Compare commits

..

No commits in common. "e9b337b312269d9522b13f6444a8b8e1ca994c4e" and "5f5ea0a49c1d8f408748cb7ec3b22a86f73fa4fc" have entirely different histories.

11 changed files with 23 additions and 41 deletions

View file

@ -29,7 +29,7 @@ jobs:
python -m pip install -e .[all] python -m pip install -e .[all]
- name: Build wheels - name: Build wheels
uses: pypa/cibuildwheel@v2.19.1 uses: pypa/cibuildwheel@v2.19.0
env: env:
# disable repair # disable repair
CIBW_REPAIR_WHEEL_COMMAND: "" CIBW_REPAIR_WHEEL_COMMAND: ""
@ -56,7 +56,7 @@ jobs:
platforms: linux/arm64 platforms: linux/arm64
- name: Build wheels - name: Build wheels
uses: pypa/cibuildwheel@v2.19.1 uses: pypa/cibuildwheel@v2.19.0
env: env:
CIBW_SKIP: "*musllinux* pp*" CIBW_SKIP: "*musllinux* pp*"
CIBW_REPAIR_WHEEL_COMMAND: "" CIBW_REPAIR_WHEEL_COMMAND: ""

View file

@ -31,7 +31,7 @@ jobs:
- name: Build and push - name: Build and push
id: docker_build id: docker_build
uses: docker/build-push-action@v6 uses: docker/build-push-action@v5
with: with:
context: . context: .
file: "docker/simple/Dockerfile" file: "docker/simple/Dockerfile"

View file

@ -30,7 +30,7 @@ jobs:
python -m pip install -e .[all] python -m pip install -e .[all]
- name: Build wheels - name: Build wheels
uses: pypa/cibuildwheel@v2.19.1 uses: pypa/cibuildwheel@v2.18.1
env: env:
# disable repair # disable repair
CIBW_REPAIR_WHEEL_COMMAND: "" CIBW_REPAIR_WHEEL_COMMAND: ""

View file

@ -7,13 +7,6 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
## [Unreleased] ## [Unreleased]
## [0.2.79]
- feat: Update llama.cpp to ggerganov/llama.cpp@9c77ec1d74874ee22bdef8f110e8e8d41389abf2
- feat(ci): Update workflows and pre-built wheels by @Smartappli in #1416
- feat: Add .close() method to Llama class to explicitly free model from memory by @jkawamoto in #1513
- feat: Support SPM infill by @CISC in #1492
## [0.2.78] ## [0.2.78]
- feat: Update llama.cpp to ggerganov/llama.cpp@fd5ea0f897ecb3659d6c269ef6f3d833e865ead7 - feat: Update llama.cpp to ggerganov/llama.cpp@fd5ea0f897ecb3659d6c269ef6f3d833e865ead7

View file

@ -24,6 +24,9 @@ build.debug:
build.cuda: build.cuda:
CMAKE_ARGS="-DLLAMA_CUDA=on" python3 -m pip install --verbose -e . CMAKE_ARGS="-DLLAMA_CUDA=on" python3 -m pip install --verbose -e .
build.opencl:
CMAKE_ARGS="-DLLAMA_CLBLAST=on" python3 -m pip install --verbose -e .
build.openblas: build.openblas:
CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" python3 -m pip install --verbose -e . CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" python3 -m pip install --verbose -e .

View file

@ -165,6 +165,17 @@ pip install llama-cpp-python \
--extra-index-url https://abetlen.github.io/llama-cpp-python/whl/metal --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/metal
``` ```
</details>
<details>
<summary>CLBlast (OpenCL)</summary>
To install with CLBlast, set the `LLAMA_CLBLAST=on` environment variable before installing:
```bash
CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python
```
</details> </details>
<details> <details>
@ -327,7 +338,7 @@ You'll need to install the `huggingface-hub` package to use this feature (`pip i
```python ```python
llm = Llama.from_pretrained( llm = Llama.from_pretrained(
repo_id="Qwen/Qwen2-0.5B-Instruct-GGUF", repo_id="Qwen/Qwen1.5-0.5B-Chat-GGUF",
filename="*q8_0.gguf", filename="*q8_0.gguf",
verbose=False verbose=False
) )
@ -688,7 +699,7 @@ For possible options, see [llama_cpp/llama_chat_format.py](llama_cpp/llama_chat_
If you have `huggingface-hub` installed, you can also use the `--hf_model_repo_id` flag to load a model from the Hugging Face Hub. If you have `huggingface-hub` installed, you can also use the `--hf_model_repo_id` flag to load a model from the Hugging Face Hub.
```bash ```bash
python3 -m llama_cpp.server --hf_model_repo_id Qwen/Qwen2-0.5B-Instruct-GGUF --model '*q8_0.gguf' python3 -m llama_cpp.server --hf_model_repo_id Qwen/Qwen1.5-0.5B-Chat-GGUF --model '*q8_0.gguf'
``` ```
### Web Server Features ### Web Server Features

View file

@ -1,4 +1,4 @@
from .llama_cpp import * from .llama_cpp import *
from .llama import * from .llama import *
__version__ = "0.2.79" __version__ = "0.2.78"

View file

@ -64,9 +64,6 @@ class _LlamaModel:
def close(self): def close(self):
self._exit_stack.close() self._exit_stack.close()
def __del__(self):
self.close()
def vocab_type(self) -> int: def vocab_type(self) -> int:
assert self.model is not None assert self.model is not None
return llama_cpp.llama_vocab_type(self.model) return llama_cpp.llama_vocab_type(self.model)
@ -295,9 +292,6 @@ class _LlamaContext:
def close(self): def close(self):
self._exit_stack.close() self._exit_stack.close()
def __del__(self):
self.close()
def n_ctx(self) -> int: def n_ctx(self) -> int:
assert self.ctx is not None assert self.ctx is not None
return llama_cpp.llama_n_ctx(self.ctx) return llama_cpp.llama_n_ctx(self.ctx)
@ -537,9 +531,6 @@ class _LlamaBatch:
def close(self): def close(self):
self._exit_stack.close() self._exit_stack.close()
def __del__(self):
self.close()
def n_tokens(self) -> int: def n_tokens(self) -> int:
assert self.batch is not None assert self.batch is not None
return self.batch.n_tokens return self.batch.n_tokens

View file

@ -1968,9 +1968,6 @@ class Llama:
"""Explicitly free the model from memory.""" """Explicitly free the model from memory."""
self._stack.close() self._stack.close()
def __del__(self) -> None:
self.close()
@staticmethod @staticmethod
def logits_to_logprobs( def logits_to_logprobs(
logits: Union[npt.NDArray[np.single], List], axis: int = -1 logits: Union[npt.NDArray[np.single], List], axis: int = -1

View file

@ -301,7 +301,6 @@ LLAMA_VOCAB_TYPE_WPM = 3
# LLAMA_VOCAB_PRE_TYPE_OLMO = 12, # LLAMA_VOCAB_PRE_TYPE_OLMO = 12,
# LLAMA_VOCAB_PRE_TYPE_DBRX = 13, # LLAMA_VOCAB_PRE_TYPE_DBRX = 13,
# LLAMA_VOCAB_PRE_TYPE_SMAUG = 14, # LLAMA_VOCAB_PRE_TYPE_SMAUG = 14,
# LLAMA_VOCAB_PRE_TYPE_PORO = 15,
# }; # };
LLAMA_VOCAB_PRE_TYPE_DEFAULT = 0 LLAMA_VOCAB_PRE_TYPE_DEFAULT = 0
LLAMA_VOCAB_PRE_TYPE_LLAMA3 = 1 LLAMA_VOCAB_PRE_TYPE_LLAMA3 = 1
@ -318,7 +317,6 @@ LLAMA_VOCAB_PRE_TYPE_QWEN2 = 11
LLAMA_VOCAB_PRE_TYPE_OLMO = 12 LLAMA_VOCAB_PRE_TYPE_OLMO = 12
LLAMA_VOCAB_PRE_TYPE_DBRX = 13 LLAMA_VOCAB_PRE_TYPE_DBRX = 13
LLAMA_VOCAB_PRE_TYPE_SMAUG = 14 LLAMA_VOCAB_PRE_TYPE_SMAUG = 14
LLAMA_VOCAB_PRE_TYPE_PORO = 15
# // note: these values should be synchronized with ggml_rope # // note: these values should be synchronized with ggml_rope
@ -468,13 +466,11 @@ LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_YARN
# LLAMA_POOLING_TYPE_NONE = 0, # LLAMA_POOLING_TYPE_NONE = 0,
# LLAMA_POOLING_TYPE_MEAN = 1, # LLAMA_POOLING_TYPE_MEAN = 1,
# LLAMA_POOLING_TYPE_CLS = 2, # LLAMA_POOLING_TYPE_CLS = 2,
# LLAMA_POOLING_TYPE_LAST = 3,
# }; # };
LLAMA_POOLING_TYPE_UNSPECIFIED = -1 LLAMA_POOLING_TYPE_UNSPECIFIED = -1
LLAMA_POOLING_TYPE_NONE = 0 LLAMA_POOLING_TYPE_NONE = 0
LLAMA_POOLING_TYPE_MEAN = 1 LLAMA_POOLING_TYPE_MEAN = 1
LLAMA_POOLING_TYPE_CLS = 2 LLAMA_POOLING_TYPE_CLS = 2
LLAMA_POOLING_TYPE_LAST = 3
# enum llama_split_mode { # enum llama_split_mode {
# LLAMA_SPLIT_MODE_NONE = 0, // single GPU # LLAMA_SPLIT_MODE_NONE = 0, // single GPU
@ -763,6 +759,7 @@ class llama_model_params(ctypes.Structure):
# enum llama_rope_scaling_type rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type` # enum llama_rope_scaling_type rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
# enum llama_pooling_type pooling_type; // whether to pool (sum) embedding results by sequence id # enum llama_pooling_type pooling_type; // whether to pool (sum) embedding results by sequence id
# // (ignored if no pooling layer)
# // ref: https://github.com/ggerganov/llama.cpp/pull/2054 # // ref: https://github.com/ggerganov/llama.cpp/pull/2054
# float rope_freq_base; // RoPE base frequency, 0 = from model # float rope_freq_base; // RoPE base frequency, 0 = from model
@ -2317,16 +2314,6 @@ def llama_n_threads_batch(ctx: llama_context_p, /) -> int:
... ...
# // Set whether the model is in embeddings model or not
# // If true, embeddings will be returned but logits will not
# LLAMA_API void llama_set_embeddings(struct llama_context * ctx, bool embeddings);
@ctypes_function("llama_set_embeddings", [llama_context_p_ctypes, ctypes.c_bool], None)
def llama_set_embeddings(ctx: llama_context_p, embeddings: bool, /):
"""Set whether the model is in embeddings model or not
If true, embeddings will be returned but logits will not"""
...
# // Set whether to use causal attention or not # // Set whether to use causal attention or not
# // If set to true, the model will only attend to the past tokens # // If set to true, the model will only attend to the past tokens
# LLAMA_API void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn); # LLAMA_API void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn);

2
vendor/llama.cpp vendored

@ -1 +1 @@
Subproject commit 557b653dc9ed91e8c313e87500e0050c775f81b6 Subproject commit 172c8256840ffd882ab9992ecedbb587d9b21f15