import sys import os import ctypes from ctypes import c_int, c_float, c_char_p, c_void_p, c_bool, POINTER, Structure, Array, c_uint8, c_size_t import pathlib # Load the library def _load_shared_library(lib_base_name): # Determine the file extension based on the platform if sys.platform.startswith("linux"): lib_ext = ".so" elif sys.platform == "darwin": lib_ext = ".so" elif sys.platform == "win32": lib_ext = ".dll" else: raise RuntimeError("Unsupported platform") # Construct the paths to the possible shared library names _base_path = pathlib.Path(__file__).parent.resolve() # Searching for the library in the current directory under the name "libllama" (default name # for llamacpp) and "llama" (default name for this repo) _lib_paths = [ _base_path / f"lib{lib_base_name}{lib_ext}", _base_path / f"{lib_base_name}{lib_ext}" ] if ("LLAMA_CPP_LIB" in os.environ): lib_base_name = os.environ["LLAMA_CPP_LIB"] _lib = pathlib.Path(lib_base_name) _base_path = _lib.parent.resolve() _lib_paths = [_lib.resolve()] # Add the library directory to the DLL search path on Windows (if needed) if sys.platform == "win32" and sys.version_info >= (3, 8): os.add_dll_directory(str(_base_path)) # Try to load the shared library, handling potential errors for _lib_path in _lib_paths: if _lib_path.exists(): try: return ctypes.CDLL(str(_lib_path)) except Exception as e: raise RuntimeError(f"Failed to load shared library '{_lib_path}': {e}") raise FileNotFoundError(f"Shared library with base name '{lib_base_name}' not found") # Specify the base name of the shared library to load _lib_base_name = "llama" # Load the library _lib = _load_shared_library(_lib_base_name) # C types llama_context_p = c_void_p llama_token = c_int llama_token_p = POINTER(llama_token) class llama_token_data(Structure): _fields_ = [ ("id", llama_token), # token id ("p", c_float), # probability of the token ("plog", c_float), # log probability of the token ] llama_token_data_p = POINTER(llama_token_data) llama_progress_callback = ctypes.CFUNCTYPE(None, c_float, c_void_p) class llama_context_params(Structure): _fields_ = [ ("n_ctx", c_int), # text context ("n_parts", c_int), # -1 for default ("seed", c_int), # RNG seed, 0 for random ("f16_kv", c_bool), # use fp16 for KV cache ( "logits_all", c_bool, ), # the llama_eval() call computes all logits, not just the last one ("vocab_only", c_bool), # only load the vocabulary, no weights ("use_mmap", c_bool), # use mmap if possible ("use_mlock", c_bool), # force system to keep model in RAM ("embedding", c_bool), # embedding mode only # called with a progress value between 0 and 1, pass NULL to disable ("progress_callback", llama_progress_callback), # context pointer passed to the progress callback ("progress_callback_user_data", c_void_p), ] llama_context_params_p = POINTER(llama_context_params) # Functions def llama_context_default_params() -> llama_context_params: return _lib.llama_context_default_params() _lib.llama_context_default_params.argtypes = [] _lib.llama_context_default_params.restype = llama_context_params def llama_mmap_supported() -> c_bool: return _lib.llama_mmap_supported() _lib.llama_mmap_supported.argtypes = [] _lib.llama_mmap_supported.restype = c_bool def llama_mlock_supported() -> c_bool: return _lib.llama_mlock_supported() _lib.llama_mlock_supported.argtypes = [] _lib.llama_mlock_supported.restype = c_bool # Various functions for loading a ggml llama model. # Allocate (almost) all memory needed for the model. # Return NULL on failure def llama_init_from_file( path_model: bytes, params: llama_context_params ) -> llama_context_p: return _lib.llama_init_from_file(path_model, params) _lib.llama_init_from_file.argtypes = [c_char_p, llama_context_params] _lib.llama_init_from_file.restype = llama_context_p # Frees all allocated memory def llama_free(ctx: llama_context_p): _lib.llama_free(ctx) _lib.llama_free.argtypes = [llama_context_p] _lib.llama_free.restype = None # TODO: not great API - very likely to change # Returns 0 on success def llama_model_quantize( fname_inp: bytes, fname_out: bytes, itype: c_int ) -> c_int: return _lib.llama_model_quantize(fname_inp, fname_out, itype) _lib.llama_model_quantize.argtypes = [c_char_p, c_char_p, c_int] _lib.llama_model_quantize.restype = c_int # Returns the KV cache that will contain the context for the # ongoing prediction with the model. def llama_get_kv_cache(ctx: llama_context_p): return _lib.llama_get_kv_cache(ctx) _lib.llama_get_kv_cache.argtypes = [llama_context_p] _lib.llama_get_kv_cache.restype = POINTER(c_uint8) # Returns the size of the KV cache def llama_get_kv_cache_size(ctx: llama_context_p) -> c_size_t: return _lib.llama_get_kv_cache_size(ctx) _lib.llama_get_kv_cache_size.argtypes = [llama_context_p] _lib.llama_get_kv_cache_size.restype = c_size_t # Returns the number of tokens in the KV cache def llama_get_kv_cache_token_count(ctx: llama_context_p) -> c_int: return _lib.llama_get_kv_cache_token_count(ctx) _lib.llama_get_kv_cache_token_count.argtypes = [llama_context_p] _lib.llama_get_kv_cache_token_count.restype = c_int # Sets the KV cache containing the current context for the model def llama_set_kv_cache(ctx: llama_context_p, kv_cache, n_size: c_size_t, n_token_count: c_int): return _lib.llama_set_kv_cache(ctx, kv_cache, n_size, n_token_count) _lib.llama_set_kv_cache.argtypes = [llama_context_p, POINTER(c_uint8), c_size_t, c_int] _lib.llama_set_kv_cache.restype = None # Run the llama inference to obtain the logits and probabilities for the next token. # tokens + n_tokens is the provided batch of new tokens to process # n_past is the number of tokens to use from previous eval calls # Returns 0 on success def llama_eval( ctx: llama_context_p, tokens, # type: Array[llama_token] n_tokens: c_int, n_past: c_int, n_threads: c_int, ) -> c_int: return _lib.llama_eval(ctx, tokens, n_tokens, n_past, n_threads) _lib.llama_eval.argtypes = [llama_context_p, llama_token_p, c_int, c_int, c_int] _lib.llama_eval.restype = c_int # Convert the provided text into tokens. # The tokens pointer must be large enough to hold the resulting tokens. # Returns the number of tokens on success, no more than n_max_tokens # Returns a negative number on failure - the number of tokens that would have been returned # TODO: not sure if correct def llama_tokenize( ctx: llama_context_p, text: bytes, tokens, # type: Array[llama_token] n_max_tokens: c_int, add_bos: c_bool, ) -> c_int: return _lib.llama_tokenize(ctx, text, tokens, n_max_tokens, add_bos) _lib.llama_tokenize.argtypes = [llama_context_p, c_char_p, llama_token_p, c_int, c_bool] _lib.llama_tokenize.restype = c_int def llama_n_vocab(ctx: llama_context_p) -> c_int: return _lib.llama_n_vocab(ctx) _lib.llama_n_vocab.argtypes = [llama_context_p] _lib.llama_n_vocab.restype = c_int def llama_n_ctx(ctx: llama_context_p) -> c_int: return _lib.llama_n_ctx(ctx) _lib.llama_n_ctx.argtypes = [llama_context_p] _lib.llama_n_ctx.restype = c_int def llama_n_embd(ctx: llama_context_p) -> c_int: return _lib.llama_n_embd(ctx) _lib.llama_n_embd.argtypes = [llama_context_p] _lib.llama_n_embd.restype = c_int # Token logits obtained from the last call to llama_eval() # The logits for the last token are stored in the last row # Can be mutated in order to change the probabilities of the next token # Rows: n_tokens # Cols: n_vocab def llama_get_logits(ctx: llama_context_p): return _lib.llama_get_logits(ctx) _lib.llama_get_logits.argtypes = [llama_context_p] _lib.llama_get_logits.restype = POINTER(c_float) # Get the embeddings for the input # shape: [n_embd] (1-dimensional) def llama_get_embeddings(ctx: llama_context_p): return _lib.llama_get_embeddings(ctx) _lib.llama_get_embeddings.argtypes = [llama_context_p] _lib.llama_get_embeddings.restype = POINTER(c_float) # Token Id -> String. Uses the vocabulary in the provided context def llama_token_to_str(ctx: llama_context_p, token: llama_token) -> bytes: return _lib.llama_token_to_str(ctx, token) _lib.llama_token_to_str.argtypes = [llama_context_p, llama_token] _lib.llama_token_to_str.restype = c_char_p # Special tokens def llama_token_bos() -> llama_token: return _lib.llama_token_bos() _lib.llama_token_bos.argtypes = [] _lib.llama_token_bos.restype = llama_token def llama_token_eos() -> llama_token: return _lib.llama_token_eos() _lib.llama_token_eos.argtypes = [] _lib.llama_token_eos.restype = llama_token # TODO: improve the last_n_tokens interface ? def llama_sample_top_p_top_k( ctx: llama_context_p, last_n_tokens_data, # type: Array[llama_token] last_n_tokens_size: c_int, top_k: c_int, top_p: c_float, temp: c_float, repeat_penalty: c_float, ) -> llama_token: return _lib.llama_sample_top_p_top_k( ctx, last_n_tokens_data, last_n_tokens_size, top_k, top_p, temp, repeat_penalty ) _lib.llama_sample_top_p_top_k.argtypes = [ llama_context_p, llama_token_p, c_int, c_int, c_float, c_float, c_float, ] _lib.llama_sample_top_p_top_k.restype = llama_token # Performance information def llama_print_timings(ctx: llama_context_p): _lib.llama_print_timings(ctx) _lib.llama_print_timings.argtypes = [llama_context_p] _lib.llama_print_timings.restype = None def llama_reset_timings(ctx: llama_context_p): _lib.llama_reset_timings(ctx) _lib.llama_reset_timings.argtypes = [llama_context_p] _lib.llama_reset_timings.restype = None # Print system information def llama_print_system_info() -> bytes: return _lib.llama_print_system_info() _lib.llama_print_system_info.argtypes = [] _lib.llama_print_system_info.restype = c_char_p