from __future__ import annotations import multiprocessing from typing import Optional, List, Literal, Union from pydantic import Field from pydantic_settings import BaseSettings import llama_cpp # Disable warning for model and model_alias settings BaseSettings.model_config["protected_namespaces"] = () class ModelSettings(BaseSettings): """Model settings used to load a Llama model.""" model: str = Field( description="The path to the model to use for generating completions." ) model_alias: Optional[str] = Field( default=None, description="The alias of the model to use for generating completions.", ) # Model Params n_gpu_layers: int = Field( default=0, ge=-1, description="The number of layers to put on the GPU. The rest will be on the CPU. Set -1 to move all to GPU.", ) split_mode: int = Field( default=llama_cpp.LLAMA_SPLIT_LAYER, description="The split mode to use.", ) main_gpu: int = Field( default=0, ge=0, description="Main GPU to use.", ) tensor_split: Optional[List[float]] = Field( default=None, description="Split layers across multiple GPUs in proportion.", ) vocab_only: bool = Field( default=False, description="Whether to only return the vocabulary." ) use_mmap: bool = Field( default=llama_cpp.llama_mmap_supported(), description="Use mmap.", ) use_mlock: bool = Field( default=llama_cpp.llama_mlock_supported(), description="Use mlock.", ) kv_overrides: Optional[List[str]] = Field( default=None, description="List of model kv overrides in the format key=type:value where type is one of (bool, int, float). Valid true values are (true, TRUE, 1), otherwise false.", ) # Context Params seed: int = Field( default=llama_cpp.LLAMA_DEFAULT_SEED, description="Random seed. -1 for random." ) n_ctx: int = Field(default=2048, ge=0, description="The context size.") n_batch: int = Field( default=512, ge=1, description="The batch size to use per eval." ) n_threads: int = Field( default=max(multiprocessing.cpu_count() // 2, 1), ge=1, description="The number of threads to use.", ) n_threads_batch: int = Field( default=max(multiprocessing.cpu_count() // 2, 1), ge=0, description="The number of threads to use when batch processing.", ) rope_scaling_type: int = Field(default=llama_cpp.LLAMA_ROPE_SCALING_UNSPECIFIED) rope_freq_base: float = Field(default=0.0, description="RoPE base frequency") rope_freq_scale: float = Field( default=0.0, description="RoPE frequency scaling factor" ) yarn_ext_factor: float = Field(default=-1.0) yarn_attn_factor: float = Field(default=1.0) yarn_beta_fast: float = Field(default=32.0) yarn_beta_slow: float = Field(default=1.0) yarn_orig_ctx: int = Field(default=0) mul_mat_q: bool = Field( default=True, description="if true, use experimental mul_mat_q kernels" ) logits_all: bool = Field(default=True, description="Whether to return logits.") embedding: bool = Field(default=True, description="Whether to use embeddings.") offload_kqv: bool = Field( default=True, description="Whether to offload kqv to the GPU." ) # Sampling Params last_n_tokens_size: int = Field( default=64, ge=0, description="Last n tokens to keep for repeat penalty calculation.", ) # LoRA Params lora_base: Optional[str] = Field( default=None, description="Optional path to base model, useful if using a quantized base model and you want to apply LoRA to an f16 model.", ) lora_path: Optional[str] = Field( default=None, description="Path to a LoRA file to apply to the model.", ) # Backend Params numa: Union[bool, int] = Field( default=False, description="Enable NUMA support.", ) # Chat Format Params chat_format: Optional[str] = Field( default=None, description="Chat format to use.", ) clip_model_path: Optional[str] = Field( default=None, description="Path to a CLIP model to use for multi-modal chat completion.", ) # Cache Params cache: bool = Field( default=False, description="Use a cache to reduce processing times for evaluated prompts.", ) cache_type: Literal["ram", "disk"] = Field( default="ram", description="The type of cache to use. Only used if cache is True.", ) cache_size: int = Field( default=2 << 30, description="The size of the cache in bytes. Only used if cache is True.", ) # Tokenizer Options hf_tokenizer_config_path: Optional[str] = Field( default=None, description="The path to a HuggingFace tokenizer_config.json file.", ) hf_pretrained_model_name_or_path: Optional[str] = Field( default=None, description="The model name or path to a pretrained HuggingFace tokenizer model. Same as you would pass to AutoTokenizer.from_pretrained().", ) # Speculative Decoding draft_model: Optional[str] = Field( default=None, description="Method to use for speculative decoding. One of (prompt-lookup-decoding).", ) draft_model_num_pred_tokens: int = Field( default=10, description="Number of tokens to predict using the draft model.", ) # Misc verbose: bool = Field( default=True, description="Whether to print debug information." ) class ServerSettings(BaseSettings): """Server settings used to configure the FastAPI and Uvicorn server.""" # Uvicorn Settings host: str = Field(default="localhost", description="Listen address") port: int = Field(default=8000, description="Listen port") ssl_keyfile: Optional[str] = Field( default=None, description="SSL key file for HTTPS" ) ssl_certfile: Optional[str] = Field( default=None, description="SSL certificate file for HTTPS" ) # FastAPI Settings api_key: Optional[str] = Field( default=None, description="API key for authentication. If set all requests need to be authenticated.", ) interrupt_requests: bool = Field( default=True, description="Whether to interrupt requests when a new request is received.", ) class Settings(ServerSettings, ModelSettings): pass class ConfigFileSettings(ServerSettings): """Configuration file format settings.""" models: List[ModelSettings] = Field( default=[], description="Model configs" )