from __future__ import annotations import os import json import ctypes import dataclasses import random import string from typing import Any, Dict, Iterator, List, Literal, Optional, Tuple, Union, Protocol, cast import jinja2 import numpy as np import numpy.typing as npt import llama_cpp.llama as llama import llama_cpp.llama_types as llama_types import llama_cpp.llama_grammar as llama_grammar from ._logger import logger from ._utils import suppress_stdout_stderr, Singleton ### Common Chat Templates and Special Tokens ### # Source: https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B/blob/main/tokenizer_config.json CHATML_CHAT_TEMPLATE = "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}" CHATML_BOS_TOKEN = "" CHATML_EOS_TOKEN = "<|im_end|>" # Source: https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1/blob/main/tokenizer_config.json MISTRAL_INSTRUCT_CHAT_TEMPLATE = "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token + ' ' }}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}" MISTRAL_INSTRUCT_BOS_TOKEN = "" MISTRAL_INSTRUCT_EOS_TOKEN = "" # Source: https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1/blob/main/tokenizer_config.json MIXTRAL_INSTRUCT_CHAT_TEMPLATE = "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}" # Source: https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct/blob/main/tokenizer_config.json LLAMA3_INSTRUCT_CHAT_TEMPLATE = "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}" ### Chat Completion Handler ### class LlamaChatCompletionHandler(Protocol): """Base Protocol for a llama chat completion handler. Very generic protocol that can be used to implement any chat format. The only hard requirement is that it must return a ChatCompletion when stream=False and an iterator of ChatCompletionChunks when stream=True.""" def __call__( self, *, # llama.cpp instance llama: llama.Llama, # openai api parameters messages: List[llama_types.ChatCompletionRequestMessage], functions: Optional[List[llama_types.ChatCompletionFunction]] = None, function_call: Optional[llama_types.ChatCompletionRequestFunctionCall] = None, tools: Optional[List[llama_types.ChatCompletionTool]] = None, tool_choice: Optional[llama_types.ChatCompletionToolChoiceOption] = None, temperature: float = 0.2, top_p: float = 0.95, top_k: int = 40, stream: bool = False, stop: Optional[Union[str, List[str]]] = [], seed: Optional[int] = None, response_format: Optional[ llama_types.ChatCompletionRequestResponseFormat ] = None, max_tokens: Optional[int] = None, presence_penalty: float = 0.0, frequency_penalty: float = 0.0, repeat_penalty: float = 1.1, model: Optional[str] = None, logit_bias: Optional[Dict[str, float]] = None, # llama.cpp parameters min_p: float = 0.05, typical_p: float = 1.0, tfs_z: float = 1.0, mirostat_mode: int = 0, mirostat_tau: float = 5.0, mirostat_eta: float = 0.1, logits_processor: Optional[llama.LogitsProcessorList] = None, grammar: Optional[llama.LlamaGrammar] = None, logprobs: Optional[bool] = None, top_logprobs: Optional[int] = None, **kwargs, # type: ignore ) -> Union[ llama_types.CreateChatCompletionResponse, Iterator[llama_types.CreateChatCompletionStreamResponse], ]: ... class LlamaChatCompletionHandlerNotFoundException(Exception): pass class LlamaChatCompletionHandlerRegistry(Singleton): _chat_handlers: Dict[str, LlamaChatCompletionHandler] = {} def register_chat_completion_handler( self, name: str, chat_handler: LlamaChatCompletionHandler, overwrite: bool = False, ): if not overwrite and name in self._chat_handlers: raise ValueError( f"Formatter with name '{name}' is already registered. Use `overwrite=True` to overwrite it." ) self._chat_handlers[name] = chat_handler def unregister_chat_handler(self, name: str): if name in self._chat_handlers: del self._chat_handlers[name] else: raise ValueError(f"No formatter registered under the name '{name}'.") def get_chat_completion_handler_by_name( self, name: str ) -> LlamaChatCompletionHandler: try: chat_handler = self._chat_handlers[name] return chat_handler except KeyError: raise LlamaChatCompletionHandlerNotFoundException( f"Invalid chat handler: {name} (valid formats: {list(self._chat_handlers.keys())})" ) def get_chat_completion_handler(name: str) -> LlamaChatCompletionHandler: return LlamaChatCompletionHandlerRegistry().get_chat_completion_handler_by_name( name ) def register_chat_completion_handler(name: str): def decorator(f: LlamaChatCompletionHandler): LlamaChatCompletionHandlerRegistry().register_chat_completion_handler(name, f) return f return decorator ### Chat Formatter ### @dataclasses.dataclass class ChatFormatterResponse: """Dataclass that stores completion parameters for a given chat format and create_chat_completion request. prompt contains the formatted prompt generated from the chat format and messages. stop contains the stop token or list of stop tokens to use for the chat format.""" prompt: str stop: Optional[Union[str, List[str]]] = None stopping_criteria: Optional[llama.StoppingCriteriaList] = None class ChatFormatter(Protocol): """Base Protocol for a chat formatter. A chat formatter is a function that takes a list of messages and returns a chat format response which can be used to generate a completion. The response can also include a stop token or list of stop tokens to use for the completion.""" def __call__( self, *, messages: List[llama_types.ChatCompletionRequestMessage], **kwargs: Any, ) -> ChatFormatterResponse: ... class Jinja2ChatFormatter(ChatFormatter): def __init__( self, template: str, eos_token: str, bos_token: str, add_generation_prompt: bool = True, stop_token_ids: Optional[List[int]] = None, ): """A chat formatter that uses jinja2 templates to format the prompt.""" self.template = template self.eos_token = eos_token self.bos_token = bos_token self.add_generation_prompt = add_generation_prompt self.stop_token_ids = set(stop_token_ids) if stop_token_ids is not None else None self._environment = jinja2.Environment( loader=jinja2.BaseLoader(), trim_blocks=True, lstrip_blocks=True, ).from_string(self.template) def __call__( self, *, messages: List[llama_types.ChatCompletionRequestMessage], functions: Optional[List[llama_types.ChatCompletionFunction]] = None, function_call: Optional[llama_types.ChatCompletionRequestFunctionCall] = None, tools: Optional[List[llama_types.ChatCompletionTool]] = None, tool_choice: Optional[llama_types.ChatCompletionToolChoiceOption] = None, **kwargs: Any, ) -> ChatFormatterResponse: def raise_exception(message: str): raise ValueError(message) prompt = self._environment.render( messages=messages, eos_token=self.eos_token, bos_token=self.bos_token, raise_exception=raise_exception, add_generation_prompt=self.add_generation_prompt, functions=functions, function_call=function_call, tools=tools, tool_choice=tool_choice, ) stopping_criteria = None if self.stop_token_ids is not None: def stop_on_last_token( tokens: npt.NDArray[np.intc], logits: npt.NDArray[np.single] ) -> bool: return tokens[-1] in self.stop_token_ids stopping_criteria = llama.StoppingCriteriaList([stop_on_last_token]) return ChatFormatterResponse(prompt=prompt, stop=[self.eos_token], stopping_criteria=stopping_criteria) def to_chat_handler(self) -> LlamaChatCompletionHandler: return chat_formatter_to_chat_completion_handler(self) def _convert_text_completion_to_chat( completion: llama_types.Completion, ) -> llama_types.ChatCompletion: assert "usage" in completion return { "id": "chat" + completion["id"], "object": "chat.completion", "created": completion["created"], "model": completion["model"], "choices": [ { "index": 0, "message": { "role": "assistant", "content": completion["choices"][0]["text"], }, "logprobs": completion["choices"][0]["logprobs"], "finish_reason": completion["choices"][0]["finish_reason"], } ], "usage": completion["usage"], } def _convert_text_completion_chunks_to_chat( chunks: Iterator[llama_types.CreateCompletionStreamResponse], ) -> Iterator[llama_types.ChatCompletionChunk]: for i, chunk in enumerate(chunks): if i == 0: yield { "id": "chat" + chunk["id"], "model": chunk["model"], "created": chunk["created"], "object": "chat.completion.chunk", "choices": [ { "index": 0, "delta": { "role": "assistant", }, "logprobs": None, "finish_reason": None, } ], } yield { "id": "chat" + chunk["id"], "model": chunk["model"], "created": chunk["created"], "object": "chat.completion.chunk", "choices": [ { "index": 0, "delta": ( { "content": chunk["choices"][0]["text"], } if chunk["choices"][0]["finish_reason"] is None else {} ), "logprobs": chunk["choices"][0]["logprobs"], "finish_reason": chunk["choices"][0]["finish_reason"], } ], } def _convert_completion_to_chat( completion_or_chunks: Union[ llama_types.CreateCompletionResponse, Iterator[llama_types.CreateCompletionStreamResponse], ], stream: bool = False, ) -> Union[ llama_types.CreateChatCompletionResponse, Iterator[llama_types.ChatCompletionChunk] ]: if stream: chunks: Iterator[llama_types.CreateCompletionStreamResponse] = completion_or_chunks # type: ignore return _convert_text_completion_chunks_to_chat(chunks) else: completion: llama_types.Completion = completion_or_chunks # type: ignore return _convert_text_completion_to_chat(completion) def _convert_completion_to_chat_function( tool_name: str, completion_or_chunks: Union[ llama_types.CreateCompletionResponse, Iterator[llama_types.CreateCompletionStreamResponse], ], stream: bool, ): if not stream: completion: llama_types.CreateCompletionResponse = completion_or_chunks # type: ignore assert "usage" in completion tool_id = "call_" + "_0_" + tool_name + "_" + completion["id"] # TODO: Fix for legacy function calls chat_completion: llama_types.CreateChatCompletionResponse = { "id": "chat" + completion["id"], "object": "chat.completion", "created": completion["created"], "model": completion["model"], "choices": [ { "index": 0, "message": { "role": "assistant", "content": None, "function_call": { "name": tool_name, "arguments": completion["choices"][0]["text"], }, "tool_calls": [ { "id": tool_id, "type": "function", "function": { "name": tool_name, "arguments": completion["choices"][0]["text"], }, } ], }, "logprobs": completion["choices"][0]["logprobs"], "finish_reason": "tool_calls", } ], "usage": completion["usage"], } return chat_completion else: chunks: Iterator[llama_types.CreateCompletionStreamResponse] = completion_or_chunks # type: ignore def _stream_response_to_function_stream( chunks: Iterator[llama_types.CreateCompletionStreamResponse], ) -> Iterator[llama_types.CreateChatCompletionStreamResponse]: # blank first message first = True id_ = None created = None model = None tool_id = None for chunk in chunks: if first: id_ = "chat" + chunk["id"] created = chunk["created"] model = chunk["model"] tool_id = "call_" + "_0_" + tool_name + "_" + chunk["id"] yield { "id": id_, "object": "chat.completion.chunk", "created": created, "model": model, "choices": [ { "index": 0, "finish_reason": None, "logprobs": None, "delta": { "role": "assistant", "content": None, "function_call": None, "tool_calls": None, }, } ], } yield { "id": "chat" + chunk["id"], "object": "chat.completion.chunk", "created": chunk["created"], "model": chunk["model"], "choices": [ { "index": 0, "finish_reason": None, "logprobs": chunk["choices"][0]["logprobs"], "delta": { "role": None, "content": None, "function_call": { "name": tool_name, "arguments": chunk["choices"][0]["text"], }, "tool_calls": [ { "index": 0, "id": tool_id, "type": "function", "function": { "name": tool_name, "arguments": chunk["choices"][0]["text"], }, } ], }, } ], } first = False continue assert tool_id is not None yield { "id": "chat" + chunk["id"], "object": "chat.completion.chunk", "created": chunk["created"], "model": chunk["model"], "choices": [ { "index": 0, "finish_reason": None, "logprobs": chunk["choices"][0]["logprobs"], "delta": { "role": None, "content": None, "function_call": { "name": tool_name, "arguments": chunk["choices"][0]["text"], }, "tool_calls": [ { "index": 0, "id": tool_id, "type": "function", "function": { "name": tool_name, "arguments": chunk["choices"][0][ "text" ], }, } ], }, } ], } if id_ is not None and created is not None and model is not None: yield { "id": id_, "object": "chat.completion.chunk", "created": created, "model": model, "choices": [ { "index": 0, "finish_reason": "tool_calls", "logprobs": None, "delta": { "role": None, "content": None, "function_call": None, "tool_calls": None, }, } ], } return _stream_response_to_function_stream(chunks) def chat_formatter_to_chat_completion_handler( chat_formatter: ChatFormatter, ) -> LlamaChatCompletionHandler: def chat_completion_handler( *, llama: llama.Llama, messages: List[llama_types.ChatCompletionRequestMessage], functions: Optional[List[llama_types.ChatCompletionFunction]] = None, function_call: Optional[llama_types.ChatCompletionRequestFunctionCall] = None, tools: Optional[List[llama_types.ChatCompletionTool]] = None, tool_choice: Optional[llama_types.ChatCompletionToolChoiceOption] = None, temperature: float = 0.2, top_p: float = 0.95, top_k: int = 40, min_p: float = 0.05, typical_p: float = 1.0, stream: bool = False, stop: Optional[Union[str, List[str]]] = [], seed: Optional[int] = None, response_format: Optional[ llama_types.ChatCompletionRequestResponseFormat ] = None, max_tokens: Optional[int] = None, presence_penalty: float = 0.0, frequency_penalty: float = 0.0, repeat_penalty: float = 1.1, tfs_z: float = 1.0, mirostat_mode: int = 0, mirostat_tau: float = 5.0, mirostat_eta: float = 0.1, model: Optional[str] = None, logits_processor: Optional[llama.LogitsProcessorList] = None, grammar: Optional[llama.LlamaGrammar] = None, logit_bias: Optional[Dict[str, float]] = None, logprobs: Optional[bool] = None, top_logprobs: Optional[int] = None, **kwargs, # type: ignore ) -> Union[ llama_types.CreateChatCompletionResponse, Iterator[llama_types.CreateChatCompletionStreamResponse], ]: result = chat_formatter( messages=messages, functions=functions, function_call=function_call, tools=tools, tool_choice=tool_choice, ) prompt = result.prompt if result.stop is not None: stop = [] if stop is None else [stop] if isinstance(stop, str) else stop rstop = result.stop if isinstance(result.stop, list) else [result.stop] stop = stop + rstop stopping_criteria = None if result.stopping_criteria is not None: stopping_criteria = result.stopping_criteria if response_format is not None and response_format["type"] == "json_object": grammar = _grammar_for_response_format(response_format, verbose=llama.verbose) # Convert legacy functions to tools if functions is not None: tools = [ { "type": "function", "function": function, } for function in functions ] # Convert legacy function_call to tool_choice if function_call is not None: if isinstance(function_call, str) and ( function_call == "none" or function_call == "auto" ): tool_choice = function_call if isinstance(function_call, dict) and "name" in function_call: tool_choice = { "type": "function", "function": { "name": function_call["name"], }, } tool = None if tool_choice is not None and isinstance(tool_choice, dict) and tools is not None: name = tool_choice["function"]["name"] tool = next((t for t in tools if t["function"]["name"] == name), None) if tool is None: raise ValueError(f"Tool choice '{name}' not found in tools.") schema = tool["function"]["parameters"] try: # create grammar from json schema grammar = llama_grammar.LlamaGrammar.from_json_schema( json.dumps(schema), verbose=llama.verbose ) except Exception as e: grammar = llama_grammar.LlamaGrammar.from_string( llama_grammar.JSON_GBNF, verbose=llama.verbose ) completion_or_chunks = llama.create_completion( prompt=prompt, temperature=temperature, top_p=top_p, top_k=top_k, min_p=min_p, typical_p=typical_p, logprobs=top_logprobs if logprobs else None, stream=stream, stop=stop, seed=seed, max_tokens=max_tokens, presence_penalty=presence_penalty, frequency_penalty=frequency_penalty, repeat_penalty=repeat_penalty, tfs_z=tfs_z, mirostat_mode=mirostat_mode, mirostat_tau=mirostat_tau, mirostat_eta=mirostat_eta, model=model, logits_processor=logits_processor, stopping_criteria=stopping_criteria, grammar=grammar, logit_bias=logit_bias, ) if tool is not None: tool_name = tool["function"]["name"] return _convert_completion_to_chat_function( tool_name, completion_or_chunks, stream ) return _convert_completion_to_chat(completion_or_chunks, stream=stream) return chat_completion_handler def hf_autotokenizer_to_chat_formatter( pretrained_model_name_or_path: Union[str, os.PathLike[str]] ) -> ChatFormatter: # https://huggingface.co/docs/transformers/main/chat_templating # https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1#instruction-format # https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1/blob/main/tokenizer_config.json from transformers import AutoTokenizer # type: ignore tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path) # type: ignore def format_autotokenizer( messages: List[llama_types.ChatCompletionRequestMessage], **kwargs: Any, ) -> ChatFormatterResponse: tokenizer.use_default_system_prompt = False # type: ignore prompt: str = tokenizer.apply_chat_template(messages, tokenize=False) # type: ignore assert isinstance(prompt, str) # Return formatted prompt and eos token by default return ChatFormatterResponse(prompt=prompt, stop=tokenizer.eos_token) return format_autotokenizer def hf_autotokenizer_to_chat_completion_handler( pretrained_model_name_or_path: Union[str, os.PathLike[str]] ) -> LlamaChatCompletionHandler: chat_formatter = hf_autotokenizer_to_chat_formatter(pretrained_model_name_or_path) return chat_formatter_to_chat_completion_handler(chat_formatter) def hf_tokenizer_config_to_chat_formatter( tokenizer_config: Dict[str, Any], add_generation_prompt: bool = True, ) -> ChatFormatter: assert isinstance(tokenizer_config, dict) assert "chat_template" in tokenizer_config assert isinstance(tokenizer_config["chat_template"], str) chat_template = tokenizer_config["chat_template"] assert "bos_token" in tokenizer_config assert isinstance(tokenizer_config["bos_token"], str) bos_token = tokenizer_config["bos_token"] assert "eos_token" in tokenizer_config assert isinstance(tokenizer_config["eos_token"], str) eos_token = tokenizer_config["eos_token"] env = jinja2.Environment( loader=jinja2.BaseLoader(), trim_blocks=True, lstrip_blocks=True, ).from_string(chat_template) def format_tokenizer_config( messages: List[llama_types.ChatCompletionRequestMessage], **kwargs: Any, ) -> ChatFormatterResponse: # TODO: veryify this is correct # Add a blank assistant message to the end of the messages to prompt the model to generate a response if add_generation_prompt: messages = [ *messages, llama_types.ChatCompletionRequestAssistantMessage( role="assistant", content="" ), ] prompt = env.render( messages=messages, bos_token=bos_token, eos_token=eos_token, ) return ChatFormatterResponse(prompt=prompt, stop=[eos_token, bos_token]) return format_tokenizer_config def hf_tokenizer_config_to_chat_completion_handler( tokenizer_config: Dict[str, Any], add_generation_prompt: bool = True, ) -> LlamaChatCompletionHandler: chat_formatter = hf_tokenizer_config_to_chat_formatter( tokenizer_config, add_generation_prompt=add_generation_prompt ) return chat_formatter_to_chat_completion_handler(chat_formatter) def guess_chat_format_from_gguf_metadata(metadata: Dict[str, str]) -> Optional[str]: if "tokenizer.chat_template" not in metadata: return None if metadata["tokenizer.chat_template"] == CHATML_CHAT_TEMPLATE: return "chatml" if (metadata["tokenizer.chat_template"] == MISTRAL_INSTRUCT_CHAT_TEMPLATE or metadata["tokenizer.chat_template"] == MIXTRAL_INSTRUCT_CHAT_TEMPLATE): return "mistral-instruct" if metadata["tokenizer.chat_template"] == LLAMA3_INSTRUCT_CHAT_TEMPLATE: return "llama-3" return None ### Utility functions for formatting chat prompts ### # TODO: Replace these with jinja2 templates def _get_system_message( messages: List[llama_types.ChatCompletionRequestMessage], ) -> str: """Get the first system message.""" for message in messages: if message["role"] == "system": return message["content"] or "" return "" def _map_roles( messages: List[llama_types.ChatCompletionRequestMessage], role_map: Dict[str, str], ) -> List[Tuple[str, Optional[str]]]: """Map the message roles.""" output: List[Tuple[str, Optional[str]]] = [] for message in messages: role = message["role"] if role in role_map: content: str | None = ( message["content"] if isinstance(message["content"], str) else None ) output.append((role_map[role], content)) return output def _format_llama2( system_message: str, messages: List[Tuple[str, Optional[str]]], sep: str, sep2: str ) -> str: """Format the prompt with the llama2 style.""" seps = [sep, sep2] ret = system_message + sep for i, (role, message) in enumerate(messages): if system_message and i == 0: m = message or "" ret += m + seps[i % 2] elif message: ret += role + message + " " + seps[i % 2] else: ret += role + " " return ret def _format_add_colon_single( system_message: str, messages: List[Tuple[str, Optional[str]]], sep: str ) -> str: """Format the prompt with the add-colon-single style.""" ret = system_message + sep for role, message in messages: if message: ret += role + ": " + message + sep else: ret += role + ":" return ret def _format_add_colon_two( system_message: str, messages: List[Tuple[str, Optional[str]]], sep: str, sep2: str ) -> str: """Format the prompt with the add-colon-two style.""" seps = [sep, sep2] ret = system_message + seps[0] for i, (role, message) in enumerate(messages): if message: ret += role + ": " + message + seps[i % 2] else: ret += role + ":" return ret def _format_no_colon_single( system_message: str, messages: List[Tuple[str, Optional[str]]], sep: str ) -> str: """Format the prompt with the no-colon-single style.""" ret = system_message for role, message in messages: if message: ret += role + message + sep else: ret += role return ret def _format_add_colon_space_single( system_message: str, messages: List[Tuple[str, Optional[str]]], sep: str ) -> str: """Format the prompt with the add-colon-space-single style.""" ret = system_message + sep for role, message in messages: if message: ret += role + ": " + message + sep else: ret += role + ": " # must be end with a space return ret def _format_chatml( system_message: str, messages: List[Tuple[str, Optional[str]]], sep: str ) -> str: """Format the prompt with the chatml style.""" ret = "" if system_message == "" else system_message + sep + "\n" for role, message in messages: if message: ret += role + "\n" + message + sep + "\n" else: ret += role + "\n" return ret def _format_chatglm3( system_message: str, messages: List[Tuple[str, Optional[str]]], sep: str ) -> str: """Format the prompt with the chatglm3 style.""" ret = "" if system_message: ret += system_message for role, message in messages: if message: ret += role + "\n" + " " + message else: ret += role return ret def _grammar_for_json(verbose:bool=False): return llama_grammar.LlamaGrammar.from_string(llama_grammar.JSON_GBNF, verbose=verbose) def _grammar_for_json_schema( schema: str, verbose: bool = False, fallback_to_json: bool = True ): try: return llama_grammar.LlamaGrammar.from_json_schema(schema, verbose=verbose) except Exception as e: if fallback_to_json: return _grammar_for_json(verbose=verbose) else: raise e def _grammar_for_response_format( response_format: llama_types.ChatCompletionRequestResponseFormat, verbose: bool = False ): if response_format["type"] != "json_object": return None if "schema" in response_format: return _grammar_for_json_schema( json.dumps(response_format["schema"]), verbose=verbose ) else: return _grammar_for_json(verbose=verbose) ### Chat Formats ### def register_chat_format(name: str): def decorator(f: ChatFormatter): chat_completion_handler = chat_formatter_to_chat_completion_handler(f) LlamaChatCompletionHandlerRegistry().register_chat_completion_handler( name, chat_completion_handler ) return f return decorator # see https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/tokenization_llama.py # system prompt is "embedded" in the first message @register_chat_format("llama-2") def format_llama2( messages: List[llama_types.ChatCompletionRequestMessage], **kwargs: Any, ) -> ChatFormatterResponse: _system_template = "[INST] <>\n{system_message}\n<>" _roles = dict(user="[INST]", assistant="[/INST]") _messages = _map_roles(messages, _roles) system_message = _get_system_message(messages) if system_message: system_message = _system_template.format(system_message=system_message) _prompt = _format_llama2(system_message, _messages, " ", "") + "[/INST]" return ChatFormatterResponse(prompt=_prompt) # Chat format for Llama-3 models, see more details at: # https://github.com/meta-llama/llama3/blob/main/llama/tokenizer.py#L202-L229 @register_chat_format("llama-3") def format_llama3( messages: List[llama_types.ChatCompletionRequestMessage], **kwargs: Any, ) -> ChatFormatterResponse: _roles = dict( system="<|start_header_id|>system<|end_header_id|>\n\n", user="<|start_header_id|>user<|end_header_id|>\n\n", assistant="<|start_header_id|>assistant<|end_header_id|>\n\n", ) _begin_token = "<|begin_of_text|>" _sep = "<|eot_id|>" _messages = _map_roles(messages, _roles) _messages.append((_roles["assistant"], None)) _prompt = _format_no_colon_single(_begin_token, _messages, _sep) return ChatFormatterResponse(prompt=_prompt, stop=_sep) @register_chat_format("alpaca") def format_alpaca( messages: List[llama_types.ChatCompletionRequestMessage], **kwargs: Any, ) -> ChatFormatterResponse: _roles = dict(user="### Instruction", assistant="### Response") _sep = "\n\n" _sep2 = "" system_message = _get_system_message(messages) _messages = _map_roles(messages, _roles) _prompt = _format_add_colon_two(system_message, _messages, _sep, _sep2) return ChatFormatterResponse(prompt=_prompt) @register_chat_format("qwen") def format_qwen( messages: List[llama_types.ChatCompletionRequestMessage], **kwargs: Any, ) -> ChatFormatterResponse: _roles = dict(user="<|im_start|>user", assistant="<|im_start|>assistant") system_message = "You are a helpful assistant." system_template = "<|im_start|>system\n{system_message}" system_message = system_template.format(system_message=system_message) _messages = _map_roles(messages, _roles) _messages.append((_roles["assistant"], None)) _sep = "<|im_end|>" _prompt = _format_chatml(system_message, _messages, _sep) _sep2 = "<|endoftext|>" return ChatFormatterResponse(prompt=_prompt, stop=_sep2) @register_chat_format("vicuna") def format( messages: List[llama_types.ChatCompletionRequestMessage], **kwargs: Any, ) -> ChatFormatterResponse: _system_message = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions." _roles = dict(user="USER", assistant="ASSISTANT") _sep = " " _sep2 = "" system_message = _system_message _messages = _map_roles(messages, _roles) _messages.append((_roles["assistant"], None)) _prompt = _format_add_colon_two(system_message, _messages, _sep, _sep2) return ChatFormatterResponse(prompt=_prompt) @register_chat_format("oasst_llama") def format_oasst_llama( messages: List[llama_types.ChatCompletionRequestMessage], **kwargs: Any, ) -> ChatFormatterResponse: _system_template = "[INST] <>\n{system_message}\n<>\n\n" _roles = dict(user="<|prompter|>", assistant="<|assistant|>") _sep = "" system_message = _get_system_message(messages) system_message = _system_template.format(system_message=system_message) _messages = _map_roles(messages, _roles) _messages.append((_roles["assistant"], None)) _prompt = _format_no_colon_single(system_message, _messages, _sep) return ChatFormatterResponse(prompt=_prompt) @register_chat_format("baichuan-2") def format_baichuan2( messages: List[llama_types.ChatCompletionRequestMessage], **kwargs: Any, ) -> ChatFormatterResponse: _system_template = "{system_message}" _roles = dict(user="", assistant="") _sep = "" system_message = _get_system_message(messages) system_message = _system_template.format(system_message=system_message) _messages = _map_roles(messages, _roles) _messages.append((_roles["assistant"], None)) _prompt = _format_no_colon_single(system_message, _messages, _sep) return ChatFormatterResponse(prompt=_prompt) @register_chat_format("baichuan") def format_baichuan( messages: List[llama_types.ChatCompletionRequestMessage], **kwargs: Any, ) -> ChatFormatterResponse: _system_template = "{system_message}" _roles = dict(user="", assistant="") _sep = "" system_message = _get_system_message(messages) system_message = _system_template.format(system_message=system_message) _messages = _map_roles(messages, _roles) _messages.append((_roles["assistant"], None)) _prompt = _format_no_colon_single(system_message, _messages, _sep) return ChatFormatterResponse(prompt=_prompt) @register_chat_format("openbuddy") def format_openbuddy( messages: List[llama_types.ChatCompletionRequestMessage], **kwargs: Any, ) -> ChatFormatterResponse: _system_message = """You are a helpful, respectful and honest INTP-T AI Assistant named Buddy. You are talking to a human User. Always answer as helpfully and logically as possible, while being safe. Your answers should not include any harmful, political, religious, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information. You can speak fluently in many languages, for example: English, Chinese. You cannot access the internet, but you have vast knowledge, cutoff: 2021-09. You are trained by OpenBuddy team, (https://openbuddy.ai, https://github.com/OpenBuddy/OpenBuddy), you are based on LLaMA and Falcon transformers model, not related to GPT or OpenAI. """ _roles = dict(user="User", assistant="Assistant") _sep = "\n" system_message = _system_message _messages = _map_roles(messages, _roles) _messages.append((_roles["assistant"], None)) _prompt = _format_add_colon_single(system_message, _messages, _sep) return ChatFormatterResponse(prompt=_prompt) @register_chat_format("redpajama-incite") def format_redpajama_incite( messages: List[llama_types.ChatCompletionRequestMessage], **kwargs: Any, ) -> ChatFormatterResponse: _system_message = _get_system_message(messages) _roles = dict(user="", assistant="") _sep = "\n" _stop = "" system_message = _system_message _messages = _map_roles(messages, _roles) _messages.append((_roles["assistant"], None)) _prompt = _format_add_colon_single(system_message, _messages, _sep) return ChatFormatterResponse(prompt=_prompt, stop=_stop) @register_chat_format("snoozy") def format_snoozy( messages: List[llama_types.ChatCompletionRequestMessage], **kwargs: Any, ) -> ChatFormatterResponse: system_template = "### Instruction:\n{system_message}" default_system_message = "The prompt below is a question to answer, a task to complete, or a conversation to respond to; decide which and write an appropriate response." _system_message = _get_system_message(messages) _system_message = ( _system_message if _system_message != "" else default_system_message ) system_message = system_template.format(system_message=_system_message) _roles = dict(user="### Prompt", assistant="### Response") _sep = "\n" _stop = "###" system_message = _system_message _messages = _map_roles(messages, _roles) _messages.append((_roles["assistant"], None)) _prompt = _format_add_colon_single(system_message, _messages, _sep) return ChatFormatterResponse(prompt=_prompt, stop=_stop) @register_chat_format("phind") def format_phind( messages: List[llama_types.ChatCompletionRequestMessage], **kwargs: Any, ) -> ChatFormatterResponse: _roles = dict(user="### User Message", assistant="### Assistant") _sep = "\n\n" _system_message = "### System Prompt\nYou are an intelligent programming assistant." _messages = _map_roles(messages, _roles) _messages.append((_roles["assistant"], None)) _prompt = _format_add_colon_single(_system_message, _messages, _sep) return ChatFormatterResponse(prompt=_prompt) @register_chat_format("intel") def format_intel( messages: List[llama_types.ChatCompletionRequestMessage], **kwargs: Any, ) -> ChatFormatterResponse: _roles = dict(user="### User:", assistant="### Assistant:") _sep = "\n" _system_message = "### System:\n{system_message}" _messages = _map_roles(messages, _roles) _messages.append((_roles["assistant"], None)) _prompt = _format_add_colon_single(_system_message, _messages, _sep) return ChatFormatterResponse(prompt=_prompt) @register_chat_format("open-orca") def format_open_orca( messages: List[llama_types.ChatCompletionRequestMessage], **kwargs: Any, ) -> ChatFormatterResponse: system_template = "{system_message}" system_message = ( "You are a helpful assistant. Please answer truthfully and write out your " "thinking step by step to be sure you get the right answer. If you make a mistake or encounter " "an error in your thinking, say so out loud and attempt to correct it. If you don't know or " "aren't sure about something, say so clearly. You will act as a professional logician, mathematician, " "and physicist. You will also act as the most appropriate type of expert to answer any particular " "question or solve the relevant problem; state which expert type your are, if so. Also think of " "any particular named expert that would be ideal to answer the relevant question or solve the " "relevant problem; name and act as them, if appropriate." ) roles = ("User", "Assistant") sep = "<|end_of_turn|>\n" # stop_token_ids=[32000, 32001], # "<|end_of_turn|>" stop_str = "User" system_message = system_template.format(system_message=system_message) _messages = _map_roles(messages, dict(zip(roles, roles))) _messages.append((roles[1], None)) _prompt = _format_add_colon_space_single(system_message, _messages, sep) return ChatFormatterResponse(prompt=_prompt, stop=stop_str) @register_chat_format("mistrallite") def format_mistrallite( messages: List[llama_types.ChatCompletionRequestMessage], **kwargs: Any, ) -> ChatFormatterResponse: _roles = dict(user="<|prompter|>", assistant="\n<|assistant|>") _sep = " " system_template = """<|system|>{system_message}""" system_message = _get_system_message(messages) system_message = system_template.format(system_message=system_message) _messages = _map_roles(messages, _roles) _messages.append((_roles["assistant"], None)) _prompt = _format_no_colon_single(system_message, _messages, _sep) return ChatFormatterResponse(prompt=_prompt) @register_chat_format("zephyr") def format_zephyr( messages: List[llama_types.ChatCompletionRequestMessage], **kwargs: Any, ) -> ChatFormatterResponse: system_template = """<|system|> {system_message}""" system_message = _get_system_message(messages) system_message = system_template.format(system_message=system_message) _roles = dict(user="<|user|>\n", assistant="<|assistant|>\n") _sep = "" _messages = _map_roles(messages, _roles) _messages.append((_roles["assistant"], None)) _prompt = _format_chatml(system_message, _messages, _sep) return ChatFormatterResponse(prompt=_prompt, stop=_sep) @register_chat_format("pygmalion") def format_pygmalion( messages: List[llama_types.ChatCompletionRequestMessage], **kwargs: Any, ) -> ChatFormatterResponse: system_template = """<|system|>{system_message}""" system_message = _get_system_message(messages) system_message = system_template.format(system_message=system_message) _roles = dict(user="<|user|>", assistant="<|model|>") _sep = "\n" _messages = _map_roles(messages, _roles) _messages.append((_roles["assistant"], None)) _prompt = _format_chatml(system_message, _messages, _sep) return ChatFormatterResponse(prompt=_prompt, stop=_sep) @register_chat_format("chatml") def format_chatml( messages: List[llama_types.ChatCompletionRequestMessage], **kwargs: Any, ) -> ChatFormatterResponse: system_template = """<|im_start|>system {system_message}""" system_message = _get_system_message(messages) system_message = system_template.format(system_message=system_message) _roles = dict(user="<|im_start|>user", assistant="<|im_start|>assistant") _sep = "<|im_end|>" _messages = _map_roles(messages, _roles) _messages.append((_roles["assistant"], None)) _prompt = _format_chatml(system_message, _messages, _sep) return ChatFormatterResponse(prompt=_prompt, stop=_sep) @register_chat_format("mistral-instruct") def format_mistral_instruct( messages: List[llama_types.ChatCompletionRequestMessage], **kwargs: Any, ) -> ChatFormatterResponse: bos = "" eos = "" stop = eos prompt = bos for message in messages: if ( message["role"] == "user" and message["content"] is not None and isinstance(message["content"], str) ): prompt += "[INST] " + message["content"] elif ( message["role"] == "assistant" and message["content"] is not None ): prompt += " [/INST]" + message["content"] + eos prompt += " [/INST]" return ChatFormatterResponse(prompt=prompt, stop=stop) @register_chat_format("chatglm3") def format_chatglm3( messages: List[llama_types.ChatCompletionRequestMessage], **kwargs: Any, ) -> ChatFormatterResponse: system_template = """<|system|> {system_message}""" system_message = _get_system_message(messages) system_message = system_template.format(system_message=system_message) _roles = dict(user="<|user|>", assistant="<|assistant|>") _sep = "" _messages = _map_roles(messages, _roles) _messages.append((_roles["assistant"], None)) _prompt = _format_chatglm3(system_message, _messages, _sep) return ChatFormatterResponse(prompt=_prompt, stop=_sep) @register_chat_format("openchat") def format_openchat( messages: List[llama_types.ChatCompletionRequestMessage], **kwargs: Any, ) -> ChatFormatterResponse: system_template = "{system_message}<|end_of_turn|>" system_message = _get_system_message(messages) system_message = system_template.format(system_message=system_message) _roles = dict( user="GPT4 Correct User: ", assistant="<|end_of_turn|>GPT4 Correct Assistant: " ) _sep = "<|end_of_turn|>" _messages = _map_roles(messages, _roles) _messages.append((_roles["assistant"], None)) _prompt = _format_chatml(system_message, _messages, _sep) return ChatFormatterResponse(prompt=_prompt, stop=_sep) # Chat format for Saiga models, see more details and available models: # https://huggingface.co/collections/IlyaGusev/saiga2-saigamistral-6505d4ccc3d1e53166b636cd @register_chat_format("saiga") def format_saiga( messages: list[llama_types.ChatCompletionRequestMessage], **kwargs: Any, ) -> ChatFormatterResponse: _message_template = "{role}\n{content}" _roles = dict(user="user", bot="bot", system="system") _messages = _map_roles(messages, _roles) _prompt = "" for role, content in _messages: if content: _prompt += _message_template.format(role=role, content=content) else: _prompt += f"{role}\n" # Response template _prompt += "bot" return ChatFormatterResponse(prompt=_prompt.strip()) # Chat format for Google's Gemma models, see more details and available models: # https://huggingface.co/collections/google/gemma-release-65d5efbccdbb8c4202ec078b @register_chat_format("gemma") def format_gemma( messages: List[llama_types.ChatCompletionRequestMessage], **kwargs: Any, ) -> ChatFormatterResponse: system_message = _get_system_message(messages) if system_message != "": logger.debug( "`role='system'` messages are not allowed on Google's Gemma models." ) _roles = dict(user="user\n", assistant="model\n") _sep = "\n" _messages = _map_roles(messages, _roles) _messages.append((_roles["assistant"], None)) _prompt = _format_no_colon_single(system_message="", messages=_messages, sep=_sep) return ChatFormatterResponse(prompt=_prompt, stop=_sep) # Tricky chat formats that require custom chat handlers @register_chat_completion_handler("functionary") def functionary_chat_handler( llama: llama.Llama, messages: List[llama_types.ChatCompletionRequestMessage], functions: Optional[List[llama_types.ChatCompletionFunction]] = None, function_call: Optional[llama_types.ChatCompletionRequestFunctionCall] = None, tools: Optional[List[llama_types.ChatCompletionTool]] = None, tool_choice: Optional[llama_types.ChatCompletionToolChoiceOption] = None, temperature: float = 0.2, top_p: float = 0.95, top_k: int = 40, min_p: float = 0.05, typical_p: float = 1.0, stream: bool = False, stop: Optional[Union[str, List[str]]] = [], response_format: Optional[llama_types.ChatCompletionRequestResponseFormat] = None, max_tokens: Optional[int] = None, presence_penalty: float = 0.0, frequency_penalty: float = 0.0, repeat_penalty: float = 1.1, tfs_z: float = 1.0, mirostat_mode: int = 0, mirostat_tau: float = 5.0, mirostat_eta: float = 0.1, model: Optional[str] = None, logits_processor: Optional[llama.LogitsProcessorList] = None, grammar: Optional[llama.LlamaGrammar] = None, **kwargs, # type: ignore ) -> Union[llama_types.ChatCompletion, Iterator[llama_types.ChatCompletionChunk]]: SYSTEM_MESSAGE = """A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. The assistant calls functions with appropriate input when necessary""" def generate_type_definition( param: Dict[str, llama_types.JsonType], indent_level: int, shared_defs ) -> str: indent = " " * indent_level if "$ref" in param: # Reference to a shared definition ref_name = param["$ref"].split("/")[ -1 ] # Extract the type name from the reference return ref_name elif param.get("type") == "array": items = param.get("items", {}) item_type = generate_type_definition(items, indent_level + 1, shared_defs) return f"Array<{item_type}>" elif param.get("type") == "object": properties = param.get("properties", {}) nested_schema = "{\n" for nested_param_name, nested_param in properties.items(): nested_param_type = generate_type_definition( nested_param, indent_level + 1, shared_defs ) nested_schema += ( f"{indent} {nested_param_name}: {nested_param_type},\n" ) nested_schema += indent + "}" return nested_schema elif "enum" in param: # Enum type return " | ".join([f'"{enum_value}"' for enum_value in param["enum"]]) else: # Simple type return param.get("type", "any") def generate_shared_definitions(shared_defs, indent_level: int) -> str: indent = " " * indent_level shared_definitions = "" for def_name, def_properties in shared_defs.items(): shared_definitions += f"{indent}type {def_name} = " if def_properties.get("type") == "object": shared_definitions += generate_type_definition( def_properties, indent_level, shared_defs ) elif "enum" in def_properties: # Enum type shared_definitions += " | ".join( [f'"{enum_value}"' for enum_value in def_properties["enum"]] ) shared_definitions += ";\n" return shared_definitions def generate_schema_from_functions(functions, namespace="functions") -> str: schema = ( "// Supported function definitions that should be called when necessary.\n" ) schema += f"namespace {namespace} {{\n\n" # Generate shared definitions shared_definitions = {} for function in functions: parameters = function.get("parameters", {}) shared_definitions.update(parameters.get("$defs", {})) schema += generate_shared_definitions(shared_definitions, 1) for function in functions: function_name = function["name"] description = function.get("description", "") parameters = function.get("parameters", {}) required_params = parameters.get("required", []) schema += f" // {description}\n" schema += f" type {function_name} = (_: {{\n" for param_name, param in parameters.get("properties", {}).items(): param_description = param.get("description", "") param_type = generate_type_definition(param, 2, shared_definitions) optional_indicator = "" if param_name in required_params else "?" schema += f" // {param_description}\n" schema += f" {param_name}{optional_indicator}: {param_type},\n" schema += " }) => any;\n\n" schema += "}} // namespace {}\n".format(namespace) return schema def prepare_messages_for_inference( messages: List[llama_types.ChatCompletionRequestMessage], functions: Optional[List[llama_types.ChatCompletionFunctions]] = None, tools: Optional[List[llama_types.ChatCompletionTool]] = None, ): all_messages: List[llama_types.ChatCompletionRequestMessage] = [] if functions is not None: all_messages.append( llama_types.ChatCompletionRequestSystemMessage( role="system", content=generate_schema_from_functions(functions) ) ) if tools is not None: all_messages.append( llama_types.ChatCompletionRequestSystemMessage( role="system", content=generate_schema_from_functions( [ tool["function"] for tool in tools if tool["type"] == "function" ] ), ) ) all_messages.append( llama_types.ChatCompletionRequestSystemMessage( role="system", content=SYSTEM_MESSAGE ) ) for message in messages: # Function call responses if message["role"] == "function" and "name" in message: message["name"] = f"functions.{message['name']}" # Function call requests by assistant if "function_call" in message: message["function_call"][ "name" ] = f"functions.{message['function_call']['name']}" all_messages.append(message) all_messages.append( llama_types.ChatCompletionRequestAssistantMessage( role="assistant", content=None ) ) def message_to_str(msg: llama_types.ChatCompletionRequestMessage): if msg["role"] == "system": return f"system:\n{msg['content']}\n" elif msg["role"] == "function" and "name" in msg: return f"function name={msg['name']}:\n{msg['content']}\n" elif msg["role"] == "function" and "function_call" in msg: return f"function name={msg['function_call']['name']}:\n{msg['function_call']['arguments']}\n" elif msg["role"] == "tool": if msg["content"] is not None: return f"function name={msg['tool_call_id']}:\n{msg['content']}\n" else: return f"function name={msg['tool_call_id']}\n" elif msg["role"] == "user": if msg["content"] is None: return "user:\n\n" else: return f"user:\n{msg['content']}\n" elif msg["role"] == "assistant": if msg["content"] is not None and "function_call" in msg: return f"assistant:\n{msg['content']}\nassistant to={msg['function_call']['name']}:\n{msg['function_call']['arguments']}\n" elif "function_call" in msg: return f"assistant to={msg['function_call']['name']}:\n{msg['function_call']['arguments']}\n" elif "tool_calls" in msg and len(msg["tool_calls"]) > 0: for tool_call in msg[ "tool_calls" ]: # NOTE: probably doesn't work with the functionary model return f"assistant to={tool_call['id']}:\n{tool_call['function']['arguments']}\n" elif msg["content"] is None: return "assistant" else: return f"assistant:\n{msg['content']}\n" else: raise ValueError(f"Unsupported role: {msg['role']}") return "".join([message_to_str(msg) for msg in all_messages]) if tools is not None: functions = [tool["function"] for tool in tools if tool["type"] == "function"] if tool_choice is not None: function_call = ( tool_choice if isinstance(tool_choice, str) else tool_choice["function"] ) prompt = prepare_messages_for_inference(messages, functions, tools) if function_call is None and (functions is None or len(functions) == 0): completion_or_completion_chunks = llama.create_completion( prompt=prompt + ":\n", temperature=temperature, top_p=top_p, top_k=top_k, min_p=min_p, typical_p=typical_p, stream=stream, stop=["user:", ""], max_tokens=max_tokens, presence_penalty=presence_penalty, frequency_penalty=frequency_penalty, repeat_penalty=repeat_penalty, tfs_z=tfs_z, mirostat_mode=mirostat_mode, mirostat_tau=mirostat_tau, mirostat_eta=mirostat_eta, model=model, logits_processor=logits_processor, grammar=grammar, ) return _convert_completion_to_chat(completion_or_completion_chunks, stream=stream) # type: ignore if function_call is None or ( isinstance(function_call, str) and function_call == "auto" ): stop = "\n" completion: llama_types.Completion = llama.create_completion( prompt=prompt, stop=stop, stream=False ) # type: ignore completion_text = completion["choices"][0]["text"] # strip " to=functions." and ending ":" function_call = completion_text.split(".")[-1][:-1] new_prompt = prompt + completion_text + stop elif isinstance(function_call, str) and function_call != "none": new_prompt = prompt + f":\n" elif isinstance(function_call, dict): new_prompt = prompt + f" to=functions.{function_call['name']}:\n" function_call = function_call["name"] else: new_prompt = prompt + f":\n" function_body = None for function in functions or []: if function["name"] == function_call: function_body = function["parameters"] break for tool in tools or []: if tool["type"] == "function" and tool["function"]["name"] == function_call: function_body = tool["function"]["parameters"] break if function_body is not None: try: with suppress_stdout_stderr(disable=llama.verbose): grammar_text = llama_grammar.json_schema_to_gbnf( json.dumps(function_body) ) grammar = llama_grammar.LlamaGrammar.from_string( llama_grammar.json_schema_to_gbnf(json.dumps(function_body)), verbose=llama.verbose, ) print(grammar_text) except Exception as e: if llama.verbose: print( "Failed to parse function body as JSON schema, falling back to default grammar" ) print(e) with suppress_stdout_stderr(disable=llama.verbose): grammar = llama_grammar.LlamaGrammar.from_string( llama_grammar.JSON_GBNF, verbose=llama.verbose, ) else: with suppress_stdout_stderr(disable=llama.verbose): grammar = llama_grammar.LlamaGrammar.from_string( llama_grammar.JSON_GBNF, verbose=llama.verbose ) completion: llama_types.Completion = llama.create_completion( prompt=new_prompt, stop=["user:", ""], stream=False, grammar=grammar, max_tokens=max_tokens, temperature=temperature, top_p=top_p, top_k=top_k, min_p=min_p, typical_p=typical_p, presence_penalty=presence_penalty, frequency_penalty=frequency_penalty, repeat_penalty=repeat_penalty, tfs_z=tfs_z, mirostat_mode=mirostat_mode, mirostat_tau=mirostat_tau, mirostat_eta=mirostat_eta, model=model, logits_processor=logits_processor, ) # type: ignore assert "usage" in completion assert isinstance(function_call, str) assert stream is False # TODO: support stream mode if llama.verbose: print(new_prompt) print(completion["choices"][0]["text"]) # TODO: support stream mode return llama_types.CreateChatCompletionResponse( id="chat" + completion["id"], object="chat.completion", created=completion["created"], model=completion["model"], choices=[ { "index": 0, "message": { "role": "assistant", "content": None, "function_call": { "name": function_call, "arguments": completion["choices"][0]["text"], }, "tool_calls": [ { "id": function_call, "type": "function", "function": { "name": function_call, "arguments": completion["choices"][0]["text"], }, } ], }, "logprobs": completion["choices"][0]["logprobs"], "finish_reason": "tool_calls", } ], usage=completion["usage"], ) @register_chat_completion_handler("functionary-v1") @register_chat_completion_handler("functionary-v2") def functionary_v1_v2_chat_handler( llama: llama.Llama, messages: List[llama_types.ChatCompletionRequestMessage], functions: Optional[List[llama_types.ChatCompletionFunction]] = None, function_call: Optional[llama_types.ChatCompletionRequestFunctionCall] = None, tools: Optional[List[llama_types.ChatCompletionTool]] = None, tool_choice: Optional[llama_types.ChatCompletionToolChoiceOption] = None, temperature: float = 0.2, top_p: float = 0.95, top_k: int = 40, min_p: float = 0.05, typical_p: float = 1.0, stream: bool = False, stop: Optional[Union[str, List[str]]] = [], response_format: Optional[llama_types.ChatCompletionRequestResponseFormat] = None, max_tokens: Optional[int] = None, presence_penalty: float = 0.0, frequency_penalty: float = 0.0, repeat_penalty: float = 1.1, tfs_z: float = 1.0, mirostat_mode: int = 0, mirostat_tau: float = 5.0, mirostat_eta: float = 0.1, model: Optional[str] = None, logits_processor: Optional[llama.LogitsProcessorList] = None, grammar: Optional[llama.LlamaGrammar] = None, **kwargs, # type: ignore ) -> Union[llama_types.ChatCompletion, Iterator[llama_types.ChatCompletionChunk]]: SYSTEM_MESSAGE = """A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. The assistant calls functions with appropriate input when necessary""" tokenizer = llama.tokenizer_ assert hasattr( tokenizer, "hf_tokenizer" ), "Please provide a valid hf_tokenizer_path from https://huggingface.co/meetkai when initializing the Llama class" from transformers import AutoTokenizer if "<|START_OF_FUNCTION_CALL|>" in tokenizer.hf_tokenizer.additional_special_tokens: version = "v1" END_SYSTEM_TOKEN = "<|END_OF_SYSTEM|>" END_USER_TOKEN = "<|END_OF_USER|>" END_ASSISTANT_TOKEN = "<|END_OF_ASSISTANT|>" END_FUNCTION_RESULT_TOKEN = "<|END_OF_FUNCTION_RESULT|>" START_FUNCTION_CALL_TOKEN = "<|START_OF_FUNCTION_CALL|>" END_FUNCTION_CALL_TOKEN = "<|END_OF_FUNCTION_CALL|>" else: version = "v2" RECIPIENT_TOKEN = "<|recipient|>" FROM_TOKEN = "<|from|>" STOP_TOKEN = "<|stop|>" CONTENT_TOKEN = "<|content|>" def generate_type_definition( param: Dict[str, llama_types.JsonType], indent_level: int, shared_defs ) -> str: indent = " " * indent_level if "$ref" in param: # Reference to a shared definition ref_name = param["$ref"].split("/")[ -1 ] # Extract the type name from the reference return ref_name elif param.get("type") == "array": items = param.get("items", {}) item_type = generate_type_definition(items, indent_level + 1, shared_defs) return f"Array<{item_type}>" elif param.get("type") == "object": properties = param.get("properties", {}) nested_schema = "{\n" for nested_param_name, nested_param in properties.items(): nested_param_type = generate_type_definition( nested_param, indent_level + 1, shared_defs ) nested_schema += ( f"{indent} {nested_param_name}: {nested_param_type},\n" ) nested_schema += indent + "}" return nested_schema elif "enum" in param: # Enum type return " | ".join([f'"{enum_value}"' for enum_value in param["enum"]]) else: # Simple type return param.get("type", "any") def generate_shared_definitions(shared_defs, indent_level: int) -> str: indent = " " * indent_level shared_definitions = "" for def_name, def_properties in shared_defs.items(): shared_definitions += f"{indent}type {def_name} = " if def_properties.get("type") == "object": shared_definitions += generate_type_definition( def_properties, indent_level, shared_defs ) elif "enum" in def_properties: # Enum type shared_definitions += " | ".join( [f'"{enum_value}"' for enum_value in def_properties["enum"]] ) shared_definitions += ";\n" return shared_definitions def generate_schema_from_functions(functions, namespace="functions") -> str: schema = ( "// Supported function definitions that should be called when necessary.\n" ) schema += f"namespace {namespace} {{\n\n" # Generate shared definitions shared_definitions = {} for function in functions: parameters = function.get("parameters", {}) shared_definitions.update(parameters.get("$defs", {})) schema += generate_shared_definitions(shared_definitions, 1) for function in functions: function_name = function["name"] description = function.get("description", "") parameters = function.get("parameters", {}) required_params = parameters.get("required", []) schema += f"// {description}\n" schema += f"type {function_name} = (_: {{\n" for param_name, param in parameters.get("properties", {}).items(): param_description = param.get("description", "") param_type = generate_type_definition(param, 2, shared_definitions) optional_indicator = "" if param_name in required_params else "?" schema += f"// {param_description}\n" schema += f"{param_name}{optional_indicator}: {param_type},\n" schema += "}) => any;\n\n" schema += "}} // namespace {}".format(namespace) return schema def prepare_messages_for_inference( messages: List[llama_types.ChatCompletionRequestMessage], tokenizer: AutoTokenizer, version: Literal["v1", "v2"], functions: Optional[List[llama_types.ChatCompletionFunctions]] = None, tools: Optional[List[llama_types.ChatCompletionTool]] = None, ): all_messages: List[llama_types.ChatCompletionRequestMessage] = [] if functions is not None: all_messages.append( llama_types.ChatCompletionRequestSystemMessage( role="system", content=generate_schema_from_functions(functions) ) ) elif tools is not None: all_messages.append( llama_types.ChatCompletionRequestSystemMessage( role="system", content=generate_schema_from_functions( [ tool["function"] for tool in tools if tool["type"] == "function" ] ), ) ) all_messages.append( llama_types.ChatCompletionRequestSystemMessage( role="system", content=SYSTEM_MESSAGE ) ) for message in messages: # Function call responses if message["role"] == "function" and "name" in message: message["name"] = f"functions.{message['name']}" # Function call requests by assistant if "function_call" in message: message["function_call"][ "name" ] = f"functions.{message['function_call']['name']}" all_messages.append(message) if version == "v1": suffix = "assistant:\n" else: suffix = "<|from|>assistant\n<|recipient|>" return ( tokenizer.hf_tokenizer.apply_chat_template(all_messages, tokenize=False) + suffix ) if tools is not None: functions = [tool["function"] for tool in tools if tool["type"] == "function"] if tool_choice is not None: function_call = ( tool_choice if isinstance(tool_choice, str) else tool_choice["function"] ) else: function_call = "auto" prompt = prepare_messages_for_inference( messages, tokenizer, version, functions, tools ) # If no tools/functions are provided if function_call == "none" or functions is None or len(functions) == 0: if version == "v1": stop = END_ASSISTANT_TOKEN else: stop = STOP_TOKEN prompt += "all\n<|content|>" completion_or_completion_chunks = llama.create_completion( prompt=prompt, temperature=temperature, top_p=top_p, top_k=top_k, min_p=min_p, typical_p=typical_p, stream=stream, stop=stop, max_tokens=max_tokens, presence_penalty=presence_penalty, frequency_penalty=frequency_penalty, repeat_penalty=repeat_penalty, tfs_z=tfs_z, mirostat_mode=mirostat_mode, mirostat_tau=mirostat_tau, mirostat_eta=mirostat_eta, model=model, logits_processor=logits_processor, grammar=grammar, ) completion_or_completion_chunks["choices"][0]["text"] = completion_or_completion_chunks["choices"][0]["text"].lstrip() return _convert_completion_to_chat(completion_or_completion_chunks, stream=stream) # type: ignore assert stream is False # TODO: support stream mode def get_grammar(function_call): function_body = None for function in functions or []: if function["name"] == function_call: function_body = function["parameters"] break for tool in tools or []: if tool["type"] == "function" and tool["function"]["name"] == function_call: function_body = tool["function"]["parameters"] break try: with suppress_stdout_stderr(disable=llama.verbose): grammar_text = llama_grammar.json_schema_to_gbnf( json.dumps(function_body) ) grammar = llama_grammar.LlamaGrammar.from_string( llama_grammar.json_schema_to_gbnf(json.dumps(function_body)) ) print(grammar_text) except Exception as e: if llama.verbose: print( "Failed to parse function body as JSON schema, falling back to default grammar" ) print(e) with suppress_stdout_stderr(disable=llama.verbose): grammar = llama_grammar.LlamaGrammar.from_string( llama_grammar.JSON_GBNF, verbose=llama.verbose ) return grammar def create_completion(stop): completion = cast(llama_types.Completion, llama.create_completion( prompt=prompt, temperature=temperature, top_p=top_p, top_k=top_k, min_p=min_p, typical_p=typical_p, stream=False, stop=stop, max_tokens=max_tokens, presence_penalty=presence_penalty, frequency_penalty=frequency_penalty, repeat_penalty=repeat_penalty, tfs_z=tfs_z, mirostat_mode=mirostat_mode, mirostat_tau=mirostat_tau, mirostat_eta=mirostat_eta, model=model, logits_processor=logits_processor, grammar=grammar, )) return completion content = "" function_calls, function_bodies = [], [] if version == "v1": # If no or "auto" tool_choice/function_call if isinstance(function_call, str) and function_call == "auto": stops = ["\n", END_ASSISTANT_TOKEN] # If tool_choice/function_call is "none" elif isinstance(function_call, str) and function_call == "none": prompt = prepare_messages_for_inference( messages, tokenizer, version, [], [] ) stops = END_ASSISTANT_TOKEN # If tool_choice/function_call is provided elif isinstance(function_call, dict): prompt += f"{START_FUNCTION_CALL_TOKEN}{function_call['name']}:\n" stops = END_FUNCTION_CALL_TOKEN function_call = function_call["name"] function_calls.append(function_call) grammar = get_grammar(function_call) else: prompt = prompt stops = ["\n", END_ASSISTANT_TOKEN] completion = create_completion(stop=stops) completion_text = completion["choices"][0]["text"] # If the generation does not involve a function call if ( START_FUNCTION_CALL_TOKEN not in prompt and START_FUNCTION_CALL_TOKEN not in completion_text ): return _convert_completion_to_chat(completion, stream=stream) # type: ignore # If the generation involves a function call in completion, generate the parameters elif ( START_FUNCTION_CALL_TOKEN not in prompt and START_FUNCTION_CALL_TOKEN in completion_text ): prompt += ( completion_text.replace( f"{START_FUNCTION_CALL_TOKEN} ", START_FUNCTION_CALL_TOKEN ) + "\n" ) function_calls.append( completion_text.split(START_FUNCTION_CALL_TOKEN)[-1][:-1].strip() ) grammar = get_grammar(function_calls[-1]) completion = create_completion(stop=END_FUNCTION_CALL_TOKEN) function_bodies.append(completion["choices"][0]["text"].strip()) # If the prompt involves a function call, just append generated parameters to function_bodies else: function_bodies.append(completion_text.strip()) else: # If tool_choice/function_call is "none" if isinstance(function_call, str) and function_call == "none": prompt = ( prepare_messages_for_inference(messages, tokenizer, version, [], []) + "all\n<|content|>" ) stops = [STOP_TOKEN, FROM_TOKEN] completion = create_completion(stop=stops) completion["choices"][0]["text"] = completion["choices"][0]["text"].strip() return _convert_completion_to_chat(completion, stream=stream) # type: ignore # If tool_choice/function_call is provided elif isinstance(function_call, dict): prompt += f"{function_call['name']}\n{CONTENT_TOKEN}" function_call = function_call["name"] function_calls.append(function_call) grammar = get_grammar(function_call) stops = [STOP_TOKEN, FROM_TOKEN] completion = create_completion(stop=stops) completion_text = completion["choices"][0]["text"] function_bodies.append(completion_text.strip()) # If "auto" or no tool_choice/function_call elif isinstance(function_call, str) and function_call == "auto": while True: # Generate function name first grammar = None stops = CONTENT_TOKEN completion = create_completion(stop=stops) completion_text = completion["choices"][0]["text"] function_name = completion_text.strip() if function_name == "all": prompt += "all\n<|content|>" else: function_call = completion_text.strip() prompt += f"{function_call}\n<|content|>" function_calls.append(function_call) grammar = get_grammar(function_call) # Generate content stops = [RECIPIENT_TOKEN, STOP_TOKEN] completion = create_completion(stop=stops) completion_text = completion["choices"][0]["text"] if function_name == "all": content += completion_text.removesuffix("\n<|from|>assistant\n").removesuffix("\n<|from|> assistant\n") content = content.lstrip() # Check whether the model wants to generate another turn if "<|from|> assistant" in completion_text or "<|from|>assistant" in completion_text: cleaned_completion_text = completion_text.removesuffix("\n<|from|>assistant\n").removesuffix("\n<|from|> assistant\n").strip() prompt += f"{cleaned_completion_text}\n<|from|>assistant\n<|recipient|>" else: break else: function_bodies.append(completion_text.strip()) # Check whether the model wants to generate another turn prompt += completion_text.strip() grammar = None completion = create_completion(stop=stops) if "<|from|> assistant" in completion["choices"][0]["text"] or "<|from|>assistant" in completion["choices"][0]["text"]: prompt += "\n<|from|>assistant\n<|recipient|>" else: break assert "usage" in completion assert len(function_calls) == len(function_bodies) tool_calls: List[llama_types.ChatCompletionMessageToolCall] = [] for function_call, function_body in zip(function_calls, function_bodies): tool_calls.append( { "id": "call_" + "".join( [ random.choice(string.ascii_letters + string.digits) for _ in range(24) ] ), "type": "function", "function": { "name": function_call, "arguments": function_body, }, } ) # TODO: support stream mode function_call_dict: Union[Dict[str, str], Dict[Literal["function_call"], llama_types.ChatCompletionRequestAssistantMessageFunctionCall]] = { "function_call": { "name": tool_calls[0]["function"]["name"], "arguments": tool_calls[0]["function"]["arguments"], } } if len(tool_calls) == 1 else {} return llama_types.CreateChatCompletionResponse( id="chat" + completion["id"], object="chat.completion", created=completion["created"], model=completion["model"], choices=[ { "index": 0, "logprobs": completion["choices"][0]["logprobs"], "message": { "role": "assistant", "content": None if content == "" else content, "tool_calls": tool_calls, **function_call_dict, }, "finish_reason": "tool_calls" if len(tool_calls) > 0 else "stop", } ], usage=completion["usage"], ) class Llava15ChatHandler: _clip_free = None def __init__(self, clip_model_path: str, verbose: bool = False): import llama_cpp.llava_cpp as llava_cpp self._llava_cpp = llava_cpp self.clip_model_path = clip_model_path self.verbose = verbose self._clip_free = self._llava_cpp._libllava.clip_free # type: ignore if not os.path.exists(clip_model_path): raise ValueError(f"Clip model path does not exist: {clip_model_path}") with suppress_stdout_stderr(disable=self.verbose): self.clip_ctx = self._llava_cpp.clip_model_load( self.clip_model_path.encode(), 0 ) def __del__(self): with suppress_stdout_stderr(disable=self.verbose): if self.clip_ctx is not None and self._clip_free is not None: self._clip_free(self.clip_ctx) self.clip_ctx = None def load_image(self, image_url: str) -> bytes: if image_url.startswith("data:"): import base64 image_bytes = base64.b64decode(image_url.split(",")[1]) return image_bytes else: import urllib.request with urllib.request.urlopen(image_url) as f: image_bytes = f.read() return image_bytes def __call__( self, *, llama: llama.Llama, messages: List[llama_types.ChatCompletionRequestMessage], functions: Optional[List[llama_types.ChatCompletionFunction]] = None, function_call: Optional[llama_types.ChatCompletionRequestFunctionCall] = None, tools: Optional[List[llama_types.ChatCompletionTool]] = None, tool_choice: Optional[llama_types.ChatCompletionToolChoiceOption] = None, temperature: float = 0.2, top_p: float = 0.95, top_k: int = 40, min_p: float = 0.05, typical_p: float = 1.0, stream: bool = False, stop: Optional[Union[str, List[str]]] = [], response_format: Optional[ llama_types.ChatCompletionRequestResponseFormat ] = None, max_tokens: Optional[int] = None, presence_penalty: float = 0.0, frequency_penalty: float = 0.0, repeat_penalty: float = 1.1, tfs_z: float = 1.0, mirostat_mode: int = 0, mirostat_tau: float = 5.0, mirostat_eta: float = 0.1, model: Optional[str] = None, logits_processor: Optional[llama.LogitsProcessorList] = None, grammar: Optional[llama.LlamaGrammar] = None, **kwargs, # type: ignore ) -> Union[ llama_types.CreateChatCompletionResponse, Iterator[llama_types.CreateChatCompletionStreamResponse], ]: assert ( llama.context_params.logits_all is True ) # BUG: logits_all=True is required for llava assert self.clip_ctx is not None system_prompt = _get_system_message(messages) system_prompt = ( system_prompt if system_prompt != "" else "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions." ) user_role = "\nUSER:" assistant_role = "\nASSISTANT:" llama.reset() llama.eval(llama.tokenize(system_prompt.encode("utf8"), add_bos=True)) for message in messages: if message["role"] == "user" and message["content"] is not None: if isinstance(message["content"], str): llama.eval( llama.tokenize( f"{user_role} {message['content']}".encode("utf8"), add_bos=False, ) ) else: assert isinstance(message["content"], list) llama.eval( llama.tokenize(f"{user_role} ".encode("utf8"), add_bos=False) ) for content in message["content"]: if content["type"] == "text": llama.eval( llama.tokenize( f"{content['text']}".encode("utf8"), add_bos=False ) ) if content["type"] == "image_url": image_bytes = ( self.load_image(content["image_url"]["url"]) if isinstance(content["image_url"], dict) else self.load_image(content["image_url"]) ) import array data_array = array.array("B", image_bytes) c_ubyte_ptr = ( ctypes.c_ubyte * len(data_array) ).from_buffer(data_array) with suppress_stdout_stderr(disable=self.verbose): embed = ( self._llava_cpp.llava_image_embed_make_with_bytes( self.clip_ctx, llama.context_params.n_threads, c_ubyte_ptr, len(image_bytes), ) ) try: n_past = ctypes.c_int(llama.n_tokens) n_past_p = ctypes.pointer(n_past) with suppress_stdout_stderr(disable=self.verbose): self._llava_cpp.llava_eval_image_embed( llama.ctx, embed, llama.n_batch, n_past_p, ) assert llama.n_ctx() >= n_past.value llama.n_tokens = n_past.value finally: with suppress_stdout_stderr(disable=self.verbose): self._llava_cpp.llava_image_embed_free(embed) if message["role"] == "assistant" and message["content"] is not None: llama.eval( llama.tokenize( f"ASSISTANT: {message['content']}".encode("utf8"), add_bos=False ) ) assert llama.n_ctx() >= llama.n_tokens llama.eval(llama.tokenize(f"{assistant_role}".encode("utf8"), add_bos=False)) assert llama.n_ctx() >= llama.n_tokens prompt = llama.input_ids[: llama.n_tokens].tolist() if response_format is not None and response_format["type"] == "json_object": grammar = _grammar_for_response_format(response_format) return _convert_completion_to_chat( llama.create_completion( prompt=prompt, temperature=temperature, top_p=top_p, top_k=top_k, min_p=min_p, typical_p=typical_p, stream=stream, stop=stop, max_tokens=max_tokens, presence_penalty=presence_penalty, frequency_penalty=frequency_penalty, repeat_penalty=repeat_penalty, tfs_z=tfs_z, mirostat_mode=mirostat_mode, mirostat_tau=mirostat_tau, mirostat_eta=mirostat_eta, model=model, logits_processor=logits_processor, grammar=grammar, ), stream=stream, ) @register_chat_completion_handler("chatml-function-calling") def chatml_function_calling( llama: llama.Llama, messages: List[llama_types.ChatCompletionRequestMessage], functions: Optional[List[llama_types.ChatCompletionFunction]] = None, function_call: Optional[llama_types.ChatCompletionRequestFunctionCall] = None, tools: Optional[List[llama_types.ChatCompletionTool]] = None, tool_choice: Optional[llama_types.ChatCompletionToolChoiceOption] = None, temperature: float = 0.2, top_p: float = 0.95, top_k: int = 40, min_p: float = 0.05, typical_p: float = 1.0, stream: bool = False, stop: Optional[Union[str, List[str]]] = [], response_format: Optional[llama_types.ChatCompletionRequestResponseFormat] = None, max_tokens: Optional[int] = None, presence_penalty: float = 0.0, frequency_penalty: float = 0.0, repeat_penalty: float = 1.1, tfs_z: float = 1.0, mirostat_mode: int = 0, mirostat_tau: float = 5.0, mirostat_eta: float = 0.1, model: Optional[str] = None, logits_processor: Optional[llama.LogitsProcessorList] = None, grammar: Optional[llama.LlamaGrammar] = None, logprobs: Optional[bool] = None, top_logprobs: Optional[int] = None, **kwargs, # type: ignore ) -> Union[ llama_types.CreateChatCompletionResponse, Iterator[llama_types.CreateChatCompletionStreamResponse], ]: print(logprobs) function_calling_template = ( "{% for message in messages %}" "<|im_start|>{{ message.role }}\n" # System message "{% if message.role == 'system' %}" "{{ message.content }}" "{% if tool_calls %}" "\n\nYou have access to the following functions:\n" "{% for tool in tools %}" "\nfunctions.{{ tool.function.name }}:\n" "{{ tool.function.parameters | tojson }}" "\n{% endfor %}" "\n\nYou can respond to users messages with either a single message or one or more function calls." "\n\nTo respond with a message begin the message with 'message:', use the following format:" "\n\nmessage:" "\n" "\n\nTo respond with one or more function calls begin the message with 'functions.:', use the following format:" "\n\nfunctions.:" '\n{ "arg1": "value1", "arg2": "value2" }' "\nfunctions.:" '\n{ "arg1": "value1", "arg2": "value2" }' "{% endif %}" "<|im_end|>\n" "{% endif %}" # User message "{% if message.role == 'user' %}" "{{ message.content }}" "<|im_end|>\n" "{% endif %}" # Assistant message "{% if message.role == 'assistant' %}" ## Reglar message "{% if message.content and message.content | length > 0 %}" "{% if tool_calls %}" "message:\n" "{% endif %}" "{{ message.content }}" "<|im_end|>\n" "{% endif %}" ## Function calls "{% if 'tool_calls' in message %}" "{% for tool_call in message.tool_calls %}" "functions.{{ tool_call.function.name }}:\n" "{{ tool_call.function.arguments }}" "{% endfor %}" "<|im_end|>\n" "{% endif %}" "{% endif %}" "{% endfor %}" "{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}" ) template_renderer = jinja2.Environment( loader=jinja2.BaseLoader(), autoescape=jinja2.select_autoescape(["html", "xml"]), undefined=jinja2.StrictUndefined, ).from_string(function_calling_template) # Convert legacy functions to tools if functions is not None: tools = [ { "type": "function", "function": function, } for function in functions ] # Convert legacy function_call to tool_choice if function_call is not None: if isinstance(function_call, str) and ( function_call == "none" or function_call == "auto" ): tool_choice = function_call if isinstance(function_call, dict) and "name" in function_call: tool_choice = { "type": "function", "function": { "name": function_call["name"], }, } stop = [stop, "<|im_end|>"] if isinstance(stop, str) else stop + ["<|im_end|>"] if stop else ["<|im_end|>"] # Case 1: No tool choice by user if ( tool_choice is None or (isinstance(tool_choice, str) and tool_choice == "none") or tools is None or len(tools) == 0 ): prompt = template_renderer.render( messages=messages, tools=[], tool_calls=None, add_generation_prompt=True, ) if response_format is not None and response_format["type"] == "json_object": grammar = _grammar_for_response_format(response_format) return _convert_completion_to_chat( llama.create_completion( prompt=prompt, temperature=temperature, top_p=top_p, top_k=top_k, min_p=min_p, typical_p=typical_p, stream=stream, stop=stop, max_tokens=max_tokens, presence_penalty=presence_penalty, frequency_penalty=frequency_penalty, repeat_penalty=repeat_penalty, tfs_z=tfs_z, mirostat_mode=mirostat_mode, mirostat_tau=mirostat_tau, mirostat_eta=mirostat_eta, model=model, logits_processor=logits_processor, grammar=grammar, logprobs=top_logprobs if logprobs else None, ), stream=stream, ) # Case 2: Tool choice by user if isinstance(tool_choice, dict): tool_name = tool_choice["function"]["name"] tool = next( (tool for tool in tools if tool["function"]["name"] == tool_name), None ) if tool is None: raise ValueError(f"Tool with name '{tool_name}' not found in tools") prompt = template_renderer.render( messages=messages, tools=tools, tool_calls=True, add_generation_prompt=True, ) prompt += f"functions.{tool_name}:\n" try: grammar = llama_grammar.LlamaGrammar.from_json_schema( json.dumps(tool["function"]["parameters"]), verbose=llama.verbose ) except Exception as e: grammar = llama_grammar.LlamaGrammar.from_string( llama_grammar.JSON_GBNF, verbose=llama.verbose ) if llama.verbose: print( "Failed to parse function body as JSON schema, falling back to default grammar" ) print(e) completion_or_chunks = llama.create_completion( prompt=prompt, temperature=temperature, top_p=top_p, top_k=top_k, min_p=min_p, typical_p=typical_p, stream=stream, stop=stop, max_tokens=max_tokens, presence_penalty=presence_penalty, frequency_penalty=frequency_penalty, repeat_penalty=repeat_penalty, tfs_z=tfs_z, mirostat_mode=mirostat_mode, mirostat_tau=mirostat_tau, mirostat_eta=mirostat_eta, model=model, logits_processor=logits_processor, grammar=grammar, ) return _convert_completion_to_chat_function( tool_name, completion_or_chunks, stream ) # Case 3: Automatic tool choice assert isinstance(tool_choice, str) and tool_choice == "auto" function_names = " | ".join( [f'''"functions.{tool['function']['name']}:"''' for tool in tools] ) initial_gbnf_tool_grammar = ( """root ::= functions | "message:"\n""" f"""functions ::= {function_names}\n""" ) follow_up_gbnf_tool_grammar = ( """root ::= functions | "<|im_end|>"\n""" f"""functions ::= {function_names}\n""" ) prompt = template_renderer.render( messages=messages, tools=tools, tool_calls=True, add_generation_prompt=True, ) completion_or_chunks = llama.create_completion( prompt=prompt, temperature=0, top_p=top_p, top_k=top_k, min_p=min_p, typical_p=typical_p, stream=False, stop=[":"], max_tokens=None, presence_penalty=presence_penalty, frequency_penalty=frequency_penalty, repeat_penalty=repeat_penalty, tfs_z=tfs_z, mirostat_mode=mirostat_mode, mirostat_tau=mirostat_tau, mirostat_eta=mirostat_eta, model=model, logits_processor=logits_processor, grammar=llama_grammar.LlamaGrammar.from_string( initial_gbnf_tool_grammar, verbose=llama.verbose ), ) completion: llama_types.CreateCompletionResponse = completion_or_chunks # type: ignore text = completion["choices"][0]["text"] if "message" in text: return _convert_completion_to_chat( llama.create_completion( prompt=prompt + "message:\n", temperature=temperature, top_p=top_p, top_k=top_k, min_p=min_p, typical_p=typical_p, stream=stream, stop=["<|im_end|>"], logprobs=top_logprobs if logprobs else None, max_tokens=None, presence_penalty=presence_penalty, frequency_penalty=frequency_penalty, repeat_penalty=repeat_penalty, tfs_z=tfs_z, mirostat_mode=mirostat_mode, mirostat_tau=mirostat_tau, mirostat_eta=mirostat_eta, model=model, logits_processor=logits_processor, grammar=llama_grammar.LlamaGrammar.from_string( follow_up_gbnf_tool_grammar, verbose=llama.verbose ), ), stream=stream, ) # One or more function calls tool_name = text[len("functions.") :] tool = next((tool for tool in tools if tool["function"]["name"] == tool_name), None) if not stream: completions: List[llama_types.CreateCompletionResponse] = [] completions_tool_name: List[str] = [] while tool is not None: prompt += f"functions.{tool_name}:\n" try: grammar = llama_grammar.LlamaGrammar.from_json_schema( json.dumps(tool["function"]["parameters"]), verbose=llama.verbose ) except Exception as e: grammar = llama_grammar.LlamaGrammar.from_string( llama_grammar.JSON_GBNF, verbose=llama.verbose ) if llama.verbose: print( "Failed to parse function body as JSON schema, falling back to default grammar" ) print(e) completion_or_chunks = llama.create_completion( prompt=prompt, temperature=temperature, top_p=top_p, top_k=top_k, min_p=min_p, typical_p=typical_p, stream=False, stop=stop, max_tokens=None, presence_penalty=presence_penalty, frequency_penalty=frequency_penalty, repeat_penalty=repeat_penalty, tfs_z=tfs_z, mirostat_mode=mirostat_mode, mirostat_tau=mirostat_tau, mirostat_eta=mirostat_eta, model=model, logits_processor=logits_processor, grammar=grammar, ) completion_or_chunks = cast(llama_types.CreateCompletionResponse, completion_or_chunks) completions.append(completion_or_chunks) completions_tool_name.append(tool_name) prompt += completion_or_chunks["choices"][0]["text"] prompt += "\n" response = llama.create_completion( prompt=prompt, temperature=temperature, top_p=top_p, top_k=top_k, min_p=min_p, typical_p=typical_p, stream=False, stop=stop, max_tokens=None, presence_penalty=presence_penalty, frequency_penalty=frequency_penalty, repeat_penalty=repeat_penalty, tfs_z=tfs_z, mirostat_mode=mirostat_mode, mirostat_tau=mirostat_tau, mirostat_eta=mirostat_eta, model=model, logits_processor=logits_processor, grammar=llama_grammar.LlamaGrammar.from_string( follow_up_gbnf_tool_grammar, verbose=llama.verbose ), ) response = cast(llama_types.CreateCompletionResponse, response) tool_name = response["choices"][0]["text"][len("functions.") :] tool = next( (tool for tool in tools if tool["function"]["name"] == tool_name), None ) # Merge completions function_call_dict: Union[Dict[str, str], Dict[Literal["function_call"], llama_types.ChatCompletionRequestAssistantMessageFunctionCall]] = { "function_call": { "name": tool_name, "arguments": completions[0]["choices"][0]["text"], } } if len(completions) == 1 else {} return { "id": "chat" + completion["id"], "object": "chat.completion", "created": completion["created"], "model": completion["model"], "choices": [ { "finish_reason": "tool_calls", "index": 0, "logprobs": completion["choices"][0]["logprobs"], "message": { "role": "assistant", "content": None, "tool_calls": [ { "id": "call_" + f"_{i}_" + tool_name + "_" + completion["id"], "type": "function", "function": { "name": tool_name, "arguments": completion["choices"][0]["text"], }, } for i, (tool_name, completion) in enumerate( zip(completions_tool_name, completions) ) ], **function_call_dict }, } ], "usage": { "completion_tokens": sum( completion["usage"]["completion_tokens"] if "usage" in completion else 0 for completion in completions ), "prompt_tokens": sum( completion["usage"]["prompt_tokens"] if "usage" in completion else 0 for completion in completions ), "total_tokens": sum( completion["usage"]["total_tokens"] if "usage" in completion else 0 for completion in completions ), }, } raise ValueError("Automatic streaming tool choice is not supported")