from __future__ import annotations import os import sys import uuid import time import json import ctypes import typing import fnmatch import multiprocessing from typing import ( List, Optional, Union, Generator, Sequence, Iterator, Deque, Callable, Dict, ) from collections import deque from pathlib import Path from llama_cpp.llama_types import List from .llama_types import * from .llama_grammar import LlamaGrammar from .llama_cache import ( BaseLlamaCache, LlamaCache, # type: ignore LlamaDiskCache, # type: ignore LlamaRAMCache, # type: ignore ) from .llama_tokenizer import BaseLlamaTokenizer, LlamaTokenizer import llama_cpp.llama_cpp as llama_cpp import llama_cpp.llama_chat_format as llama_chat_format from llama_cpp.llama_speculative import LlamaDraftModel import numpy as np import numpy.typing as npt from ._internals import ( _LlamaModel, # type: ignore _LlamaContext, # type: ignore _LlamaBatch, # type: ignore _LlamaTokenDataArray, # type: ignore _LlamaSamplingParams, # type: ignore _LlamaSamplingContext, # type: ignore _normalize_embedding, # type: ignore ) from ._logger import set_verbose from ._utils import suppress_stdout_stderr class Llama: """High-level Python wrapper for a llama.cpp model.""" __backend_initialized = False def __init__( self, model_path: str, *, # Model Params n_gpu_layers: int = 0, split_mode: int = llama_cpp.LLAMA_SPLIT_MODE_LAYER, main_gpu: int = 0, tensor_split: Optional[List[float]] = None, vocab_only: bool = False, use_mmap: bool = True, use_mlock: bool = False, kv_overrides: Optional[Dict[str, Union[bool, int, float, str]]] = None, # Context Params seed: int = llama_cpp.LLAMA_DEFAULT_SEED, n_ctx: int = 512, n_batch: int = 512, n_threads: Optional[int] = None, n_threads_batch: Optional[int] = None, rope_scaling_type: Optional[int] = llama_cpp.LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED, pooling_type: int = llama_cpp.LLAMA_POOLING_TYPE_UNSPECIFIED, rope_freq_base: float = 0.0, rope_freq_scale: float = 0.0, yarn_ext_factor: float = -1.0, yarn_attn_factor: float = 1.0, yarn_beta_fast: float = 32.0, yarn_beta_slow: float = 1.0, yarn_orig_ctx: int = 0, logits_all: bool = False, embedding: bool = False, offload_kqv: bool = True, flash_attn: bool = False, # Sampling Params last_n_tokens_size: int = 64, # LoRA Params lora_base: Optional[str] = None, lora_scale: float = 1.0, lora_path: Optional[str] = None, # Backend Params numa: Union[bool, int] = False, # Chat Format Params chat_format: Optional[str] = None, chat_handler: Optional[llama_chat_format.LlamaChatCompletionHandler] = None, # Speculative Decoding draft_model: Optional[LlamaDraftModel] = None, # Tokenizer Override tokenizer: Optional[BaseLlamaTokenizer] = None, # KV cache quantization type_k: Optional[int] = None, type_v: Optional[int] = None, # Misc verbose: bool = True, # Extra Params **kwargs, # type: ignore ): """Load a llama.cpp model from `model_path`. Examples: Basic usage >>> import llama_cpp >>> model = llama_cpp.Llama( ... model_path="path/to/model", ... ) >>> print(model("The quick brown fox jumps ", stop=["."])["choices"][0]["text"]) the lazy dog Loading a chat model >>> import llama_cpp >>> model = llama_cpp.Llama( ... model_path="path/to/model", ... chat_format="llama-2", ... ) >>> print(model.create_chat_completion( ... messages=[{ ... "role": "user", ... "content": "what is the meaning of life?" ... }] ... )) Args: model_path: Path to the model. n_gpu_layers: Number of layers to offload to GPU (-ngl). If -1, all layers are offloaded. split_mode: How to split the model across GPUs. See llama_cpp.LLAMA_SPLIT_* for options. main_gpu: main_gpu interpretation depends on split_mode: LLAMA_SPLIT_NONE: the GPU that is used for the entire model. LLAMA_SPLIT_ROW: the GPU that is used for small tensors and intermediate results. LLAMA_SPLIT_LAYER: ignored tensor_split: How split tensors should be distributed across GPUs. If None, the model is not split. vocab_only: Only load the vocabulary no weights. use_mmap: Use mmap if possible. use_mlock: Force the system to keep the model in RAM. kv_overrides: Key-value overrides for the model. seed: RNG seed, -1 for random n_ctx: Text context, 0 = from model n_batch: Prompt processing maximum batch size n_threads: Number of threads to use for generation n_threads_batch: Number of threads to use for batch processing rope_scaling_type: RoPE scaling type, from `enum llama_rope_scaling_type`. ref: https://github.com/ggerganov/llama.cpp/pull/2054 pooling_type: Pooling type, from `enum llama_pooling_type`. rope_freq_base: RoPE base frequency, 0 = from model rope_freq_scale: RoPE frequency scaling factor, 0 = from model yarn_ext_factor: YaRN extrapolation mix factor, negative = from model yarn_attn_factor: YaRN magnitude scaling factor yarn_beta_fast: YaRN low correction dim yarn_beta_slow: YaRN high correction dim yarn_orig_ctx: YaRN original context size logits_all: Return logits for all tokens, not just the last token. Must be True for completion to return logprobs. embedding: Embedding mode only. offload_kqv: Offload K, Q, V to GPU. flash_attn: Use flash attention. last_n_tokens_size: Maximum number of tokens to keep in the last_n_tokens deque. lora_base: Optional path to base model, useful if using a quantized base model and you want to apply LoRA to an f16 model. lora_path: Path to a LoRA file to apply to the model. numa: numa policy chat_format: String specifying the chat format to use when calling create_chat_completion. chat_handler: Optional chat handler to use when calling create_chat_completion. draft_model: Optional draft model to use for speculative decoding. tokenizer: Optional tokenizer to override the default tokenizer from llama.cpp. verbose: Print verbose output to stderr. type_k: KV cache data type for K (default: f16) type_v: KV cache data type for V (default: f16) Raises: ValueError: If the model path does not exist. Returns: A Llama instance. """ self.verbose = verbose set_verbose(verbose) if not Llama.__backend_initialized: with suppress_stdout_stderr(disable=verbose): llama_cpp.llama_backend_init() Llama.__backend_initialized = True if isinstance(numa, bool): self.numa = ( llama_cpp.GGML_NUMA_STRATEGY_DISTRIBUTE if numa else llama_cpp.GGML_NUMA_STRATEGY_DISABLED ) else: self.numa = numa if self.numa != llama_cpp.GGML_NUMA_STRATEGY_DISABLED: with suppress_stdout_stderr(disable=verbose): llama_cpp.llama_numa_init(self.numa) self.model_path = model_path # Model Params self.model_params = llama_cpp.llama_model_default_params() self.model_params.n_gpu_layers = ( 0x7FFFFFFF if n_gpu_layers == -1 else n_gpu_layers ) # 0x7FFFFFFF is INT32 max, will be auto set to all layers self.model_params.split_mode = split_mode self.model_params.main_gpu = main_gpu self.tensor_split = tensor_split self._c_tensor_split = None if self.tensor_split is not None: if len(self.tensor_split) > llama_cpp.LLAMA_MAX_DEVICES: raise ValueError( f"Attempt to split tensors that exceed maximum supported devices. Current LLAMA_MAX_DEVICES={llama_cpp.LLAMA_MAX_DEVICES}" ) # Type conversion and expand the list to the length of LLAMA_MAX_DEVICES FloatArray = ctypes.c_float * llama_cpp.LLAMA_MAX_DEVICES self._c_tensor_split = FloatArray( *tensor_split # type: ignore ) # keep a reference to the array so it is not gc'd self.model_params.tensor_split = self._c_tensor_split self.model_params.vocab_only = vocab_only self.model_params.use_mmap = use_mmap if lora_path is None else False self.model_params.use_mlock = use_mlock # kv_overrides is the original python dict self.kv_overrides = kv_overrides if kv_overrides is not None: # _kv_overrides_array is a ctypes.Array of llama_model_kv_override Structs kvo_array_len = len(kv_overrides) + 1 # for sentinel element self._kv_overrides_array = ( llama_cpp.llama_model_kv_override * kvo_array_len )() for i, (k, v) in enumerate(kv_overrides.items()): self._kv_overrides_array[i].key = k.encode("utf-8") if isinstance(v, bool): self._kv_overrides_array[i].tag = llama_cpp.LLAMA_KV_OVERRIDE_TYPE_BOOL self._kv_overrides_array[i].value.val_bool = v elif isinstance(v, int): self._kv_overrides_array[i].tag = llama_cpp.LLAMA_KV_OVERRIDE_TYPE_INT self._kv_overrides_array[i].value.val_i64 = v elif isinstance(v, float): self._kv_overrides_array[i].tag = llama_cpp.LLAMA_KV_OVERRIDE_TYPE_FLOAT self._kv_overrides_array[i].value.val_f64 = v elif isinstance(v, str): # type: ignore v_bytes = v.encode("utf-8") if len(v_bytes) > 128: # TODO: Make this a constant raise ValueError(f"Value for {k} is too long: {v}") v_bytes = v_bytes.ljust(128, b"\0") self._kv_overrides_array[i].tag = llama_cpp.LLAMA_KV_OVERRIDE_TYPE_STR # copy min(v_bytes, 128) to str_value address = typing.cast(int, ctypes.addressof(self._kv_overrides_array[i].value) + llama_cpp.llama_model_kv_override_value.val_str.offset) buffer_start = ctypes.cast(address, ctypes.POINTER(ctypes.c_char)) ctypes.memmove( buffer_start, v_bytes, 128, ) else: raise ValueError(f"Unknown value type for {k}: {v}") self._kv_overrides_array[-1].key = ( b"\0" # ensure sentinel element is zeroed ) self.model_params.kv_overrides = self._kv_overrides_array self.n_batch = min(n_ctx, n_batch) # ??? self.n_threads = n_threads or max(multiprocessing.cpu_count() // 2, 1) self.n_threads_batch = n_threads_batch or multiprocessing.cpu_count() # Context Params self.context_params = llama_cpp.llama_context_default_params() self.context_params.seed = seed self.context_params.n_ctx = n_ctx self.context_params.n_batch = self.n_batch self.context_params.n_threads = self.n_threads self.context_params.n_threads_batch = self.n_threads_batch self.context_params.rope_scaling_type = ( rope_scaling_type if rope_scaling_type is not None else llama_cpp.LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED ) self.context_params.pooling_type = pooling_type self.context_params.rope_freq_base = ( rope_freq_base if rope_freq_base != 0.0 else 0 ) self.context_params.rope_freq_scale = ( rope_freq_scale if rope_freq_scale != 0.0 else 0 ) self.context_params.yarn_ext_factor = ( yarn_ext_factor if yarn_ext_factor != 0.0 else 0 ) self.context_params.yarn_attn_factor = ( yarn_attn_factor if yarn_attn_factor != 0.0 else 0 ) self.context_params.yarn_beta_fast = ( yarn_beta_fast if yarn_beta_fast != 0.0 else 0 ) self.context_params.yarn_beta_slow = ( yarn_beta_slow if yarn_beta_slow != 0.0 else 0 ) self.context_params.yarn_orig_ctx = yarn_orig_ctx if yarn_orig_ctx != 0 else 0 self.context_params.logits_all = ( logits_all if draft_model is None else True ) # Must be set to True for speculative decoding self.context_params.embeddings = embedding # TODO: Rename to embeddings self.context_params.offload_kqv = offload_kqv self.context_params.flash_attn = flash_attn # KV cache quantization if type_k is not None: self.context_params.type_k = type_k if type_v is not None: self.context_params.type_v = type_v # Sampling Params self.last_n_tokens_size = last_n_tokens_size self.cache: Optional[BaseLlamaCache] = None self.lora_base = lora_base self.lora_scale = lora_scale self.lora_path = lora_path if not os.path.exists(model_path): raise ValueError(f"Model path does not exist: {model_path}") self._model = _LlamaModel( path_model=self.model_path, params=self.model_params, verbose=self.verbose ) # Override tokenizer self.tokenizer_ = tokenizer or LlamaTokenizer(self) # Set the default value for the context and correct the batch if n_ctx == 0: n_ctx = self._model.n_ctx_train() self.n_batch = min(n_ctx, n_batch) self.context_params.n_ctx = self._model.n_ctx_train() self.context_params.n_batch = self.n_batch self._ctx = _LlamaContext( model=self._model, params=self.context_params, verbose=self.verbose, ) self._batch = _LlamaBatch( n_tokens=self.n_batch, embd=0, n_seq_max=self.context_params.n_ctx, verbose=self.verbose, ) if self.lora_path: if self._model.apply_lora_from_file( self.lora_path, self.lora_scale, self.lora_base, self.n_threads, ): raise RuntimeError( f"Failed to apply LoRA from lora path: {self.lora_path} to base path: {self.lora_base}" ) if self.verbose: print(llama_cpp.llama_print_system_info().decode("utf-8"), file=sys.stderr) self.chat_format = chat_format self.chat_handler = chat_handler self._chat_handlers: Dict[str, llama_chat_format.LlamaChatCompletionHandler] = {} self.draft_model = draft_model self._n_vocab = self.n_vocab() self._n_ctx = self.n_ctx() self._token_nl = self.token_nl() self._token_eos = self.token_eos() self._candidates = _LlamaTokenDataArray(n_vocab=self._n_vocab) self.n_tokens = 0 self.input_ids: npt.NDArray[np.intc] = np.ndarray((n_ctx,), dtype=np.intc) self.scores: npt.NDArray[np.single] = np.ndarray( (n_ctx, self._n_vocab), dtype=np.single ) self._mirostat_mu = ctypes.c_float( 2.0 * 5.0 ) # TODO: Move this to sampling context try: self.metadata = self._model.metadata() except Exception as e: self.metadata = {} if self.verbose: print(f"Failed to load metadata: {e}", file=sys.stderr) if self.verbose: print(f"Model metadata: {self.metadata}", file=sys.stderr) eos_token_id = self.token_eos() bos_token_id = self.token_bos() eos_token = self._model.token_get_text(eos_token_id) if eos_token_id != -1 else "" bos_token = self._model.token_get_text(bos_token_id) if bos_token_id != -1 else "" # Unfortunately the llama.cpp API does not return metadata arrays, so we can't get template names from tokenizer.chat_templates template_choices = dict((name[10:], template) for name, template in self.metadata.items() if name.startswith("tokenizer.chat_template.")) if "tokenizer.chat_template" in self.metadata: template_choices["chat_template.default"] = self.metadata["tokenizer.chat_template"] if self.verbose and template_choices: print(f"Available chat formats from metadata: {', '.join(template_choices.keys())}", file=sys.stderr) for name, template in template_choices.items(): self._chat_handlers[name] = llama_chat_format.Jinja2ChatFormatter( template=template, eos_token=eos_token, bos_token=bos_token, stop_token_ids=[eos_token_id], ).to_chat_handler() if ( self.chat_format is None and self.chat_handler is None and "chat_template.default" in template_choices ): chat_format = llama_chat_format.guess_chat_format_from_gguf_metadata( self.metadata ) if chat_format is not None: self.chat_format = chat_format if self.verbose: print(f"Guessed chat format: {chat_format}", file=sys.stderr) else: if self.verbose: print(f"Using gguf chat template: {template_choices['chat_template.default']}", file=sys.stderr) print(f"Using chat eos_token: {eos_token}", file=sys.stderr) print(f"Using chat bos_token: {bos_token}", file=sys.stderr) self.chat_format = "chat_template.default" if self.chat_format is None and self.chat_handler is None: self.chat_format = "llama-2" if self.verbose: print(f"Using fallback chat format: {self.chat_format}", file=sys.stderr) @property def ctx(self) -> llama_cpp.llama_context_p: assert self._ctx.ctx is not None return self._ctx.ctx @property def model(self) -> llama_cpp.llama_model_p: assert self._model.model is not None return self._model.model @property def _input_ids(self) -> npt.NDArray[np.intc]: return self.input_ids[: self.n_tokens] @property def _scores(self) -> npt.NDArray[np.single]: return self.scores[: self.n_tokens, :] @property def eval_tokens(self) -> Deque[int]: return deque(self.input_ids[: self.n_tokens].tolist(), maxlen=self._n_ctx) @property def eval_logits(self) -> Deque[List[float]]: return deque( self.scores[: self.n_tokens, :].tolist(), maxlen=self._n_ctx if self.context_params.logits_all else 1, ) def tokenize( self, text: bytes, add_bos: bool = True, special: bool = False ) -> List[int]: """Tokenize a string. Args: text: The utf-8 encoded string to tokenize. Raises: RuntimeError: If the tokenization failed. Returns: A list of tokens. """ return self.tokenizer_.tokenize(text, add_bos, special) def detokenize( self, tokens: List[int], prev_tokens: Optional[List[int]] = None ) -> bytes: """Detokenize a list of tokens. Args: tokens: The list of tokens to detokenize. prev_tokens: The list of previous tokens. Offset mapping will be performed if provided Returns: The detokenized string. """ return self.tokenizer_.detokenize(tokens, prev_tokens=prev_tokens) def set_cache(self, cache: Optional[BaseLlamaCache]): """Set the cache. Args: cache: The cache to set. """ self.cache = cache def set_seed(self, seed: int): """Set the random seed. Args: seed: The random seed. """ assert self._ctx.ctx is not None llama_cpp.llama_set_rng_seed(self._ctx.ctx, seed) def reset(self): """Reset the model state.""" self.n_tokens = 0 def eval(self, tokens: Sequence[int]): """Evaluate a list of tokens. Args: tokens: The list of tokens to evaluate. """ assert self._ctx.ctx is not None assert self._batch.batch is not None self._ctx.kv_cache_seq_rm(-1, self.n_tokens, -1) for i in range(0, len(tokens), self.n_batch): batch = tokens[i : min(len(tokens), i + self.n_batch)] n_past = self.n_tokens n_tokens = len(batch) self._batch.set_batch( batch=batch, n_past=n_past, logits_all=self.context_params.logits_all ) self._ctx.decode(self._batch) # Save tokens self.input_ids[n_past : n_past + n_tokens] = batch # Save logits if self.context_params.logits_all: rows = n_tokens cols = self._n_vocab logits = np.ctypeslib.as_array(self._ctx.get_logits(), shape=(rows * cols, )) self.scores[n_past : n_past + n_tokens, :].reshape(-1)[: :] = logits else: rows = 1 cols = self._n_vocab logits = np.ctypeslib.as_array(self._ctx.get_logits(), shape=(rows * cols, )) self.scores[n_past + n_tokens - 1, :].reshape(-1)[: :] = logits # Update n_tokens self.n_tokens += n_tokens def sample( self, top_k: int = 40, top_p: float = 0.95, min_p: float = 0.05, typical_p: float = 1.0, temp: float = 0.80, repeat_penalty: float = 1.1, frequency_penalty: float = 0.0, presence_penalty: float = 0.0, tfs_z: float = 1.0, mirostat_mode: int = 0, mirostat_eta: float = 0.1, mirostat_tau: float = 5.0, penalize_nl: bool = True, logits_processor: Optional[LogitsProcessorList] = None, grammar: Optional[LlamaGrammar] = None, idx: Optional[int] = None, ): """Sample a token from the model. Args: top_k: The top-k sampling parameter. top_p: The top-p sampling parameter. temp: The temperature parameter. repeat_penalty: The repeat penalty parameter. Returns: The sampled token. """ assert self._ctx is not None assert self.n_tokens > 0 if idx is None: logits: npt.NDArray[np.single] = self._scores[-1, :] else: logits = self._scores[idx, :] if logits_processor is not None: logits[:] = ( logits_processor(self._input_ids, logits) if idx is None else logits_processor(self._input_ids[: idx + 1], logits) ) sampling_params = _LlamaSamplingParams( top_k=top_k, top_p=top_p, min_p=min_p, tfs_z=tfs_z, typical_p=typical_p, temp=temp, penalty_last_n=self.last_n_tokens_size, penalty_repeat=repeat_penalty, penalty_freq=frequency_penalty, penalty_present=presence_penalty, mirostat=mirostat_mode, mirostat_tau=mirostat_tau, mirostat_eta=mirostat_eta, penalize_nl=penalize_nl, ) sampling_context = _LlamaSamplingContext( params=sampling_params, grammar=grammar, ) sampling_context.prev = list(self.eval_tokens) id = sampling_context.sample(ctx_main=self._ctx, logits_array=logits) sampling_context.accept( ctx_main=self._ctx, id=id, apply_grammar=grammar is not None, ) return id def generate( self, tokens: Sequence[int], top_k: int = 40, top_p: float = 0.95, min_p: float = 0.05, typical_p: float = 1.0, temp: float = 0.80, repeat_penalty: float = 1.1, reset: bool = True, frequency_penalty: float = 0.0, presence_penalty: float = 0.0, tfs_z: float = 1.0, mirostat_mode: int = 0, mirostat_tau: float = 5.0, mirostat_eta: float = 0.1, penalize_nl: bool = True, logits_processor: Optional[LogitsProcessorList] = None, stopping_criteria: Optional[StoppingCriteriaList] = None, grammar: Optional[LlamaGrammar] = None, ) -> Generator[int, Optional[Sequence[int]], None]: """Create a generator of tokens from a prompt. Examples: >>> llama = Llama("models/ggml-7b.bin") >>> tokens = llama.tokenize(b"Hello, world!") >>> for token in llama.generate(tokens, top_k=40, top_p=0.95, temp=1.0, repeat_penalty=1.1): ... print(llama.detokenize([token])) Args: tokens: The prompt tokens. top_k: The top-k sampling parameter. top_p: The top-p sampling parameter. temp: The temperature parameter. repeat_penalty: The repeat penalty parameter. reset: Whether to reset the model state. Yields: The generated tokens. """ # Reset mirostat sampling self._mirostat_mu = ctypes.c_float(2.0 * mirostat_tau) # Check for kv cache prefix match if reset and self.n_tokens > 0: longest_prefix = 0 for a, b in zip(self._input_ids, tokens[:-1]): if a == b: longest_prefix += 1 else: break if longest_prefix > 0: if self.verbose: print("Llama.generate: prefix-match hit", file=sys.stderr) reset = False tokens = tokens[longest_prefix:] self.n_tokens = longest_prefix # Reset the model state if reset: self.reset() # Reset the grammar if grammar is not None: grammar.reset() sample_idx = self.n_tokens + len(tokens) - 1 tokens = list(tokens) # Eval and sample while True: self.eval(tokens) while sample_idx < self.n_tokens: token = self.sample( top_k=top_k, top_p=top_p, min_p=min_p, typical_p=typical_p, temp=temp, repeat_penalty=repeat_penalty, frequency_penalty=frequency_penalty, presence_penalty=presence_penalty, tfs_z=tfs_z, mirostat_mode=mirostat_mode, mirostat_tau=mirostat_tau, mirostat_eta=mirostat_eta, logits_processor=logits_processor, grammar=grammar, penalize_nl=penalize_nl, idx=sample_idx, ) sample_idx += 1 if stopping_criteria is not None and stopping_criteria( self._input_ids, self._scores[-1, :] ): return tokens_or_none = yield token tokens.clear() tokens.append(token) if tokens_or_none is not None: tokens.extend(tokens_or_none) if sample_idx < self.n_tokens and token != self._input_ids[sample_idx]: self.n_tokens = sample_idx self._ctx.kv_cache_seq_rm(-1, self.n_tokens, -1) break if self.draft_model is not None: self.input_ids[self.n_tokens : self.n_tokens + len(tokens)] = tokens draft_tokens = self.draft_model( self.input_ids[: self.n_tokens + len(tokens)] ) tokens.extend( draft_tokens.astype(int)[ : self._n_ctx - self.n_tokens - len(tokens) ] ) def create_embedding( self, input: Union[str, List[str]], model: Optional[str] = None ) -> CreateEmbeddingResponse: """Embed a string. Args: input: The utf-8 encoded string to embed. Returns: An embedding object. """ assert self._model.model is not None model_name: str = model if model is not None else self.model_path input = input if isinstance(input, list) else [input] # get numeric embeddings embeds: Union[List[List[float]], List[List[List[float]]]] total_tokens: int embeds, total_tokens = self.embed(input, return_count=True) # type: ignore # convert to CreateEmbeddingResponse data: List[Embedding] = [ { "object": "embedding", "embedding": emb, "index": idx, } for idx, emb in enumerate(embeds) ] return { "object": "list", "data": data, "model": model_name, "usage": { "prompt_tokens": total_tokens, "total_tokens": total_tokens, }, } def embed( self, input: Union[str, List[str]], normalize: bool = False, truncate: bool = True, return_count: bool = False, ): """Embed a string. Args: input: The utf-8 encoded string to embed. Returns: A list of embeddings """ assert self._ctx.ctx is not None n_embd = self.n_embd() n_batch = self.n_batch # get pooling information pooling_type = self.pooling_type() logits_all = pooling_type == llama_cpp.LLAMA_POOLING_TYPE_NONE if self.context_params.embeddings == False: raise RuntimeError( "Llama model must be created with embedding=True to call this method" ) if self.verbose: llama_cpp.llama_reset_timings(self._ctx.ctx) if isinstance(input, str): inputs = [input] else: inputs = input # reset batch self._batch.reset() # decode and fetch embeddings data: Union[List[List[float]], List[List[List[float]]]] = [] def decode_batch(seq_sizes: List[int]): assert self._ctx.ctx is not None llama_cpp.llama_kv_cache_clear(self._ctx.ctx) self._ctx.decode(self._batch) self._batch.reset() # store embeddings if pooling_type == llama_cpp.LLAMA_POOLING_TYPE_NONE: pos: int = 0 for i, size in enumerate(seq_sizes): ptr = llama_cpp.llama_get_embeddings(self._ctx.ctx) embedding: List[List[float]] = [ ptr[pos + j * n_embd : pos + (j + 1) * n_embd] for j in range(size) ] if normalize: embedding = [_normalize_embedding(e) for e in embedding] data.append(embedding) pos += size else: for i in range(len(seq_sizes)): ptr = llama_cpp.llama_get_embeddings_seq(self._ctx.ctx, i) embedding: List[float] = ptr[:n_embd] if normalize: embedding = _normalize_embedding(embedding) data.append(embedding) # init state total_tokens = 0 s_batch = [] t_batch = 0 p_batch = 0 # accumulate batches and encode for text in inputs: tokens = self.tokenize(text.encode("utf-8")) if truncate: tokens = tokens[:n_batch] n_tokens = len(tokens) total_tokens += n_tokens # check for overrun if n_tokens > n_batch: raise ValueError( f"Requested tokens ({n_tokens}) exceed batch size of {n_batch}" ) # time to eval batch if t_batch + n_tokens > n_batch: decode_batch(s_batch) s_batch = [] t_batch = 0 p_batch = 0 # add to batch self._batch.add_sequence(tokens, p_batch, logits_all) # update batch stats s_batch.append(n_tokens) t_batch += n_tokens p_batch += 1 # hanlde last batch decode_batch(s_batch) if self.verbose: llama_cpp.llama_print_timings(self._ctx.ctx) output = data[0] if isinstance(input, str) else data llama_cpp.llama_kv_cache_clear(self._ctx.ctx) self.reset() if return_count: return output, total_tokens else: return output def _create_completion( self, prompt: Union[str, List[int]], suffix: Optional[str] = None, max_tokens: Optional[int] = 16, temperature: float = 0.8, top_p: float = 0.95, min_p: float = 0.05, typical_p: float = 1.0, logprobs: Optional[int] = None, echo: bool = False, stop: Optional[Union[str, List[str]]] = [], frequency_penalty: float = 0.0, presence_penalty: float = 0.0, repeat_penalty: float = 1.1, top_k: int = 40, stream: bool = False, seed: Optional[int] = None, tfs_z: float = 1.0, mirostat_mode: int = 0, mirostat_tau: float = 5.0, mirostat_eta: float = 0.1, model: Optional[str] = None, stopping_criteria: Optional[StoppingCriteriaList] = None, logits_processor: Optional[LogitsProcessorList] = None, grammar: Optional[LlamaGrammar] = None, logit_bias: Optional[Dict[str, float]] = None, ) -> Union[ Iterator[CreateCompletionResponse], Iterator[CreateCompletionStreamResponse] ]: assert self._ctx is not None assert suffix is None or suffix.__class__ is str completion_id: str = f"cmpl-{str(uuid.uuid4())}" created: int = int(time.time()) prefix_token_id: int = self._model.token_prefix() middle_token_id: int = self._model.token_middle() suffix_token_id: int = self._model.token_suffix() # If prompt is empty, initialize completion with BOS token to avoid # detokenization including a space at the beginning of the completion completion_tokens: List[int] = [] if len(prompt) > 0 else [self.token_bos()] # Add blank space to start of prompt to match OG llama tokenizer prompt_tokens: List[int] = ( ( [prefix_token_id] if prefix_token_id >= 0 and suffix is not None else [] ) + ( ( self.tokenize(prompt.encode("utf-8"), add_bos=(prefix_token_id < 0 or suffix is None), special=(prefix_token_id < 0 or suffix is None)) if prompt != "" else ( [] if prefix_token_id >= 0 and suffix is not None else [self.token_bos()] ) ) if isinstance(prompt, str) else prompt ) + ( ( [suffix_token_id] + ( self.tokenize(suffix.encode("utf-8"), add_bos=False, special=False) if suffix else [] ) ) if suffix_token_id >= 0 and suffix is not None else [] ) + ( [middle_token_id] if middle_token_id >= 0 and suffix is not None else [] ) ) text: bytes = b"" returned_tokens: int = 0 stop = ( stop if isinstance(stop, list) else [stop] if isinstance(stop, str) else [] ) model_name: str = model if model is not None else self.model_path # NOTE: This likely doesn't work correctly for the first token in the prompt # because of the extra space added to the start of the prompt_tokens if logit_bias is not None: logit_bias_map = {int(k): float(v) for k, v in logit_bias.items()} def logit_bias_processor( input_ids: npt.NDArray[np.intc], scores: npt.NDArray[np.single], ) -> npt.NDArray[np.single]: new_scores = np.copy( scores ) # Does it make sense to copy the whole array or can we just overwrite the original one? for input_id, score in logit_bias_map.items(): new_scores[input_id] = score + scores[input_id] return new_scores _logit_bias_processor = LogitsProcessorList([logit_bias_processor]) if logits_processor is None: logits_processor = _logit_bias_processor else: logits_processor = logits_processor.extend(_logit_bias_processor) if self.verbose: self._ctx.reset_timings() if len(prompt_tokens) >= self._n_ctx: raise ValueError( f"Requested tokens ({len(prompt_tokens)}) exceed context window of {llama_cpp.llama_n_ctx(self.ctx)}" ) if max_tokens is None or max_tokens <= 0: # Unlimited, depending on n_ctx. max_tokens = self._n_ctx - len(prompt_tokens) # Truncate max_tokens if requested tokens would exceed the context window max_tokens = ( max_tokens if max_tokens + len(prompt_tokens) < self._n_ctx else (self._n_ctx - len(prompt_tokens)) ) if stop != []: stop_sequences = [s.encode("utf-8") for s in stop] else: stop_sequences = [] if logprobs is not None and self.context_params.logits_all is False: raise ValueError( "logprobs is not supported for models created with logits_all=False" ) if self.cache: try: cache_item = self.cache[prompt_tokens] cache_prefix_len = Llama.longest_token_prefix( cache_item.input_ids.tolist(), prompt_tokens ) eval_prefix_len = Llama.longest_token_prefix( self._input_ids.tolist(), prompt_tokens ) if cache_prefix_len > eval_prefix_len: self.load_state(cache_item) if self.verbose: print("Llama._create_completion: cache hit", file=sys.stderr) except KeyError: if self.verbose: print("Llama._create_completion: cache miss", file=sys.stderr) if seed is not None: self._ctx.set_rng_seed(seed) finish_reason = "length" multibyte_fix = 0 for token in self.generate( prompt_tokens, top_k=top_k, top_p=top_p, min_p=min_p, typical_p=typical_p, temp=temperature, tfs_z=tfs_z, mirostat_mode=mirostat_mode, mirostat_tau=mirostat_tau, mirostat_eta=mirostat_eta, frequency_penalty=frequency_penalty, presence_penalty=presence_penalty, repeat_penalty=repeat_penalty, stopping_criteria=stopping_criteria, logits_processor=logits_processor, grammar=grammar, ): assert self._model.model is not None if llama_cpp.llama_token_is_eog(self._model.model, token): text = self.detokenize(completion_tokens, prev_tokens=prompt_tokens) finish_reason = "stop" break completion_tokens.append(token) all_text = self.detokenize(completion_tokens, prev_tokens=prompt_tokens) # Contains multi-byte UTF8 for k, char in enumerate(all_text[-3:]): k = 3 - k for num, pattern in [(2, 192), (3, 224), (4, 240)]: # Bitwise AND check if num > k and pattern & char == pattern: multibyte_fix = num - k # Stop incomplete bytes from passing if multibyte_fix > 0: multibyte_fix -= 1 continue any_stop = [s for s in stop_sequences if s in all_text] if len(any_stop) > 0: first_stop = any_stop[0] text = all_text[: all_text.index(first_stop)] finish_reason = "stop" break if stream: remaining_tokens = completion_tokens[returned_tokens:] remaining_text = self.detokenize(remaining_tokens, prev_tokens=prompt_tokens + completion_tokens[:returned_tokens]) remaining_length = len(remaining_text) # We want to avoid yielding any characters from # the generated text if they are part of a stop # sequence. first_stop_position = 0 for s in stop_sequences: for i in range(min(len(s), remaining_length), 0, -1): if remaining_text.endswith(s[:i]): if i > first_stop_position: first_stop_position = i break token_end_position = 0 if logprobs is not None: # not sure how to handle this branch when dealing # with CJK output, so keep it unchanged for token in remaining_tokens: if token == self.token_bos(): continue token_end_position += len(self.detokenize([token], prev_tokens=prompt_tokens + completion_tokens[:returned_tokens])) # Check if stop sequence is in the token if token_end_position > ( remaining_length - first_stop_position ): break token_str = self.detokenize([token], prev_tokens=prompt_tokens + completion_tokens[:returned_tokens]).decode( "utf-8", errors="ignore" ) text_offset = len(prompt) + len( self.detokenize(completion_tokens[:returned_tokens], prev_tokens=prompt_tokens + completion_tokens[:returned_tokens]).decode( "utf-8", errors="ignore" ) ) token_offset = len(prompt_tokens) + returned_tokens logits = self._scores[token_offset - 1, :] current_logprobs = Llama.logits_to_logprobs(logits).tolist() sorted_logprobs = list( sorted( zip(current_logprobs, range(len(current_logprobs))), reverse=True, ) ) top_logprob = { self.detokenize([i]).decode( "utf-8", errors="ignore" ): logprob for logprob, i in sorted_logprobs[:logprobs] } top_logprob.update({token_str: current_logprobs[int(token)]}) logprobs_or_none = { "tokens": [ self.detokenize([token], prev_tokens=prompt_tokens + completion_tokens[:returned_tokens]).decode( "utf-8", errors="ignore" ) ], "text_offset": [text_offset], "token_logprobs": [current_logprobs[int(token)]], "top_logprobs": [top_logprob], } returned_tokens += 1 yield { "id": completion_id, "object": "text_completion", "created": created, "model": model_name, "choices": [ { "text": self.detokenize([token], prev_tokens=prompt_tokens + completion_tokens[:returned_tokens]).decode( "utf-8", errors="ignore" ), "index": 0, "logprobs": logprobs_or_none, "finish_reason": None, } ], } else: while len(remaining_tokens) > 0: decode_success = False for i in range(1, len(remaining_tokens) + 1): try: bs = self.detokenize(remaining_tokens[:i], prev_tokens=prompt_tokens + completion_tokens[:returned_tokens]) ts = bs.decode("utf-8") decode_success = True break except UnicodeError: pass else: break if not decode_success: # all remaining tokens cannot be decoded to a UTF-8 character break token_end_position += len(bs) if token_end_position > ( remaining_length - first_stop_position ): break remaining_tokens = remaining_tokens[i:] returned_tokens += i yield { "id": completion_id, "object": "text_completion", "created": created, "model": model_name, "choices": [ { "text": ts, "index": 0, "logprobs": None, "finish_reason": None, } ], } if len(completion_tokens) >= max_tokens: text = self.detokenize(completion_tokens, prev_tokens=prompt_tokens) finish_reason = "length" break if stopping_criteria is not None and stopping_criteria( self._input_ids, self._scores[-1, :] ): text = self.detokenize(completion_tokens, prev_tokens=prompt_tokens) finish_reason = "stop" if self.verbose: self._ctx.print_timings() if stream: remaining_tokens = completion_tokens[returned_tokens:] all_text = self.detokenize(remaining_tokens, prev_tokens=prompt_tokens + completion_tokens[:returned_tokens]) any_stop = [s for s in stop_sequences if s in all_text] if len(any_stop) > 0: end = min(all_text.index(stop) for stop in any_stop) else: end = len(all_text) token_end_position = 0 for token in remaining_tokens: token_end_position += len(self.detokenize([token], prev_tokens=prompt_tokens + completion_tokens[:returned_tokens])) logprobs_or_none: Optional[CompletionLogprobs] = None if logprobs is not None: if token == self.token_bos(): continue token_str = self.detokenize([token]).decode( "utf-8", errors="ignore" ) text_offset = len(prompt) + len( self.detokenize(completion_tokens[:returned_tokens], prev_tokens=prompt_tokens + completion_tokens[:returned_tokens]) ) token_offset = len(prompt_tokens) + returned_tokens - 1 logits = self._scores[token_offset, :] current_logprobs = Llama.logits_to_logprobs(logits).tolist() sorted_logprobs = list( sorted( zip(current_logprobs, range(len(current_logprobs))), reverse=True, ) ) top_logprob = { self.detokenize([i]).decode("utf-8", errors="ignore"): logprob for logprob, i in sorted_logprobs[:logprobs] } top_logprob.update({token_str: current_logprobs[int(token)]}) logprobs_or_none = { "tokens": [ self.detokenize([token]).decode("utf-8", errors="ignore") ], "text_offset": [text_offset], "token_logprobs": [current_logprobs[int(token)]], "top_logprobs": [top_logprob], } if token_end_position >= end: last_text = self.detokenize([token]) if token_end_position == end - 1: break returned_tokens += 1 yield { "id": completion_id, "object": "text_completion", "created": created, "model": model_name, "choices": [ { "text": last_text[ : len(last_text) - (token_end_position - end) ].decode("utf-8", errors="ignore"), "index": 0, "logprobs": logprobs_or_none, "finish_reason": None, } ], } break returned_tokens += 1 yield { "id": completion_id, "object": "text_completion", "created": created, "model": model_name, "choices": [ { "text": self.detokenize([token]).decode( "utf-8", errors="ignore" ), "index": 0, "logprobs": logprobs_or_none, "finish_reason": None, } ], } yield { "id": completion_id, "object": "text_completion", "created": created, "model": model_name, "choices": [ { "text": "", "index": 0, "logprobs": None, "finish_reason": finish_reason, } ], } if self.cache: if self.verbose: print("Llama._create_completion: cache save", file=sys.stderr) self.cache[prompt_tokens + completion_tokens] = self.save_state() print("Llama._create_completion: cache saved", file=sys.stderr) return if self.cache: if self.verbose: print("Llama._create_completion: cache save", file=sys.stderr) self.cache[prompt_tokens + completion_tokens] = self.save_state() text_str = text.decode("utf-8", errors="ignore") if echo: text_str = prompt + text_str if suffix_token_id < 0 and suffix is not None: text_str = text_str + suffix logprobs_or_none: Optional[CompletionLogprobs] = None if logprobs is not None: text_offset = 0 if echo else len(prompt) token_offset = 0 if echo else len(prompt_tokens[1:]) text_offsets: List[int] = [] token_logprobs: List[Optional[float]] = [] tokens: List[str] = [] top_logprobs: List[Optional[Dict[str, float]]] = [] if echo: # Remove leading BOS token all_tokens = prompt_tokens[1:] + completion_tokens else: all_tokens = completion_tokens all_token_strs = [ self.detokenize([token], prev_tokens=all_tokens[:i]).decode("utf-8", errors="ignore") for i, token in enumerate(all_tokens) ] all_logprobs = Llama.logits_to_logprobs(self._scores)[token_offset:] # TODO: may be able to change this loop to use np.take_along_dim for idx, (token, token_str, logprobs_token) in enumerate( zip(all_tokens, all_token_strs, all_logprobs) ): if token == self.token_bos(): continue text_offsets.append( text_offset + len( self.detokenize(all_tokens[:idx]).decode( "utf-8", errors="ignore" ) ) ) tokens.append(token_str) sorted_logprobs = list( sorted( zip(logprobs_token, range(len(logprobs_token))), reverse=True ) ) token_logprobs.append(logprobs_token[int(token)]) top_logprob: Optional[Dict[str, float]] = { self.detokenize([i], prev_tokens=all_tokens[:idx]).decode("utf-8", errors="ignore"): logprob for logprob, i in sorted_logprobs[:logprobs] } top_logprob.update({token_str: logprobs_token[int(token)]}) top_logprobs.append(top_logprob) # Weird idosincracy of the OpenAI API where # token_logprobs and top_logprobs are null for # the first token. if echo and len(all_tokens) > 0: token_logprobs[0] = None top_logprobs[0] = None logprobs_or_none = { "tokens": tokens, "text_offset": text_offsets, "token_logprobs": token_logprobs, "top_logprobs": top_logprobs, } yield { "id": completion_id, "object": "text_completion", "created": created, "model": model_name, "choices": [ { "text": text_str, "index": 0, "logprobs": logprobs_or_none, "finish_reason": finish_reason, } ], "usage": { "prompt_tokens": len(prompt_tokens), "completion_tokens": len(completion_tokens), "total_tokens": len(prompt_tokens) + len(completion_tokens), }, } def create_completion( self, prompt: Union[str, List[int]], suffix: Optional[str] = None, max_tokens: Optional[int] = 16, temperature: float = 0.8, top_p: float = 0.95, min_p: float = 0.05, typical_p: float = 1.0, logprobs: Optional[int] = None, echo: bool = False, stop: Optional[Union[str, List[str]]] = [], frequency_penalty: float = 0.0, presence_penalty: float = 0.0, repeat_penalty: float = 1.1, top_k: int = 40, stream: bool = False, seed: Optional[int] = None, tfs_z: float = 1.0, mirostat_mode: int = 0, mirostat_tau: float = 5.0, mirostat_eta: float = 0.1, model: Optional[str] = None, stopping_criteria: Optional[StoppingCriteriaList] = None, logits_processor: Optional[LogitsProcessorList] = None, grammar: Optional[LlamaGrammar] = None, logit_bias: Optional[Dict[str, float]] = None, ) -> Union[CreateCompletionResponse, Iterator[CreateCompletionStreamResponse]]: """Generate text from a prompt. Args: prompt: The prompt to generate text from. suffix: A suffix to append to the generated text. If None, no suffix is appended. max_tokens: The maximum number of tokens to generate. If max_tokens <= 0 or None, the maximum number of tokens to generate is unlimited and depends on n_ctx. temperature: The temperature to use for sampling. top_p: The top-p value to use for nucleus sampling. Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751 min_p: The min-p value to use for minimum p sampling. Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841 typical_p: The typical-p value to use for sampling. Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666. logprobs: The number of logprobs to return. If None, no logprobs are returned. echo: Whether to echo the prompt. stop: A list of strings to stop generation when encountered. frequency_penalty: The penalty to apply to tokens based on their frequency in the prompt. presence_penalty: The penalty to apply to tokens based on their presence in the prompt. repeat_penalty: The penalty to apply to repeated tokens. top_k: The top-k value to use for sampling. Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751 stream: Whether to stream the results. seed: The seed to use for sampling. tfs_z: The tail-free sampling parameter. Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/. mirostat_mode: The mirostat sampling mode. mirostat_tau: The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text. mirostat_eta: The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates. model: The name to use for the model in the completion object. stopping_criteria: A list of stopping criteria to use. logits_processor: A list of logits processors to use. grammar: A grammar to use for constrained sampling. logit_bias: A logit bias to use. Raises: ValueError: If the requested tokens exceed the context window. RuntimeError: If the prompt fails to tokenize or the model fails to evaluate the prompt. Returns: Response object containing the generated text. """ completion_or_chunks = self._create_completion( prompt=prompt, suffix=suffix, max_tokens=-1 if max_tokens is None else max_tokens, temperature=temperature, top_p=top_p, min_p=min_p, typical_p=typical_p, logprobs=logprobs, echo=echo, stop=stop, frequency_penalty=frequency_penalty, presence_penalty=presence_penalty, repeat_penalty=repeat_penalty, top_k=top_k, stream=stream, seed=seed, tfs_z=tfs_z, mirostat_mode=mirostat_mode, mirostat_tau=mirostat_tau, mirostat_eta=mirostat_eta, model=model, stopping_criteria=stopping_criteria, logits_processor=logits_processor, grammar=grammar, logit_bias=logit_bias, ) if stream: chunks: Iterator[CreateCompletionStreamResponse] = completion_or_chunks return chunks completion: Completion = next(completion_or_chunks) # type: ignore return completion def __call__( self, prompt: str, suffix: Optional[str] = None, max_tokens: Optional[int] = 16, temperature: float = 0.8, top_p: float = 0.95, min_p: float = 0.05, typical_p: float = 1.0, logprobs: Optional[int] = None, echo: bool = False, stop: Optional[Union[str, List[str]]] = [], frequency_penalty: float = 0.0, presence_penalty: float = 0.0, repeat_penalty: float = 1.1, top_k: int = 40, stream: bool = False, seed: Optional[int] = None, tfs_z: float = 1.0, mirostat_mode: int = 0, mirostat_tau: float = 5.0, mirostat_eta: float = 0.1, model: Optional[str] = None, stopping_criteria: Optional[StoppingCriteriaList] = None, logits_processor: Optional[LogitsProcessorList] = None, grammar: Optional[LlamaGrammar] = None, logit_bias: Optional[Dict[str, float]] = None, ) -> Union[CreateCompletionResponse, Iterator[CreateCompletionStreamResponse]]: """Generate text from a prompt. Args: prompt: The prompt to generate text from. suffix: A suffix to append to the generated text. If None, no suffix is appended. max_tokens: The maximum number of tokens to generate. If max_tokens <= 0 or None, the maximum number of tokens to generate is unlimited and depends on n_ctx. temperature: The temperature to use for sampling. top_p: The top-p value to use for nucleus sampling. Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751 min_p: The min-p value to use for minimum p sampling. Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841 typical_p: The typical-p value to use for sampling. Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666. logprobs: The number of logprobs to return. If None, no logprobs are returned. echo: Whether to echo the prompt. stop: A list of strings to stop generation when encountered. frequency_penalty: The penalty to apply to tokens based on their frequency in the prompt. presence_penalty: The penalty to apply to tokens based on their presence in the prompt. repeat_penalty: The penalty to apply to repeated tokens. top_k: The top-k value to use for sampling. Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751 stream: Whether to stream the results. seed: The seed to use for sampling. tfs_z: The tail-free sampling parameter. Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/. mirostat_mode: The mirostat sampling mode. mirostat_tau: The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text. mirostat_eta: The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates. model: The name to use for the model in the completion object. stopping_criteria: A list of stopping criteria to use. logits_processor: A list of logits processors to use. grammar: A grammar to use for constrained sampling. logit_bias: A logit bias to use. Raises: ValueError: If the requested tokens exceed the context window. RuntimeError: If the prompt fails to tokenize or the model fails to evaluate the prompt. Returns: Response object containing the generated text. """ return self.create_completion( prompt=prompt, suffix=suffix, max_tokens=max_tokens, temperature=temperature, top_p=top_p, min_p=min_p, typical_p=typical_p, logprobs=logprobs, echo=echo, stop=stop, frequency_penalty=frequency_penalty, presence_penalty=presence_penalty, repeat_penalty=repeat_penalty, top_k=top_k, stream=stream, seed=seed, tfs_z=tfs_z, mirostat_mode=mirostat_mode, mirostat_tau=mirostat_tau, mirostat_eta=mirostat_eta, model=model, stopping_criteria=stopping_criteria, logits_processor=logits_processor, grammar=grammar, logit_bias=logit_bias, ) def create_chat_completion( self, messages: List[ChatCompletionRequestMessage], functions: Optional[List[ChatCompletionFunction]] = None, function_call: Optional[ChatCompletionRequestFunctionCall] = None, tools: Optional[List[ChatCompletionTool]] = None, tool_choice: Optional[ChatCompletionToolChoiceOption] = None, temperature: float = 0.2, top_p: float = 0.95, top_k: int = 40, min_p: float = 0.05, typical_p: float = 1.0, stream: bool = False, stop: Optional[Union[str, List[str]]] = [], seed: Optional[int] = None, response_format: Optional[ChatCompletionRequestResponseFormat] = None, max_tokens: Optional[int] = None, presence_penalty: float = 0.0, frequency_penalty: float = 0.0, repeat_penalty: float = 1.1, tfs_z: float = 1.0, mirostat_mode: int = 0, mirostat_tau: float = 5.0, mirostat_eta: float = 0.1, model: Optional[str] = None, logits_processor: Optional[LogitsProcessorList] = None, grammar: Optional[LlamaGrammar] = None, logit_bias: Optional[Dict[str, float]] = None, logprobs: Optional[bool] = None, top_logprobs: Optional[int] = None, ) -> Union[ CreateChatCompletionResponse, Iterator[CreateChatCompletionStreamResponse] ]: """Generate a chat completion from a list of messages. Args: messages: A list of messages to generate a response for. functions: A list of functions to use for the chat completion. function_call: A function call to use for the chat completion. tools: A list of tools to use for the chat completion. tool_choice: A tool choice to use for the chat completion. temperature: The temperature to use for sampling. top_p: The top-p value to use for nucleus sampling. Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751 top_k: The top-k value to use for sampling. Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751 min_p: The min-p value to use for minimum p sampling. Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841 typical_p: The typical-p value to use for sampling. Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666. stream: Whether to stream the results. stop: A list of strings to stop generation when encountered. seed: The seed to use for sampling. response_format: The response format to use for the chat completion. Use { "type": "json_object" } to contstrain output to only valid json. max_tokens: The maximum number of tokens to generate. If max_tokens <= 0 or None, the maximum number of tokens to generate is unlimited and depends on n_ctx. presence_penalty: The penalty to apply to tokens based on their presence in the prompt. frequency_penalty: The penalty to apply to tokens based on their frequency in the prompt. repeat_penalty: The penalty to apply to repeated tokens. tfs_z: The tail-free sampling parameter. mirostat_mode: The mirostat sampling mode. mirostat_tau: The mirostat sampling tau parameter. mirostat_eta: The mirostat sampling eta parameter. model: The name to use for the model in the completion object. logits_processor: A list of logits processors to use. grammar: A grammar to use. logit_bias: A logit bias to use. Returns: Generated chat completion or a stream of chat completion chunks. """ handler = self.chat_handler or self._chat_handlers.get(self.chat_format) or llama_chat_format.get_chat_completion_handler( self.chat_format ) return handler( llama=self, messages=messages, functions=functions, function_call=function_call, tools=tools, tool_choice=tool_choice, temperature=temperature, top_p=top_p, top_k=top_k, min_p=min_p, typical_p=typical_p, logprobs=logprobs, top_logprobs=top_logprobs, stream=stream, stop=stop, seed=seed, response_format=response_format, max_tokens=max_tokens, presence_penalty=presence_penalty, frequency_penalty=frequency_penalty, repeat_penalty=repeat_penalty, tfs_z=tfs_z, mirostat_mode=mirostat_mode, mirostat_tau=mirostat_tau, mirostat_eta=mirostat_eta, model=model, logits_processor=logits_processor, grammar=grammar, logit_bias=logit_bias, ) def create_chat_completion_openai_v1( self, *args: Any, **kwargs: Any, ): """Generate a chat completion with return type based on the the OpenAI v1 API. OpenAI python package is required to use this method. You can install it with `pip install openai`. Args: *args: Positional arguments to pass to create_chat_completion. **kwargs: Keyword arguments to pass to create_chat_completion. Returns: Generated chat completion or a stream of chat completion chunks. """ try: from openai.types.chat import ChatCompletion, ChatCompletionChunk stream = kwargs.get("stream", False) # type: ignore assert isinstance(stream, bool) if stream: return (ChatCompletionChunk(**chunk) for chunk in self.create_chat_completion(*args, **kwargs)) # type: ignore else: return ChatCompletion(**self.create_chat_completion(*args, **kwargs)) # type: ignore except ImportError: raise ImportError( "To use create_chat_completion_openai_v1, you must install the openai package." "You can install it with `pip install openai`." ) def __getstate__(self): return dict( model_path=self.model_path, # Model Params n_gpu_layers=self.model_params.n_gpu_layers, split_mode=self.model_params.split_mode, main_gpu=self.model_params.main_gpu, tensor_split=self.tensor_split, vocab_only=self.model_params.vocab_only, use_mmap=self.model_params.use_mmap, use_mlock=self.model_params.use_mlock, kv_overrides=self.kv_overrides, # Context Params seed=self.context_params.seed, n_ctx=self.context_params.n_ctx, n_batch=self.n_batch, n_threads=self.context_params.n_threads, n_threads_batch=self.context_params.n_threads_batch, rope_scaling_type=self.context_params.rope_scaling_type, pooling_type=self.context_params.pooling_type, rope_freq_base=self.context_params.rope_freq_base, rope_freq_scale=self.context_params.rope_freq_scale, yarn_ext_factor=self.context_params.yarn_ext_factor, yarn_attn_factor=self.context_params.yarn_attn_factor, yarn_beta_fast=self.context_params.yarn_beta_fast, yarn_beta_slow=self.context_params.yarn_beta_slow, yarn_orig_ctx=self.context_params.yarn_orig_ctx, logits_all=self.context_params.logits_all, embedding=self.context_params.embeddings, offload_kqv=self.context_params.offload_kqv, flash_attn=self.context_params.flash_attn, # Sampling Params last_n_tokens_size=self.last_n_tokens_size, # LoRA Params lora_base=self.lora_base, lora_scale=self.lora_scale, lora_path=self.lora_path, # Backend Params numa=self.numa, # Chat Format Params chat_format=self.chat_format, chat_handler=self.chat_handler, # Speculative Decidng draft_model=self.draft_model, # KV cache quantization type_k=self.context_params.type_k, type_v=self.context_params.type_v, # Misc verbose=self.verbose, ) def __setstate__(self, state): self.__init__(**state) def save_state(self) -> LlamaState: assert self._ctx.ctx is not None if self.verbose: print("Llama.save_state: saving llama state", file=sys.stderr) state_size = llama_cpp.llama_get_state_size(self._ctx.ctx) if self.verbose: print(f"Llama.save_state: got state size: {state_size}", file=sys.stderr) llama_state = (ctypes.c_uint8 * int(state_size))() if self.verbose: print("Llama.save_state: allocated state", file=sys.stderr) n_bytes = llama_cpp.llama_copy_state_data(self._ctx.ctx, llama_state) if self.verbose: print(f"Llama.save_state: copied llama state: {n_bytes}", file=sys.stderr) if int(n_bytes) > int(state_size): raise RuntimeError("Failed to copy llama state data") llama_state_compact = (ctypes.c_uint8 * int(n_bytes))() llama_cpp.ctypes.memmove(llama_state_compact, llama_state, int(n_bytes)) if self.verbose: print( f"Llama.save_state: saving {n_bytes} bytes of llama state", file=sys.stderr, ) return LlamaState( scores=self._scores.copy(), input_ids=self.input_ids.copy(), n_tokens=self.n_tokens, llama_state=bytes(llama_state_compact), llama_state_size=n_bytes, ) def load_state(self, state: LlamaState) -> None: assert self._ctx.ctx is not None # Only filling in up to `n_tokens` and then zero-ing out the rest self.scores[: state.n_tokens, :] = state.scores.copy() self.scores[state.n_tokens :, :] = 0.0 self.input_ids = state.input_ids.copy() self.n_tokens = state.n_tokens state_size = state.llama_state_size LLamaStateArrayType = ctypes.c_uint8 * state_size llama_state = LLamaStateArrayType.from_buffer_copy(state.llama_state) if llama_cpp.llama_set_state_data(self._ctx.ctx, llama_state) != state_size: raise RuntimeError("Failed to set llama state data") def n_ctx(self) -> int: """Return the context window size.""" return self._ctx.n_ctx() def n_embd(self) -> int: """Return the embedding size.""" return self._model.n_embd() def n_vocab(self) -> int: """Return the vocabulary size.""" return self._model.n_vocab() def tokenizer(self) -> LlamaTokenizer: """Return the llama tokenizer for this model.""" return LlamaTokenizer(self) def token_eos(self) -> int: """Return the end-of-sequence token.""" return self._model.token_eos() def token_bos(self) -> int: """Return the beginning-of-sequence token.""" return self._model.token_bos() def token_nl(self) -> int: """Return the newline token.""" return self._model.token_nl() def pooling_type(self) -> str: """Return the pooling type.""" return self._ctx.pooling_type() @staticmethod def logits_to_logprobs( logits: Union[npt.NDArray[np.single], List], axis: int = -1 ) -> npt.NDArray[np.single]: # https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.log_softmax.html logits_maxs: np.ndarray = np.amax(logits, axis=axis, keepdims=True) if logits_maxs.ndim > 0: logits_maxs[~np.isfinite(logits_maxs)] = 0 elif not np.isfinite(logits_maxs): logits_maxs = 0 subtract_maxs = np.subtract(logits, logits_maxs, dtype=np.single) exp = np.exp(subtract_maxs) # Suppress warnings about log of zero with np.errstate(divide="ignore"): summed = np.sum(exp, axis=axis, keepdims=True) out = np.log(summed) return subtract_maxs - out @staticmethod def longest_token_prefix(a: Sequence[int], b: Sequence[int]): longest_prefix = 0 for _a, _b in zip(a, b): if _a == _b: longest_prefix += 1 else: break return longest_prefix @classmethod def from_pretrained( cls, repo_id: str, filename: Optional[str], local_dir: Optional[Union[str, os.PathLike[str]]] = None, local_dir_use_symlinks: Union[bool, Literal["auto"]] = "auto", cache_dir: Optional[Union[str, os.PathLike[str]]] = None, **kwargs: Any, ) -> "Llama": """Create a Llama model from a pretrained model name or path. This method requires the huggingface-hub package. You can install it with `pip install huggingface-hub`. Args: repo_id: The model repo id. filename: A filename or glob pattern to match the model file in the repo. local_dir: The local directory to save the model to. local_dir_use_symlinks: Whether to use symlinks when downloading the model. **kwargs: Additional keyword arguments to pass to the Llama constructor. Returns: A Llama model.""" try: from huggingface_hub import hf_hub_download, HfFileSystem from huggingface_hub.utils import validate_repo_id except ImportError: raise ImportError( "Llama.from_pretrained requires the huggingface-hub package. " "You can install it with `pip install huggingface-hub`." ) validate_repo_id(repo_id) hffs = HfFileSystem() files = [ file["name"] if isinstance(file, dict) else file for file in hffs.ls(repo_id) ] # split each file into repo_id, subfolder, filename file_list: List[str] = [] for file in files: rel_path = Path(file).relative_to(repo_id) file_list.append(str(rel_path)) matching_files = [file for file in file_list if fnmatch.fnmatch(file, filename)] # type: ignore if len(matching_files) == 0: raise ValueError( f"No file found in {repo_id} that match {filename}\n\n" f"Available Files:\n{json.dumps(file_list)}" ) if len(matching_files) > 1: raise ValueError( f"Multiple files found in {repo_id} matching {filename}\n\n" f"Available Files:\n{json.dumps(files)}" ) (matching_file,) = matching_files subfolder = str(Path(matching_file).parent) filename = Path(matching_file).name # download the file hf_hub_download( repo_id=repo_id, filename=filename, subfolder=subfolder, local_dir=local_dir, local_dir_use_symlinks=local_dir_use_symlinks, cache_dir=cache_dir, ) if local_dir is None: model_path = hf_hub_download( repo_id=repo_id, filename=filename, subfolder=subfolder, local_dir=local_dir, local_dir_use_symlinks=local_dir_use_symlinks, cache_dir=cache_dir, local_files_only=True, ) else: model_path = os.path.join(local_dir, filename) return cls( model_path=model_path, **kwargs, ) class LlamaState: def __init__( self, input_ids: npt.NDArray[np.intc], scores: npt.NDArray[np.single], n_tokens: int, llama_state: bytes, llama_state_size: int, ): self.input_ids = input_ids self.scores = scores self.n_tokens = n_tokens self.llama_state = llama_state self.llama_state_size = llama_state_size LogitsProcessor = Callable[ [npt.NDArray[np.intc], npt.NDArray[np.single]], npt.NDArray[np.single] ] class LogitsProcessorList(List[LogitsProcessor]): def __call__( self, input_ids: npt.NDArray[np.intc], scores: npt.NDArray[np.single] ) -> npt.NDArray[np.single]: for processor in self: scores = processor(input_ids, scores) return scores StoppingCriteria = Callable[[npt.NDArray[np.intc], npt.NDArray[np.single]], bool] class StoppingCriteriaList(List[StoppingCriteria]): def __call__( self, input_ids: npt.NDArray[np.intc], logits: npt.NDArray[np.single] ) -> bool: return any([stopping_criteria(input_ids, logits) for stopping_criteria in self]) class MinTokensLogitsProcessor(LogitsProcessor): def __init__(self, min_tokens: int, token_eos: int): self.min_tokens = min_tokens self.token_eos = token_eos self.prompt_tokens = None def __call__( self, input_ids: npt.NDArray[np.intc], scores: npt.NDArray[np.single] ) -> npt.NDArray[np.single]: if self.prompt_tokens is None: self.prompt_tokens = len(input_ids) if len(input_ids) - self.prompt_tokens < self.min_tokens: scores[self.token_eos] = -np.inf return scores