import llama_cpp MODEL = "./vendor/llama.cpp/models/ggml-vocab.bin" def test_llama(): llama = llama_cpp.Llama(model_path=MODEL, vocab_only=True) assert llama assert llama.ctx is not None text = b"Hello World" assert llama.detokenize(llama.tokenize(text)) == text # @pytest.mark.skip(reason="need to update sample mocking") def test_llama_patch(monkeypatch): llama = llama_cpp.Llama(model_path=MODEL, vocab_only=True) n_vocab = llama_cpp.llama_n_vocab(llama.ctx) ## Set up mock function def mock_eval(*args, **kwargs): return 0 def mock_get_logits(*args, **kwargs): return (llama_cpp.c_float * n_vocab)( *[llama_cpp.c_float(0) for _ in range(n_vocab)] ) monkeypatch.setattr("llama_cpp.llama_cpp.llama_eval", mock_eval) monkeypatch.setattr("llama_cpp.llama_cpp.llama_get_logits", mock_get_logits) output_text = " jumps over the lazy dog." output_tokens = llama.tokenize(output_text.encode("utf-8")) token_eos = llama.token_eos() n = 0 def mock_sample(*args, **kwargs): nonlocal n if n < len(output_tokens): n += 1 return output_tokens[n - 1] else: return token_eos monkeypatch.setattr("llama_cpp.llama_cpp.llama_sample_token", mock_sample) text = "The quick brown fox" ## Test basic completion until eos n = 0 # reset completion = llama.create_completion(text, max_tokens=20) assert completion["choices"][0]["text"] == output_text assert completion["choices"][0]["finish_reason"] == "stop" ## Test streaming completion until eos n = 0 # reset chunks = llama.create_completion(text, max_tokens=20, stream=True) assert "".join(chunk["choices"][0]["text"] for chunk in chunks) == output_text assert completion["choices"][0]["finish_reason"] == "stop" ## Test basic completion until stop sequence n = 0 # reset completion = llama.create_completion(text, max_tokens=20, stop=["lazy"]) assert completion["choices"][0]["text"] == " jumps over the " assert completion["choices"][0]["finish_reason"] == "stop" ## Test streaming completion until stop sequence n = 0 # reset chunks = llama.create_completion(text, max_tokens=20, stream=True, stop=["lazy"]) assert ( "".join(chunk["choices"][0]["text"] for chunk in chunks) == " jumps over the " ) assert completion["choices"][0]["finish_reason"] == "stop" ## Test basic completion until length n = 0 # reset completion = llama.create_completion(text, max_tokens=2) assert completion["choices"][0]["text"] == " j" assert completion["choices"][0]["finish_reason"] == "length" ## Test streaming completion until length n = 0 # reset chunks = llama.create_completion(text, max_tokens=2, stream=True) assert "".join(chunk["choices"][0]["text"] for chunk in chunks) == " j" assert completion["choices"][0]["finish_reason"] == "length" def test_llama_pickle(): import pickle import tempfile fp = tempfile.TemporaryFile() llama = llama_cpp.Llama(model_path=MODEL, vocab_only=True) pickle.dump(llama, fp) fp.seek(0) llama = pickle.load(fp) assert llama assert llama.ctx is not None text = b"Hello World" assert llama.detokenize(llama.tokenize(text)) == text def test_utf8(monkeypatch): llama = llama_cpp.Llama(model_path=MODEL, vocab_only=True) n_vocab = llama_cpp.llama_n_vocab(llama.ctx) ## Set up mock function def mock_eval(*args, **kwargs): return 0 def mock_get_logits(*args, **kwargs): return (llama_cpp.c_float * n_vocab)( *[llama_cpp.c_float(0) for _ in range(n_vocab)] ) monkeypatch.setattr("llama_cpp.llama_cpp.llama_eval", mock_eval) monkeypatch.setattr("llama_cpp.llama_cpp.llama_get_logits", mock_get_logits) output_text = "😀" output_tokens = llama.tokenize(output_text.encode("utf-8")) token_eos = llama.token_eos() n = 0 def mock_sample(*args, **kwargs): nonlocal n if n < len(output_tokens): n += 1 return output_tokens[n - 1] else: return token_eos monkeypatch.setattr("llama_cpp.llama_cpp.llama_sample_token", mock_sample) ## Test basic completion with utf8 multibyte n = 0 # reset completion = llama.create_completion("", max_tokens=4) assert completion["choices"][0]["text"] == output_text ## Test basic completion with incomplete utf8 multibyte n = 0 # reset completion = llama.create_completion("", max_tokens=1) assert completion["choices"][0]["text"] == "" def test_llama_server(): from fastapi.testclient import TestClient from llama_cpp.server.app import create_app, Settings settings = Settings( model=MODEL, vocab_only=True, ) app = create_app(settings) client = TestClient(app) response = client.get("/v1/models") assert response.json() == { "object": "list", "data": [ { "id": MODEL, "object": "model", "owned_by": "me", "permissions": [], } ], }