# llama-cpp-python - MacOS Install with Metal GPU **(1) Make sure you have xcode installed... at least the command line parts** ``` # check the path of your xcode install xcode-select -p # xcode installed returns # /Applications/Xcode-beta.app/Contents/Developer # if xcode is missing then install it... it takes ages; xcode-select --install ``` **(2) Install the conda version for MacOS that supports Metal GPU** ``` wget https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-MacOSX-arm64.sh bash Miniforge3-MacOSX-arm64.sh ``` **(3) Make a conda environment** ``` conda create -n llama python=3.9.16 conda activate llama ``` **(4) Install the LATEST llama-cpp-python.. which, as of just today, happily supports MacOS Metal GPU** *(you needed xcode installed in order pip to build/compile the C++ code)* ``` pip uninstall llama-cpp-python -y CMAKE_ARGS="-DLLAMA_METAL=on" FORCE_CMAKE=1 pip install -U llama-cpp-python --no-cache-dir pip install 'llama-cpp-python[server]' # you should now have llama-cpp-python v0.1.62 installed llama-cpp-python         0.1.62      ``` **(4) Download a v3 ggml llama/vicuna/alpaca model** - **ggmlv3** - file name ends with **q4_0.bin** - indicating it is 4bit quantized, with quantisation method 0 https://huggingface.co/vicuna/ggml-vicuna-13b-1.1/blob/main/ggml-vic13b-q4_0.bin https://huggingface.co/vicuna/ggml-vicuna-13b-1.1/blob/main/ggml-vic13b-uncensored-q4_0.bin https://huggingface.co/TheBloke/LLaMa-7B-GGML/blob/main/llama-7b.ggmlv3.q4_0.bin https://huggingface.co/TheBloke/LLaMa-13B-GGML/blob/main/llama-13b.ggmlv3.q4_0.bin **(6) run the llama-cpp-python API server with MacOS Metal GPU support** ``` # config your ggml model path # make sure it is ggml v3 # make sure it is q4_0 export MODEL=[path to your llama.cpp ggml models]]/[ggml-model-name]]q4_0.bin python3 -m llama_cpp.server --model $MODEL --n_gpu_layers 1 ``` ***Note:** If you omit the `--n_gpu_layers 1` then CPU will be used*