import os import uuid import time import multiprocessing from typing import List, Optional from collections import deque from . import llama_cpp class Llama: """High-level Python wrapper for a llama.cpp model.""" def __init__( self, model_path: str, # NOTE: The following parameters are likely to change in the future. n_ctx: int = 512, n_parts: int = -1, seed: int = 1337, f16_kv: bool = False, logits_all: bool = False, vocab_only: bool = False, use_mlock: bool = False, embedding: bool = False, n_threads: Optional[int] = None, ) -> "Llama": """Load a llama.cpp model from `model_path`. Args: model_path: Path to the model. n_ctx: Maximum context size. n_parts: Number of parts to split the model into. If -1, the number of parts is automatically determined. seed: Random seed. 0 for random. f16_kv: Use half-precision for key/value cache. logits_all: Return logits for all tokens, not just the last token. vocab_only: Only load the vocabulary no weights. use_mlock: Force the system to keep the model in RAM. embedding: Embedding mode only. n_threads: Number of threads to use. If None, the number of threads is automatically determined. Raises: ValueError: If the model path does not exist. Returns: A Llama instance. """ self.model_path = model_path self.params = llama_cpp.llama_context_default_params() self.params.n_ctx = n_ctx self.params.n_parts = n_parts self.params.seed = seed self.params.f16_kv = f16_kv self.params.logits_all = logits_all self.params.vocab_only = vocab_only self.params.use_mlock = use_mlock self.params.embedding = embedding self.last_n = 64 self.max_chunk_size = n_ctx self.n_threads = n_threads or multiprocessing.cpu_count() if not os.path.exists(model_path): raise ValueError(f"Model path does not exist: {model_path}") self.ctx = llama_cpp.llama_init_from_file( self.model_path.encode("utf-8"), self.params ) def tokenize(self, text: bytes) -> List[int]: """Tokenize a string. Args: text: The utf-8 encoded string to tokenize. Returns: A list of tokens. """ n_ctx = llama_cpp.llama_n_ctx(self.ctx) tokens = (llama_cpp.llama_token * n_ctx)() n_tokens = llama_cpp.llama_tokenize( self.ctx, text, tokens, n_ctx, True, ) if n_tokens < 0: raise RuntimeError(f'Failed to tokenize: text="{text}" n_tokens={n_tokens}') return list(tokens[:n_tokens]) def detokenize(self, tokens: List[int]) -> bytes: """Detokenize a list of tokens. Args: tokens: The list of tokens to detokenize. Returns: The detokenized string. """ output = b"" for token in tokens: output += llama_cpp.llama_token_to_str(self.ctx, token) return output def embed(self, text: str): """Embed a string. Args: text: The utf-8 encoded string to embed. Returns: A list of embeddings. """ tokens = self.tokenize(text.encode("utf-8")) self._eval(tokens, 0) embeddings = llama_cpp.llama_get_embeddings(self.ctx) return embeddings[:llama_cpp.llama_n_embd(self.ctx)] def _eval(self, tokens: List[int], n_past): rc = llama_cpp.llama_eval( self.ctx, (llama_cpp.llama_token * len(tokens))(*tokens), len(tokens), n_past, self.n_threads, ) if rc != 0: raise RuntimeError(f"Failed to evaluate: {rc}") def _sample(self, last_n_tokens, top_p, top_k, temp, repeat_penalty): return llama_cpp.llama_sample_top_p_top_k( self.ctx, (llama_cpp.llama_token * len(last_n_tokens))(*last_n_tokens), len(last_n_tokens), top_k=top_k, top_p=top_p, temp=temp, repeat_penalty=repeat_penalty, ) def _generate(self, past_tokens, max_tokens, top_p, top_k, temp, repeat_penalty): last_n_tokens = deque([0] * self.last_n, maxlen=self.last_n) last_n_tokens.extend(past_tokens) for i in range(max_tokens): token = self._sample( last_n_tokens, top_p=top_p, top_k=top_k, temp=temp, repeat_penalty=repeat_penalty, ) yield token self._eval([token], len(past_tokens) + i) def _call( self, prompt: str, suffix: Optional[str] = None, max_tokens: int = 16, temperature: float = 0.8, top_p: float = 0.95, logprobs: Optional[int] = None, echo: bool = False, stop: List[str] = [], repeat_penalty: float = 1.1, top_k: int = 40, stream: bool = False, ): completion_id = f"cmpl-{str(uuid.uuid4())}" created = int(time.time()) completion_tokens = [] prompt_tokens = self.tokenize(prompt.encode("utf-8")) if len(prompt_tokens) + max_tokens > llama_cpp.llama_n_ctx(self.ctx): raise ValueError( f"Requested tokens exceed context window of {llama_cpp.llama_n_ctx(self.ctx)}" ) # Process prompt in chunks to avoid running out of memory for i in range(0, len(prompt_tokens), self.max_chunk_size): chunk = prompt_tokens[i : min(len(prompt_tokens), i + self.max_chunk_size)] self._eval(chunk, n_past=i) if stop is not None: stop = [s.encode("utf-8") for s in stop] finish_reason = None for token in self._generate( prompt_tokens, max_tokens, top_p, top_k, temperature, repeat_penalty ): if token == llama_cpp.llama_token_eos(): finish_reason = "stop" break completion_tokens.append(token) text = self.detokenize(completion_tokens) any_stop = [s for s in stop if s in text] if len(any_stop) > 0: first_stop = any_stop[0] text = text[: text.index(first_stop)] finish_reason = "stop" break if stream: start = len(self.detokenize(completion_tokens[:-1])) longest = 0 for s in stop: for i in range(len(s), 0, -1): if s[-i:] == text[-i:]: if i > longest: longest = i break yield { "id": completion_id, "object": "text_completion", "created": created, "model": self.model_path, "choices": [ { "text": text[start : len(text) - longest].decode("utf-8"), "index": 0, "logprobs": None, "finish_reason": None, } ], } if finish_reason is None: finish_reason = "length" if stream: if finish_reason == "stop": start = len(self.detokenize(completion_tokens[:-1])) text = text[start:].decode("utf-8") else: text = "" yield { "id": completion_id, "object": "text_completion", "created": created, "model": self.model_path, "choices": [ { "text": text, "index": 0, "logprobs": None, "finish_reason": finish_reason, } ], } return text = text.decode("utf-8") if echo: text = prompt + text if suffix is not None: text = text + suffix if logprobs is not None: logprobs = llama_cpp.llama_get_logits( self.ctx, )[:logprobs] yield { "id": completion_id, "object": "text_completion", "created": created, "model": self.model_path, "choices": [ { "text": text, "index": 0, "logprobs": logprobs, "finish_reason": finish_reason, } ], "usage": { "prompt_tokens": len(prompt_tokens), "completion_tokens": len(completion_tokens), "total_tokens": len(prompt_tokens) + len(completion_tokens), }, } def __call__( self, prompt: str, suffix: Optional[str] = None, max_tokens: int = 16, temperature: float = 0.8, top_p: float = 0.95, logprobs: Optional[int] = None, echo: bool = False, stop: List[str] = [], repeat_penalty: float = 1.1, top_k: int = 40, stream: bool = False, ): """Generate text from a prompt. Args: prompt: The prompt to generate text from. suffix: A suffix to append to the generated text. If None, no suffix is appended. max_tokens: The maximum number of tokens to generate. temperature: The temperature to use for sampling. top_p: The top-p value to use for sampling. logprobs: The number of logprobs to return. If None, no logprobs are returned. echo: Whether to echo the prompt. stop: A list of strings to stop generation when encountered. repeat_penalty: The penalty to apply to repeated tokens. top_k: The top-k value to use for sampling. stream: Whether to stream the results. Raises: ValueError: If the requested tokens exceed the context window. RuntimeError: If the prompt fails to tokenize or the model fails to evaluate the prompt. Returns: Response object containing the generated text. """ call = self._call( prompt=prompt, suffix=suffix, max_tokens=max_tokens, temperature=temperature, top_p=top_p, logprobs=logprobs, echo=echo, stop=stop, repeat_penalty=repeat_penalty, top_k=top_k, stream=stream, ) if stream: return call return next(call) def __del__(self): llama_cpp.llama_free(self.ctx)