import ctypes import pytest import llama_cpp MODEL = "./vendor/llama.cpp/models/ggml-vocab-llama.gguf" def test_llama_cpp_tokenization(): llama = llama_cpp.Llama(model_path=MODEL, vocab_only=True, verbose=False) assert llama assert llama._ctx.ctx is not None text = b"Hello World" tokens = llama.tokenize(text) assert tokens[0] == llama.token_bos() assert tokens == [1, 15043, 2787] detokenized = llama.detokenize(tokens) assert detokenized == text tokens = llama.tokenize(text, add_bos=False) assert tokens[0] != llama.token_bos() assert tokens == [15043, 2787] detokenized = llama.detokenize(tokens) assert detokenized != text text = b"Hello World" tokens = llama.tokenize(text) assert tokens[-1] != llama.token_eos() assert tokens == [1, 15043, 2787, 829, 29879, 29958] tokens = llama.tokenize(text, special=True) assert tokens[-1] == llama.token_eos() assert tokens == [1, 15043, 2787, 2] text = b"" tokens = llama.tokenize(text, add_bos=True, special=True) assert tokens[-1] != llama.token_eos() assert tokens == [llama.token_bos()] assert text == llama.detokenize(tokens) @pytest.fixture def mock_llama(monkeypatch): def setup_mock(llama: llama_cpp.Llama, output_text: str): n_vocab = llama.n_vocab() output_tokens = llama.tokenize( output_text.encode("utf-8"), add_bos=True, special=True ) n = 0 last_n_tokens = 0 def mock_decode(ctx: llama_cpp.llama_context_p, batch: llama_cpp.llama_batch): nonlocal n nonlocal last_n_tokens # Test some basic invariants of this mocking technique assert ctx == llama._ctx.ctx, "context does not match mock_llama" assert batch.n_tokens > 0, "no tokens in batch" assert all( batch.n_seq_id[i] == 1 for i in range(batch.n_tokens) ), "n_seq >1 not supported by mock_llama" assert all( batch.seq_id[i][0] == 0 for i in range(batch.n_tokens) ), "n_seq >1 not supported by mock_llama" assert batch.logits[ batch.n_tokens - 1 ], "logits not allocated for last token" # Update the mock context state n = max(batch.pos[i] for i in range(batch.n_tokens)) + 1 last_n_tokens = batch.n_tokens return 0 def mock_get_logits(*args, **kwargs): nonlocal n nonlocal last_n_tokens assert n > 0, "mock_llama_decode not called" assert last_n_tokens > 0, "mock_llama_decode not called" logits = (llama_cpp.c_float * (last_n_tokens * n_vocab))(-100.0) for logits_idx, output_idx in enumerate( range(n - last_n_tokens + 1, n + 1) ): if output_idx < len(output_tokens): logits[ logits_idx * last_n_tokens + output_tokens[output_idx] ] = 100.0 else: logits[logits_idx * last_n_tokens + llama.token_eos()] = 100.0 return logits monkeypatch.setattr("llama_cpp.llama_cpp.llama_decode", mock_decode) monkeypatch.setattr("llama_cpp.llama_cpp.llama_get_logits", mock_get_logits) return setup_mock def test_llama_patch(mock_llama): n_ctx = 128 llama = llama_cpp.Llama(model_path=MODEL, vocab_only=True, n_ctx=n_ctx) n_vocab = llama_cpp.llama_n_vocab(llama._model.model) assert n_vocab == 32000 text = "The quick brown fox" output_text = " jumps over the lazy dog." all_text = text + output_text ## Test basic completion from bos until eos mock_llama(llama, all_text) completion = llama.create_completion("", max_tokens=36) assert completion["choices"][0]["text"] == all_text assert completion["choices"][0]["finish_reason"] == "stop" ## Test basic completion until eos mock_llama(llama, all_text) completion = llama.create_completion(text, max_tokens=20) assert completion["choices"][0]["text"] == output_text assert completion["choices"][0]["finish_reason"] == "stop" ## Test streaming completion until eos mock_llama(llama, all_text) chunks = list(llama.create_completion(text, max_tokens=20, stream=True)) assert "".join(chunk["choices"][0]["text"] for chunk in chunks) == output_text assert chunks[-1]["choices"][0]["finish_reason"] == "stop" ## Test basic completion until stop sequence mock_llama(llama, all_text) completion = llama.create_completion(text, max_tokens=20, stop=["lazy"]) assert completion["choices"][0]["text"] == " jumps over the " assert completion["choices"][0]["finish_reason"] == "stop" ## Test streaming completion until stop sequence mock_llama(llama, all_text) chunks = list( llama.create_completion(text, max_tokens=20, stream=True, stop=["lazy"]) ) assert ( "".join(chunk["choices"][0]["text"] for chunk in chunks) == " jumps over the " ) assert chunks[-1]["choices"][0]["finish_reason"] == "stop" ## Test basic completion until length mock_llama(llama, all_text) completion = llama.create_completion(text, max_tokens=2) assert completion["choices"][0]["text"] == " jumps" assert completion["choices"][0]["finish_reason"] == "length" ## Test streaming completion until length mock_llama(llama, all_text) chunks = list(llama.create_completion(text, max_tokens=2, stream=True)) assert "".join(chunk["choices"][0]["text"] for chunk in chunks) == " jumps" assert chunks[-1]["choices"][0]["finish_reason"] == "length" def test_llama_pickle(): import pickle import tempfile fp = tempfile.TemporaryFile() llama = llama_cpp.Llama(model_path=MODEL, vocab_only=True) pickle.dump(llama, fp) fp.seek(0) llama = pickle.load(fp) assert llama assert llama.ctx is not None text = b"Hello World" assert llama.detokenize(llama.tokenize(text)) == text def test_utf8(mock_llama): llama = llama_cpp.Llama(model_path=MODEL, vocab_only=True, logits_all=True) output_text = "😀" ## Test basic completion with utf8 multibyte mock_llama(llama, output_text) completion = llama.create_completion("", max_tokens=4) assert completion["choices"][0]["text"] == output_text ## Test basic completion with incomplete utf8 multibyte mock_llama(llama, output_text) completion = llama.create_completion("", max_tokens=1) assert completion["choices"][0]["text"] == "" def test_llama_server(): from fastapi.testclient import TestClient from llama_cpp.server.app import create_app, Settings settings = Settings( model=MODEL, vocab_only=True, ) app = create_app(settings) client = TestClient(app) response = client.get("/v1/models") assert response.json() == { "object": "list", "data": [ { "id": MODEL, "object": "model", "owned_by": "me", "permissions": [], } ], } def test_llama_cpp_version(): assert llama_cpp.__version__