import os import uuid import time import multiprocessing from typing import List, Optional from . import llama_cpp class Llama: def __init__( self, model_path: str, n_ctx: int = 512, n_parts: int = -1, seed: int = 1337, f16_kv: bool = False, logits_all: bool = False, vocab_only: bool = False, n_threads: Optional[int] = None, ): self.model_path = model_path self.last_n = 64 self.max_chunk_size = 32 self.params = llama_cpp.llama_context_default_params() self.params.n_ctx = n_ctx self.params.n_parts = n_parts self.params.seed = seed self.params.f16_kv = f16_kv self.params.logits_all = logits_all self.params.vocab_only = vocab_only self.n_threads = n_threads or multiprocessing.cpu_count() self.tokens = (llama_cpp.llama_token * self.params.n_ctx)() if not os.path.exists(model_path): raise ValueError(f"Model path does not exist: {model_path}") self.ctx = llama_cpp.llama_init_from_file( self.model_path.encode("utf-8"), self.params ) def __call__( self, prompt: str, suffix: Optional[str] = None, max_tokens: int = 16, temperature: float = 0.8, top_p: float = 0.95, logprobs: Optional[int] = None, echo: bool = False, stop: List[str] = [], repeat_penalty: float = 1.1, top_k: int = 40, ): text = b"" finish_reason = "length" completion_tokens = 0 if stop is not None: stop = [s.encode("utf-8") for s in stop] prompt_tokens = llama_cpp.llama_tokenize( self.ctx, prompt.encode("utf-8"), self.tokens, llama_cpp.llama_n_ctx(self.ctx), True, ) if prompt_tokens < 0: raise RuntimeError(f"Failed to tokenize prompt: {prompt_tokens}") if prompt_tokens + max_tokens > self.params.n_ctx: raise ValueError( f"Requested tokens exceed context window of {llama_cpp.llama_n_ctx(self.ctx)}" ) # Process prompt in chunks to avoid running out of memory for i in range(0, prompt_tokens, self.max_chunk_size): chunk = self.tokens[i : min(prompt_tokens, i + self.max_chunk_size)] rc = llama_cpp.llama_eval( self.ctx, (llama_cpp.llama_token * len(chunk))(*chunk), len(chunk), max(0, i - 1), self.n_threads, ) if rc != 0: raise RuntimeError(f"Failed to evaluate prompt: {rc}") for i in range(max_tokens): tokens_seen = prompt_tokens + completion_tokens last_n_tokens = [0] * max(0, self.last_n - tokens_seen) + [ self.tokens[j] for j in range(max(tokens_seen - self.last_n, 0), tokens_seen) ] token = llama_cpp.llama_sample_top_p_top_k( self.ctx, (llama_cpp.llama_token * len(last_n_tokens))(*last_n_tokens), len(last_n_tokens), top_k=top_k, top_p=top_p, temp=temperature, repeat_penalty=repeat_penalty, ) if token == llama_cpp.llama_token_eos(): finish_reason = "stop" break text += llama_cpp.llama_token_to_str(self.ctx, token) self.tokens[prompt_tokens + i] = token completion_tokens += 1 any_stop = [s for s in stop if s in text] if len(any_stop) > 0: first_stop = any_stop[0] text = text[: text.index(first_stop)] finish_reason = "stop" break rc = llama_cpp.llama_eval( self.ctx, (llama_cpp.llama_token * 1)(self.tokens[prompt_tokens + i]), 1, prompt_tokens + completion_tokens, self.n_threads, ) if rc != 0: raise RuntimeError(f"Failed to evaluate next token: {rc}") text = text.decode("utf-8") if echo: text = prompt + text if suffix is not None: text = text + suffix if logprobs is not None: logprobs = llama_cpp.llama_get_logits( self.ctx, )[:logprobs] return { "id": f"cmpl-{str(uuid.uuid4())}", # Likely to change "object": "text_completion", "created": int(time.time()), "model": self.model_path, "choices": [ { "text": text, "index": 0, "logprobs": logprobs, "finish_reason": finish_reason, } ], "usage": { "prompt_tokens": prompt_tokens, "completion_tokens": completion_tokens, "total_tokens": prompt_tokens + completion_tokens, }, } def __del__(self): llama_cpp.llama_free(self.ctx)