
|
tools=tools,
|
|
tool_choice=tool_choice,
|
|
temperature=temperature,
|
|
top_p=top_p,
|
|
top_k=top_k,
|
|
min_p=min_p,
|
|
typical_p=typical_p,
|
|
logprobs=logprobs,
|
|
top_logprobs=top_logprobs,
|
|
stream=stream,
|
|
stop=stop,
|
|
seed=seed,
|
|
response_format=response_format,
|
|
max_tokens=max_tokens,
|
|
presence_penalty=presence_penalty,
|
|
frequency_penalty=frequency_penalty,
|
|
repeat_penalty=repeat_penalty,
|
|
tfs_z=tfs_z,
|
|
mirostat_mode=mirostat_mode,
|
|
mirostat_tau=mirostat_tau,
|
|
mirostat_eta=mirostat_eta,
|
|
model=model,
|
|
logits_processor=logits_processor,
|
|
grammar=grammar,
|
|
logit_bias=logit_bias,
|
|
)
|
|
|
|
def create_chat_completion_openai_v1(
|
|
self,
|
|
*args: Any,
|
|
**kwargs: Any,
|
|
):
|
|
"""Generate a chat completion with return type based on the the OpenAI v1 API.
|
|
|
|
OpenAI python package is required to use this method.
|
|
|
|
You can install it with `pip install openai`.
|
|
|
|
Args:
|
|
*args: Positional arguments to pass to create_chat_completion.
|
|
**kwargs: Keyword arguments to pass to create_chat_completion.
|
|
|
|
Returns:
|
|
Generated chat completion or a stream of chat completion chunks.
|
|
"""
|
|
try:
|
|
from openai.types.chat import ChatCompletion, ChatCompletionChunk
|
|
|
|
stream = kwargs.get("stream", False) # type: ignore
|
|
assert isinstance(stream, bool)
|
|
if stream:
|
|
return (ChatCompletionChunk(**chunk) for chunk in self.create_chat_completion(*args, **kwargs)) # type: ignore
|
|
else:
|
|
return ChatCompletion(**self.create_chat_completion(*args, **kwargs)) # type: ignore
|
|
except ImportError:
|
|
raise ImportError(
|
|
"To use create_chat_completion_openai_v1, you must install the openai package."
|
|
"You can install it with `pip install openai`."
|
|
)
|
|
|
|
def __getstate__(self):
|
|
return dict(
|
|
model_path=self.model_path,
|
|
# Model Params
|
|
n_gpu_layers=self.model_params.n_gpu_layers,
|
|
split_mode=self.model_params.split_mode,
|
|
main_gpu=self.model_params.main_gpu,
|
|
tensor_split=self.tensor_split,
|
|
vocab_only=self.model_params.vocab_only,
|
|
use_mmap=self.model_params.use_mmap,
|
|
use_mlock=self.model_params.use_mlock,
|
|
kv_overrides=self.kv_overrides,
|
|
# Context Params
|
|
seed=self.context_params.seed,
|
|
n_ctx=self.context_params.n_ctx,
|
|
n_batch=self.n_batch,
|
|
n_threads=self.context_params.n_threads,
|
|
n_threads_batch=self.context_params.n_threads_batch,
|
|
rope_scaling_type=self.context_params.rope_scaling_type,
|
|
pooling_type=self.context_params.pooling_type,
|
|
rope_freq_base=self.context_params.rope_freq_base,
|
|
rope_freq_scale=self.context_params.rope_freq_scale,
|
|
yarn_ext_factor=self.context_params.yarn_ext_factor,
|
|
yarn_attn_factor=self.context_params.yarn_attn_factor,
|
|
yarn_beta_fast=self.context_params.yarn_beta_fast,
|
|
yarn_beta_slow=self.context_params.yarn_beta_slow,
|
|
yarn_orig_ctx=self.context_params.yarn_orig_ctx,
|
|
logits_all=self.context_params.logits_all,
|
|
embedding=self.context_params.embeddings,
|
|
offload_kqv=self.context_params.offload_kqv,
|
|
flash_attn=self.context_params.flash_attn,
|
|
# Sampling Params
|
|
last_n_tokens_size=self.last_n_tokens_size,
|
|
# LoRA Params
|
|
lora_base=self.lora_base,
|
|
lora_scale=self.lora_scale,
|
|
lora_path=self.lora_path,
|
|
# Backend Params
|
|
numa=self.numa,
|
|
# Chat Format Params
|
|
chat_format=self.chat_format,
|
|
chat_handler=self.chat_handler,
|
|
# Speculative Decidng
|
|
draft_model=self.draft_model,
|
|
# KV cache quantization
|
|
type_k=self.context_params.type_k,
|
|
type_v=self.context_params.type_v,
|
|
# Misc
|
|
verbose=self.verbose,
|
|
)
|
|
|
|
def __setstate__(self, state):
|
|
self.__init__(**state)
|
|
|
|
def save_state(self) -> LlamaState:
|
|
assert self._ctx.ctx is not None
|
|
if self.verbose:
|
|
print("Llama.save_state: saving llama state", file=sys.stderr)
|
|
state_size = llama_cpp.llama_get_state_size(self._ctx.ctx)
|
|
if self.verbose:
|
|
print(f"Llama.save_state: got state size: {state_size}", file=sys.stderr)
|
|
llama_state = (ctypes.c_uint8 * int(state_size))()
|
|
if self.verbose:
|
|
print("Llama.save_state: allocated state", file=sys.stderr)
|
|
n_bytes = llama_cpp.llama_copy_state_data(self._ctx.ctx, llama_state)
|
|
if self.verbose:
|
|
print(f"Llama.save_state: copied llama state: {n_bytes}", file=sys.stderr)
|
|
if int(n_bytes) > int(state_size):
|
|
raise RuntimeError("Failed to copy llama state data")
|
|
llama_state_compact = (ctypes.c_uint8 * int(n_bytes))()
|
|
llama_cpp.ctypes.memmove(llama_state_compact, llama_state, int(n_bytes))
|
|
if self.verbose:
|
|
print(
|
|
f"Llama.save_state: saving {n_bytes} bytes of llama state",
|
|
file=sys.stderr,
|
|
)
|
|
return LlamaState(
|
|
scores=self._scores.copy(),
|
|
input_ids=self.input_ids.copy(),
|
|
n_tokens=self.n_tokens,
|
|
llama_state=bytes(llama_state_compact),
|
|
llama_state_size=n_bytes,
|
|
)
|
|
|
|
def load_state(self, state: LlamaState) -> None:
|
|
assert self._ctx.ctx is not None
|
|
# Only filling in up to `n_tokens` and then zero-ing out the rest
|
|
self.scores[: state.n_tokens, :] = state.scores.copy()
|
|
self.scores[state.n_tokens :, :] = 0.0
|
|
self.input_ids = state.input_ids.copy()
|
|
self.n_tokens = state.n_tokens
|
|
state_size = state.llama_state_size
|
|
LLamaStateArrayType = ctypes.c_uint8 * state_size
|
|
llama_state = LLamaStateArrayType.from_buffer_copy(state.llama_state)
|
|
|
|
if llama_cpp.llama_set_state_data(self._ctx.ctx, llama_state) != state_size:
|
|
raise RuntimeError("Failed to set llama state data")
|
|
|
|
def n_ctx(self) -> int:
|
|
"""Return the context window size."""
|
|
return self._ctx.n_ctx()
|
|
|
|
def n_embd(self) -> int:
|
|
"""Return the embedding size."""
|
|
return self._model.n_embd()
|
|
|
|
def n_vocab(self) -> int:
|
|
"""Return the vocabulary size."""
|
|
return self._model.n_vocab()
|
|
|
|
def tokenizer(self) -> LlamaTokenizer:
|
|
"""Return the llama tokenizer for this model."""
|
|
return LlamaTokenizer(self)
|
|
|
|
def token_eos(self) -> int:
|
|
"""Return the end-of-sequence token."""
|
|
return self._model.token_eos()
|
|
|
|
def token_bos(self) -> int:
|
|
"""Return the beginning-of-sequence token."""
|
|
return self._model.token_bos()
|
|
|
|
def token_nl(self) -> int:
|
|
"""Return the newline token."""
|
|
return self._model.token_nl()
|
|
|
|
def pooling_type(self) -> str:
|
|
"""Return the pooling type."""
|
|
return self._ctx.pooling_type()
|
|
|
|
@staticmethod
|
|
def logits_to_logprobs(
|
|
logits: Union[npt.NDArray[np.single], List], axis: int = -1
|
|
) -> npt.NDArray[np.single]:
|
|
# https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.log_softmax.html
|
|
logits_maxs: np.ndarray = np.amax(logits, axis=axis, keepdims=True)
|
|
if logits_maxs.ndim > 0:
|
|
logits_maxs[~np.isfinite(logits_maxs)] = 0
|
|
elif not np.isfinite(logits_maxs):
|
|
logits_maxs = 0
|
|
subtract_maxs = np.subtract(logits, logits_maxs, dtype=np.single)
|
|
exp = np.exp(subtract_maxs)
|
|
# Suppress warnings about log of zero
|
|
with np.errstate(divide="ignore"):
|
|
summed = np.sum(exp, axis=axis, keepdims=True)
|
|
out = np.log(summed)
|
|
return subtract_maxs - out
|
|
|
|
@staticmethod
|
|
def longest_token_prefix(a: Sequence[int], b: Sequence[int]):
|
|
longest_prefix = 0
|
|
for _a, _b in zip(a, b):
|
|
if _a == _b:
|
|
longest_prefix += 1
|
|
else:
|
|
break
|
|
return longest_prefix
|
|
|
|
@classmethod
|
|
def from_pretrained(
|
|
cls,
|
|
repo_id: str,
|
|
filename: Optional[str],
|
|
local_dir: Optional[Union[str, os.PathLike[str]]] = None,
|
|
local_dir_use_symlinks: Union[bool, Literal["auto"]] = "auto",
|
|
cache_dir: Optional[Union[str, os.PathLike[str]]] = None,
|
|
**kwargs: Any,
|
|
) -> "Llama":
|
|
"""Create a Llama model from a pretrained model name or path.
|
|
This method requires the huggingface-hub package.
|
|
You can install it with `pip install huggingface-hub`.
|
|
|
|
Args:
|
|
repo_id: The model repo id.
|
|
filename: A filename or glob pattern to match the model file in the repo.
|
|
local_dir: The local directory to save the model to.
|
|
local_dir_use_symlinks: Whether to use symlinks when downloading the model.
|
|
**kwargs: Additional keyword arguments to pass to the Llama constructor.
|
|
|
|
Returns:
|
|
A Llama model."""
|
|
try:
|
|
from huggingface_hub import hf_hub_download, HfFileSystem
|
|
from huggingface_hub.utils import validate_repo_id
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Llama.from_pretrained requires the huggingface-hub package. "
|
|
"You can install it with `pip install huggingface-hub`."
|
|
)
|
|
|
|
validate_repo_id(repo_id)
|
|
|
|
hffs = HfFileSystem()
|
|
|
|
files = [
|
|
file["name"] if isinstance(file, dict) else file
|
|
for file in hffs.ls(repo_id)
|
|
]
|
|
|
|
# split each file into repo_id, subfolder, filename
|
|
file_list: List[str] = []
|
|
for file in files:
|
|
rel_path = Path(file).relative_to(repo_id)
|
|
file_list.append(str(rel_path))
|
|
|
|
matching_files = [file for file in file_list if fnmatch.fnmatch(file, filename)] # type: ignore
|
|
|
|
if len(matching_files) == 0:
|
|
raise ValueError(
|
|
f"No file found in {repo_id} that match {filename}\n\n"
|
|
f"Available Files:\n{json.dumps(file_list)}"
|
|
)
|
|
|
|
if len(matching_files) > 1:
|
|
raise ValueError(
|
|
f"Multiple files found in {repo_id} matching {filename}\n\n"
|
|
f"Available Files:\n{json.dumps(files)}"
|
|
)
|
|
|
|
(matching_file,) = matching_files
|
|
|
|
subfolder = str(Path(matching_file).parent)
|
|
filename = Path(matching_file).name
|
|
|
|
# download the file
|
|
hf_hub_download(
|
|
repo_id=repo_id,
|
|
filename=filename,
|
|
subfolder=subfolder,
|
|
local_dir=local_dir,
|
|
local_dir_use_symlinks=local_dir_use_symlinks,
|
|
cache_dir=cache_dir,
|
|
)
|
|
|
|
if local_dir is None:
|
|
model_path = hf_hub_download(
|
|
repo_id=repo_id,
|
|
filename=filename,
|
|
subfolder=subfolder,
|
|
local_dir=local_dir,
|
|
local_dir_use_symlinks=local_dir_use_symlinks,
|
|
cache_dir=cache_dir,
|
|
local_files_only=True,
|
|
)
|
|
else:
|
|
model_path = os.path.join(local_dir, filename)
|
|
|
|
return cls(
|
|
model_path=model_path,
|
|
**kwargs,
|
|
)
|
|
|
|
|
|
class LlamaState:
|
|
def __init__(
|
|
self,
|
|
input_ids: npt.NDArray[np.intc],
|
|
scores: npt.NDArray[np.single],
|
|
n_tokens: int,
|
|
llama_state: bytes,
|
|
llama_state_size: int,
|
|
):
|
|
self.input_ids = input_ids
|
|
self.scores = scores
|
|
self.n_tokens = n_tokens
|
|
self.llama_state = llama_state
|
|
self.llama_state_size = llama_state_size
|
|
|
|
|
|
LogitsProcessor = Callable[
|
|
[npt.NDArray[np.intc], npt.NDArray[np.single]], npt.NDArray[np.single]
|
|
]
|
|
|
|
|
|
class LogitsProcessorList(List[LogitsProcessor]):
|
|
def __call__(
|
|
self, input_ids: npt.NDArray[np.intc], scores: npt.NDArray[np.single]
|
|
) -> npt.NDArray[np.single]:
|
|
for processor in self:
|
|
scores = processor(input_ids, scores)
|
|
return scores
|
|
|
|
|
|
StoppingCriteria = Callable[[npt.NDArray[np.intc], npt.NDArray[np.single]], bool]
|
|
|
|
|
|
class StoppingCriteriaList(List[StoppingCriteria]):
|
|
def __call__(
|
|
self, input_ids: npt.NDArray[np.intc], logits: npt.NDArray[np.single]
|
|
) -> bool:
|
|
return any([stopping_criteria(input_ids, logits) for stopping_criteria in self])
|
|
|
|
|
|
class MinTokensLogitsProcessor(LogitsProcessor):
|
|
def __init__(self, min_tokens: int, token_eos: int):
|
|
self.min_tokens = min_tokens
|
|
self.token_eos = token_eos
|
|
self.prompt_tokens = None
|
|
|
|
def __call__(
|
|
self, input_ids: npt.NDArray[np.intc], scores: npt.NDArray[np.single]
|
|
) -> npt.NDArray[np.single]:
|
|
if self.prompt_tokens is None:
|
|
self.prompt_tokens = len(input_ids)
|
|
if len(input_ids) - self.prompt_tokens < self.min_tokens:
|
|
scores[self.token_eos] = -np.inf
|
|
return scores
|