Compare commits

..

No commits in common. "8806f19ef91957cfa40506f6aa5d933d59054dd6" and "833126bbd395c66a0cf76133c8dba40d9b3fa39e" have entirely different histories.

18 changed files with 954 additions and 1640 deletions

View file

@ -7,30 +7,6 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
## [Unreleased] ## [Unreleased]
## [0.2.32]
- feat: Update llama.cpp to ggerganov/llama.cpp@504dc37be8446fb09b1ede70300250ad41be32a2
- fix: from_json_schema oneof/anyof bug by @jndiogo in d3f5528ca8bcb9d69d4f27e21631e911f1fb9bfe
- fix: pass chat handler not chat formatter for huggingface autotokenizer and tokenizer_config formats by @abetlen in 24f39454e91cf5dddbc4b6041aead4accc7c7a2d
- feat: Add add_generation_prompt option for jinja2chatformatter by @abetlen in 7f3209b1eb4ad3260ba063801fab80a8c25a2f4c
- feat: Add Jinja2ChatFormatter by @abetlen in be09318c26add8674ce494ae7cc480cce72a4146
- feat: Expose gguf model metadata in metadata property by @abetlen in 5a34c57e5479e50c99aba9b38218cc48e6560b81
## [0.2.31]
- feat: Update llama.cpp to ggerganov/llama.cpp@a5cacb22b2114fd9adf61c00cbb237384d86bced
- fix: Mirostat sampling now passes correct type to ctypes and tracks state during generation by @abetlen in 3babe3512cb95743108f2b595210c38ed6f1b904
- fix: Python3.8 support in server by @abetlen in 141293a75b564a8699e0acba1da24d9aa1cf0ab1
## [0.2.30]
- feat: Update llama.cpp to ggerganov/llama.cpp@57e2a7a52a819883f40dada8a2edc24ecf48186b
- feat(server): Add ability to load chat format from huggingface autotokenizer or tokenizer_config.json files by @abetlen in b8fc1c7d83ad4a9207c707ba1d954fe580286a01
- feat: Integration of Jinja2 Templating for chat formats by @teleprint-me in #875
- fix: Offload KQV by default by @abetlen in 48c3b77e6f558a9899de0e1155c7dc0c7958d8e8
- fix: Support Accept text/event-stream in chat and completion endpoints, resolves #1083 by @aniljava in #1088
- fix(cli): allow passing n_ctx=0 to openAI API server args to use model n_ctx_train field per #1015 by @K-Mistele in #1093
## [0.2.29] ## [0.2.29]
- feat: Update llama.cpp to ggerganov/llama.cpp@4483396751c79dea540808b9cb9238245d06da2b - feat: Update llama.cpp to ggerganov/llama.cpp@4483396751c79dea540808b9cb9238245d06da2b

View file

@ -10,22 +10,22 @@ deps:
python3 -m pip install -e ".[all]" python3 -m pip install -e ".[all]"
build: build:
python3 -m pip install --verbose -e . python3 -m pip install -e .
build.cuda: build.cuda:
CMAKE_ARGS="-DLLAMA_CUBLAS=on" python3 -m pip install --verbose -e . CMAKE_ARGS="-DLLAMA_CUBLAS=on" python3 -m pip install -e .
build.opencl: build.opencl:
CMAKE_ARGS="-DLLAMA_CLBLAST=on" python3 -m pip install --verbose -e . CMAKE_ARGS="-DLLAMA_CLBLAST=on" python3 -m pip install -e .
build.openblas: build.openblas:
CMAKE_ARGS="-DLLAMA_CLBLAST=on" python3 -m pip install --verbose -e . CMAKE_ARGS="-DLLAMA_CLBLAST=on" python3 -m pip install -e .
build.blis: build.blis:
CMAKE_ARGS="-DLLAMA_OPENBLAS=on -DLLAMA_OPENBLAS_VENDOR=blis" python3 -m pip install --verbose -e . CMAKE_ARGS="-DLLAMA_OPENBLAS=on -DLLAMA_OPENBLAS_VENDOR=blis" python3 -m pip install -e .
build.metal: build.metal:
CMAKE_ARGS="-DLLAMA_METAL=on" python3 -m pip install --verbose -e . CMAKE_ARGS="-DLLAMA_METAL=on" python3 -m pip install -e .
build.sdist: build.sdist:
python3 -m build --sdist python3 -m build --sdist

View file

@ -113,10 +113,6 @@ See the above instructions and set `CMAKE_ARGS` to the BLAS backend you want to
### MacOS Notes ### MacOS Notes
Detailed MacOS Metal GPU install documentation is available at [docs/install/macos.md](https://llama-cpp-python.readthedocs.io/en/latest/install/macos/)
#### M1 Mac Performance Issue
Note: If you are using Apple Silicon (M1) Mac, make sure you have installed a version of Python that supports arm64 architecture. For example: Note: If you are using Apple Silicon (M1) Mac, make sure you have installed a version of Python that supports arm64 architecture. For example:
``` ```
wget https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-MacOSX-arm64.sh wget https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-MacOSX-arm64.sh
@ -124,13 +120,7 @@ bash Miniforge3-MacOSX-arm64.sh
``` ```
Otherwise, while installing it will build the llama.cpp x86 version which will be 10x slower on Apple Silicon (M1) Mac. Otherwise, while installing it will build the llama.cpp x86 version which will be 10x slower on Apple Silicon (M1) Mac.
#### M Series Mac Error: `(mach-o file, but is an incompatible architecture (have 'x86_64', need 'arm64'))` Detailed MacOS Metal GPU install documentation is available at [docs/install/macos.md](https://llama-cpp-python.readthedocs.io/en/latest/install/macos/)
Try installing with
```
CMAKE_ARGS="-DCMAKE_OSX_ARCHITECTURES=arm64 -DCMAKE_APPLE_SILICON_PROCESSOR=arm64 -DLLAMA_METAL=on" pip install --upgrade --verbose --force-reinstall --no-cache-dir llama-cpp-python
```
### Upgrading and Reinstalling ### Upgrading and Reinstalling

View file

@ -1,4 +1,4 @@
from .llama_cpp import * from .llama_cpp import *
from .llama import * from .llama import *
__version__ = "0.2.32" __version__ = "0.2.29"

View file

@ -1,795 +0,0 @@
from __future__ import annotations
import os
import ctypes
from typing import (
List,
Optional,
Sequence,
)
from dataclasses import dataclass, field
import numpy as np
import numpy.typing as npt
from .llama_types import *
from .llama_grammar import LlamaGrammar
import llama_cpp.llama_cpp as llama_cpp
from ._utils import suppress_stdout_stderr
# Python wrappers over llama.h structs
class _LlamaModel:
"""Intermediate Python wrapper for a llama.cpp llama_model.
NOTE: For stability it's recommended you use the Llama class instead."""
_llama_free_model = None
# NOTE: this must be "saved" here to avoid exceptions when calling __del__
_suppress_stdout_stderr = suppress_stdout_stderr
def __init__(
self,
*,
path_model: str,
params: llama_cpp.llama_model_params,
verbose: bool = True,
):
self.path_model = path_model
self.params = params
self.verbose = verbose
self._llama_free_model = llama_cpp._lib.llama_free_model # type: ignore
if not os.path.exists(path_model):
raise ValueError(f"Model path does not exist: {path_model}")
with self._suppress_stdout_stderr(disable=self.verbose):
self.model = llama_cpp.llama_load_model_from_file(
self.path_model.encode("utf-8"), self.params
)
def __del__(self):
with self._suppress_stdout_stderr(disable=self.verbose):
if self.model is not None and self._llama_free_model is not None:
self._llama_free_model(self.model)
self.model = None
def vocab_type(self) -> int:
assert self.model is not None
return llama_cpp.llama_vocab_type(self.model)
def n_vocab(self) -> int:
assert self.model is not None
return llama_cpp.llama_n_vocab(self.model)
def n_ctx_train(self) -> int:
assert self.model is not None
return llama_cpp.llama_n_ctx_train(self.model)
def n_embd(self) -> int:
assert self.model is not None
return llama_cpp.llama_n_embd(self.model)
def rope_freq_scale_train(self) -> float:
assert self.model is not None
return llama_cpp.llama_rope_freq_scale_train(self.model)
def desc(self) -> str:
assert self.model is not None
buf = ctypes.create_string_buffer(1024)
llama_cpp.llama_model_desc(self.model, buf, 1024) # type: ignore
return buf.value.decode("utf-8")
def size(self) -> int:
assert self.model is not None
return llama_cpp.llama_model_size(self.model)
def n_params(self) -> int:
assert self.model is not None
return llama_cpp.llama_model_n_params(self.model)
def get_tensor(self, name: str) -> ctypes.c_void_p:
assert self.model is not None
return llama_cpp.llama_get_model_tensor(self.model, name.encode("utf-8"))
def apply_lora_from_file(
self,
lora_path: str,
scale: float,
path_base_model: Optional[str],
n_threads: int,
):
assert self.model is not None
return llama_cpp.llama_model_apply_lora_from_file(
self.model,
lora_path.encode("utf-8"),
scale,
path_base_model.encode("utf-8")
if path_base_model is not None
else llama_cpp.c_char_p(0),
n_threads,
)
# Vocab
def token_get_text(self, token: int) -> str:
# TODO: Fix
assert self.model is not None
return llama_cpp.llama_token_get_text(self.model, token).decode("utf-8")
def token_get_score(self, token: int) -> float:
assert self.model is not None
return llama_cpp.llama_token_get_score(self.model, token)
def token_get_type(self, token: int) -> int:
assert self.model is not None
return llama_cpp.llama_token_get_type(self.model, token)
# Special tokens
def token_bos(self) -> int:
assert self.model is not None
return llama_cpp.llama_token_bos(self.model)
def token_eos(self) -> int:
assert self.model is not None
return llama_cpp.llama_token_eos(self.model)
def token_nl(self) -> int:
assert self.model is not None
return llama_cpp.llama_token_nl(self.model)
def token_prefix(self) -> int:
assert self.model is not None
return llama_cpp.llama_token_prefix(self.model)
def token_middle(self) -> int:
assert self.model is not None
return llama_cpp.llama_token_middle(self.model)
def token_suffix(self) -> int:
assert self.model is not None
return llama_cpp.llama_token_suffix(self.model)
def token_eot(self) -> int:
assert self.model is not None
return llama_cpp.llama_token_eot(self.model)
# Tokenization
def tokenize(self, text: bytes, add_bos: bool, special: bool):
assert self.model is not None
n_ctx = self.n_ctx_train()
tokens = (llama_cpp.llama_token * n_ctx)()
n_tokens = llama_cpp.llama_tokenize(
self.model, text, len(text), tokens, n_ctx, add_bos, special
)
if n_tokens < 0:
n_tokens = abs(n_tokens)
tokens = (llama_cpp.llama_token * n_tokens)()
n_tokens = llama_cpp.llama_tokenize(
self.model, text, len(text), tokens, n_tokens, add_bos, special
)
if n_tokens < 0:
raise RuntimeError(
f'Failed to tokenize: text="{text}" n_tokens={n_tokens}'
)
return list(tokens[:n_tokens])
def token_to_piece(self, token: int) -> bytes:
assert self.model is not None
buf = ctypes.create_string_buffer(32)
llama_cpp.llama_token_to_piece(self.model, token, buf, 32) # type: ignore
return bytes(buf)
def detokenize(self, tokens: List[int]) -> bytes:
assert self.model is not None
output = b""
size = 32
buffer = (ctypes.c_char * size)()
for token in tokens:
n = llama_cpp.llama_token_to_piece(
self.model, llama_cpp.llama_token(token), buffer, size
)
assert n <= size
output += bytes(buffer[:n])
# NOTE: Llama1 models automatically added a space at the start of the prompt
# this line removes a leading space if the first token is a beginning of sentence token
return (
output[1:] if len(tokens) > 0 and tokens[0] == self.token_bos() else output
)
# Extra
def metadata(self) -> Dict[str, str]:
assert self.model is not None
metadata: Dict[str, str] = {}
buffer_size = 1024
buffer = ctypes.create_string_buffer(buffer_size)
# zero the buffer
buffer.value = b'\0' * buffer_size
# iterate over model keys
for i in range(llama_cpp.llama_model_meta_count(self.model)):
nbytes = llama_cpp.llama_model_meta_key_by_index(self.model, i, buffer, buffer_size)
if nbytes > buffer_size:
buffer_size = nbytes
buffer = ctypes.create_string_buffer(buffer_size)
nbytes = llama_cpp.llama_model_meta_key_by_index(self.model, i, buffer, buffer_size)
key = buffer.value.decode("utf-8")
nbytes = llama_cpp.llama_model_meta_val_str_by_index(self.model, i, buffer, buffer_size)
if nbytes > buffer_size:
buffer_size = nbytes
buffer = ctypes.create_string_buffer(buffer_size)
nbytes = llama_cpp.llama_model_meta_val_str_by_index(self.model, i, buffer, buffer_size)
value = buffer.value.decode("utf-8")
metadata[key] = value
return metadata
@staticmethod
def default_params():
"""Get the default llama_model_params."""
return llama_cpp.llama_model_default_params()
class _LlamaContext:
"""Intermediate Python wrapper for a llama.cpp llama_context.
NOTE: For stability it's recommended you use the Llama class instead."""
_llama_free = None
# NOTE: this must be "saved" here to avoid exceptions when calling __del__
_suppress_stdout_stderr = suppress_stdout_stderr
def __init__(
self,
*,
model: _LlamaModel,
params: llama_cpp.llama_context_params,
verbose: bool = True,
):
self.model = model
self.params = params
self.verbose = verbose
self._llama_free = llama_cpp._lib.llama_free # type: ignore
with self._suppress_stdout_stderr(disable=self.verbose):
self.ctx = llama_cpp.llama_new_context_with_model(
self.model.model, self.params
)
def __del__(self):
with self._suppress_stdout_stderr(disable=self.verbose):
if self.ctx is not None and self._llama_free is not None:
self._llama_free(self.ctx)
self.ctx = None
def n_ctx(self) -> int:
assert self.ctx is not None
return llama_cpp.llama_n_ctx(self.ctx)
def kv_cache_clear(self):
assert self.ctx is not None
llama_cpp.llama_kv_cache_clear(self.ctx)
def kv_cache_seq_rm(self, seq_id: int, p0: int, p1: int):
assert self.ctx is not None
llama_cpp.llama_kv_cache_seq_rm(self.ctx, seq_id, p0, p1)
def kv_cache_seq_cp(self, seq_id_src: int, seq_id_dst: int, p0: int, p1: int):
assert self.ctx is not None
llama_cpp.llama_kv_cache_seq_cp(self.ctx, seq_id_src, seq_id_dst, p0, p1)
def kv_cache_seq_keep(self, seq_id: int):
assert self.ctx is not None
llama_cpp.llama_kv_cache_seq_keep(self.ctx, seq_id)
def kv_cache_seq_shift(self, seq_id: int, p0: int, p1: int, shift: int):
assert self.ctx is not None
llama_cpp.llama_kv_cache_seq_shift(self.ctx, seq_id, p0, p1, shift)
def get_state_size(self) -> int:
assert self.ctx is not None
return llama_cpp.llama_get_state_size(self.ctx)
# TODO: copy_state_data
# TODO: set_state_data
# TODO: llama_load_session_file
# TODO: llama_save_session_file
def decode(self, batch: "_LlamaBatch"):
assert self.ctx is not None
assert batch.batch is not None
return_code = llama_cpp.llama_decode(
ctx=self.ctx,
batch=batch.batch,
)
if return_code != 0:
raise RuntimeError(f"llama_decode returned {return_code}")
def set_n_threads(self, n_threads: int, n_threads_batch: int):
assert self.ctx is not None
llama_cpp.llama_set_n_threads(self.ctx, n_threads, n_threads_batch)
def get_logits(self):
assert self.ctx is not None
return llama_cpp.llama_get_logits(self.ctx)
def get_logits_ith(self, i: int):
assert self.ctx is not None
return llama_cpp.llama_get_logits_ith(self.ctx, i)
def get_embeddings(self):
assert self.ctx is not None
return llama_cpp.llama_get_embeddings(self.ctx)
# Sampling functions
def set_rng_seed(self, seed: int):
assert self.ctx is not None
llama_cpp.llama_set_rng_seed(self.ctx, seed)
def sample_repetition_penalties(
self,
candidates: "_LlamaTokenDataArray",
last_tokens_data: "llama_cpp.Array[llama_cpp.llama_token]",
penalty_last_n: int,
penalty_repeat: float,
penalty_freq: float,
penalty_present: float,
):
assert self.ctx is not None
llama_cpp.llama_sample_repetition_penalties(
self.ctx,
ctypes.byref(candidates.candidates), # type: ignore
last_tokens_data,
penalty_last_n,
penalty_repeat,
penalty_freq,
penalty_present,
)
def sample_classifier_free_guidance(
self,
candidates: "_LlamaTokenDataArray",
guidance_ctx: "_LlamaContext",
scale: float,
):
assert self.ctx is not None
assert guidance_ctx.ctx is not None
llama_cpp.llama_sample_classifier_free_guidance(
self.ctx,
ctypes.byref(candidates.candidates), # type: ignore
guidance_ctx.ctx,
scale,
)
def sample_softmax(self, candidates: "_LlamaTokenDataArray"):
assert self.ctx is not None
llama_cpp.llama_sample_softmax(
self.ctx,
ctypes.byref(candidates.candidates), # type: ignore
)
def sample_top_k(self, candidates: "_LlamaTokenDataArray", k: int, min_keep: int):
assert self.ctx is not None
llama_cpp.llama_sample_top_k(
self.ctx, ctypes.byref(candidates.candidates), k, min_keep # type: ignore
)
def sample_top_p(self, candidates: "_LlamaTokenDataArray", p: float, min_keep: int):
assert self.ctx is not None
llama_cpp.llama_sample_top_p(
self.ctx, ctypes.byref(candidates.candidates), p, min_keep # type: ignore
)
def sample_min_p(self, candidates: "_LlamaTokenDataArray", p: float, min_keep: int):
assert self.ctx is not None
llama_cpp.llama_sample_min_p(
self.ctx, ctypes.byref(candidates.candidates), p, min_keep # type: ignore
)
def sample_tail_free(
self, candidates: "_LlamaTokenDataArray", z: float, min_keep: int
):
assert self.ctx is not None
llama_cpp.llama_sample_tail_free(
self.ctx, ctypes.byref(candidates.candidates), z, min_keep # type: ignore
)
def sample_typical(
self, candidates: "_LlamaTokenDataArray", p: float, min_keep: int
):
assert self.ctx is not None
llama_cpp.llama_sample_typical(
self.ctx, ctypes.byref(candidates.candidates), p, min_keep # type: ignore
)
def sample_temp(self, candidates: "_LlamaTokenDataArray", temp: float):
assert self.ctx is not None
llama_cpp.llama_sample_temp(
self.ctx, ctypes.byref(candidates.candidates), temp # type: ignore
)
def sample_grammar(self, candidates: "_LlamaTokenDataArray", grammar: LlamaGrammar):
assert self.ctx is not None
assert grammar.grammar is not None
llama_cpp.llama_sample_grammar(
self.ctx,
ctypes.byref(candidates.candidates), # type: ignore
grammar.grammar,
)
def sample_token_mirostat(
self,
candidates: "_LlamaTokenDataArray",
tau: float,
eta: float,
m: int,
mu: ctypes._Pointer[ctypes.c_float], # type: ignore
) -> int:
assert self.ctx is not None
return llama_cpp.llama_sample_token_mirostat(
self.ctx,
ctypes.byref(candidates.candidates), # type: ignore
tau,
eta,
m,
mu,
)
def sample_token_mirostat_v2(
self, candidates: "_LlamaTokenDataArray", tau: float, eta: float, mu: ctypes._Pointer[ctypes.c_float] # type: ignore
) -> int:
assert self.ctx is not None
return llama_cpp.llama_sample_token_mirostat_v2(
self.ctx,
ctypes.byref(candidates.candidates), # type: ignore
tau,
eta,
mu,
)
def sample_token_greedy(self, candidates: "_LlamaTokenDataArray") -> int:
assert self.ctx is not None
return llama_cpp.llama_sample_token_greedy(
self.ctx,
ctypes.byref(candidates.candidates), # type: ignore
)
def sample_token(self, candidates: "_LlamaTokenDataArray") -> int:
assert self.ctx is not None
return llama_cpp.llama_sample_token(
self.ctx,
ctypes.byref(candidates.candidates), # type: ignore
)
# Grammar
def grammar_accept_token(self, grammar: LlamaGrammar, token: int):
assert self.ctx is not None
assert grammar.grammar is not None
llama_cpp.llama_grammar_accept_token(self.ctx, grammar.grammar, token)
def reset_timings(self):
assert self.ctx is not None
llama_cpp.llama_reset_timings(self.ctx)
def print_timings(self):
assert self.ctx is not None
llama_cpp.llama_print_timings(self.ctx)
# Utility functions
@staticmethod
def default_params():
"""Get the default llama_context_params."""
return llama_cpp.llama_context_default_params()
class _LlamaBatch:
_llama_batch_free = None
# NOTE: this must be "saved" here to avoid exceptions when calling __del__
_suppress_stdout_stderr = suppress_stdout_stderr
def __init__(
self, *, n_tokens: int, embd: int, n_seq_max: int, verbose: bool = True
):
self.n_tokens = n_tokens
self.embd = embd
self.n_seq_max = n_seq_max
self.verbose = verbose
self._llama_batch_free = llama_cpp._lib.llama_batch_free # type: ignore
with self._suppress_stdout_stderr(disable=self.verbose):
self.batch = llama_cpp.llama_batch_init(
self.n_tokens, self.embd, self.n_seq_max
)
def __del__(self):
with self._suppress_stdout_stderr(disable=self.verbose):
if self.batch is not None and self._llama_batch_free is not None:
self._llama_batch_free(self.batch)
self.batch = None
def set_batch(self, batch: Sequence[int], n_past: int, logits_all: bool):
assert self.batch is not None
n_tokens = len(batch)
self.batch.n_tokens = n_tokens
for i in range(n_tokens):
self.batch.token[i] = batch[i]
self.batch.pos[i] = n_past + i
self.batch.seq_id[i][0] = 0
self.batch.n_seq_id[i] = 1
self.batch.logits[i] = logits_all
self.batch.logits[n_tokens - 1] = True
class _LlamaTokenDataArray:
def __init__(self, *, n_vocab: int):
self.n_vocab = n_vocab
self.candidates_data = np.array(
[],
dtype=np.dtype(
[("id", np.intc), ("logit", np.single), ("p", np.single)], align=True
),
)
self.candidates_data.resize(3, self.n_vocab, refcheck=False)
self.candidates = llama_cpp.llama_token_data_array(
data=self.candidates_data.ctypes.data_as(llama_cpp.llama_token_data_p),
size=self.n_vocab,
sorted=False,
)
self.default_candidates_data_id = np.arange(self.n_vocab, dtype=np.intc)
self.default_candidates_data_p = np.zeros(self.n_vocab, dtype=np.single)
def copy_logits(self, logits: npt.NDArray[np.single]):
self.candidates_data["id"][:] = self.default_candidates_data_id
self.candidates_data["logit"][:] = logits
self.candidates_data["p"][:] = self.default_candidates_data_p
self.candidates.data = self.candidates_data.ctypes.data_as(
llama_cpp.llama_token_data_p
)
self.candidates.sorted = llama_cpp.c_bool(False)
self.candidates.size = llama_cpp.c_size_t(self.n_vocab)
# Python wrappers over common/common
def _tokenize(model: _LlamaModel, text: str, add_bos: bool, special: bool) -> list[int]:
n_tokens = len(text) + 1 if add_bos else len(text)
result = (llama_cpp.llama_token * n_tokens)()
n_tokens = llama_cpp.llama_tokenize(
model.model,
text.encode("utf-8"),
len(text),
result,
n_tokens,
add_bos,
special,
)
if n_tokens < 0:
result = (llama_cpp.llama_token * -n_tokens)()
check = llama_cpp.llama_tokenize(
model.model,
text.encode("utf-8"),
len(text),
result,
len(result),
add_bos,
special,
)
if check != -n_tokens:
raise RuntimeError(f'Failed to tokenize: text="{text}" n_tokens={n_tokens}')
else:
result = result[:n_tokens]
return list(result)
def _token_to_piece(model: _LlamaModel, token: int) -> str:
assert model.model is not None
result = (ctypes.c_char * 8)(0)
n_tokens = llama_cpp.llama_token_to_piece(model.model, token, result, len(result))
if n_tokens < 0:
result = (ctypes.c_char * -n_tokens)(0)
check = llama_cpp.llama_token_to_piece(model.model, token, result, len(result))
if check != -n_tokens:
raise RuntimeError(f"Failed to get piece: token={token}")
else:
result = result[:n_tokens]
return bytes(result).decode("utf-8")
def _detokenize_spm(model: _LlamaModel, tokens: List[int]) -> str:
bos_id = model.token_bos()
result = ""
for i, token in enumerate(tokens):
piece = _token_to_piece(model, token)
if (
(tokens[0] == bos_id and i == 1) or (tokens[0] != bos_id and i == 0)
) and piece[0] == " ":
piece = piece[1:]
result += piece
return result
def _detokenize_bpe(model: _LlamaModel, tokens: List[int]) -> str:
result = ""
for token in tokens:
piece = _token_to_piece(model, token)
result += piece
return result
def _should_add_bos(model: _LlamaModel) -> bool:
assert model.model is not None
add_bos = llama_cpp.llama_add_bos_token(model.model)
if add_bos != -1:
return add_bos != 0
else:
return llama_cpp.llama_vocab_type(model.model) == llama_cpp.LLAMA_VOCAB_TYPE_SPM
# Python wrappers over common/sampling structs
@dataclass
class _LlamaSamplingParams:
n_prev: int = 64
n_probs: int = 0
top_k: int = 40
top_p: float = 0.95
min_p: float = 0.05
tfs_z: float = 1.00
typical_p: float = 1.00
temp: float = 0.80
penalty_last_n: int = 64
penalty_repeat: float = 1.10
penalty_freq: float = 0.00
penalty_present: float = 0.00
mirostat: int = 0
mirostat_tau: float = 5.00
mirostat_eta: float = 0.10
penalize_nl: bool = True
grammar: str = ""
cfg_negative_prompt: str = ""
cfg_scale: float = 1.00
logit_bias: dict[int, float] = field(default_factory=dict)
@dataclass
class _LlamaSamplingContext:
params: _LlamaSamplingParams = field(default_factory=_LlamaSamplingParams)
mirostat_mu: ctypes.c_float = field(default_factory=ctypes.c_float)
grammar: Optional[LlamaGrammar] = None
# NOTE: Missing parsed_grammar
prev: list[int] = field(default_factory=list)
cur: list[llama_cpp.llama_token_data] = field(default_factory=list)
def reset(self):
self.prev = []
self.cur = []
if self.grammar is not None:
self.grammar.reset()
def cp(self):
return _LlamaSamplingContext(
params=self.params,
mirostat_mu=self.mirostat_mu,
grammar=self.grammar,
prev=self.prev.copy(),
cur=self.cur.copy(),
)
def last(self) -> Optional[int]:
if len(self.prev) > 0:
return self.prev[-1]
else:
return None
def prev_str(self, ctx_main: _LlamaContext, n: int) -> str:
return ctx_main.model.detokenize(self.prev[-n:]).decode("utf-8")
def sample(
self, ctx_main: _LlamaContext, ctx_cfg: Optional[_LlamaContext] = None, idx: int = 0, logits_array: Optional[npt.NDArray[np.single]] = None
):
n_vocab = ctx_main.model.n_vocab()
id: int = 0
if logits_array is None:
logits = ctx_main.get_logits_ith(idx)
logits_array = np.array(
ctypes.cast(logits, ctypes.POINTER(ctypes.c_float * n_vocab)).contents,
dtype=np.single,
)
# apply logit_bias
for token, logit_bias in self.params.logit_bias.items():
logits_array[token] += logit_bias
token_data_array = _LlamaTokenDataArray(
n_vocab=n_vocab
) # TODO: Only create this once
token_data_array.copy_logits(logits_array)
if ctx_cfg is not None:
ctx_main.sample_classifier_free_guidance(
token_data_array, ctx_cfg, self.params.cfg_scale
)
# apply penalties
if len(self.prev) > 0:
nl_token = ctx_main.model.token_nl()
nl_logit = logits_array[nl_token]
if self.params.penalty_last_n > 0:
ctx_main.sample_repetition_penalties(
token_data_array,
# TODO: Only create this once
(llama_cpp.llama_token * len(self.prev))(*self.prev), # type: ignore
self.params.penalty_last_n,
self.params.penalty_repeat,
self.params.penalty_freq,
self.params.penalty_present,
)
if not self.params.penalize_nl:
token_data_array.candidates_data["logit"][nl_token] = nl_logit
if self.grammar is not None:
ctx_main.sample_grammar(token_data_array, self.grammar)
if self.params.temp < 0:
ctx_main.sample_softmax(token_data_array)
id = token_data_array.candidates_data["id"][0]
elif self.params.temp == 0:
id = ctx_main.sample_token_greedy(token_data_array)
else:
if self.params.mirostat == 1:
mirostat_m = 100
ctx_main.sample_temp(token_data_array, self.params.temp)
id = ctx_main.sample_token_mirostat(
token_data_array,
self.params.mirostat_tau,
self.params.mirostat_eta,
mirostat_m,
ctypes.pointer(self.mirostat_mu),
)
elif self.params.mirostat == 2:
ctx_main.sample_temp(token_data_array, self.params.temp)
id = ctx_main.sample_token_mirostat_v2(
token_data_array,
self.params.mirostat_tau,
self.params.mirostat_eta,
ctypes.pointer(self.mirostat_mu),
)
else:
min_keep = max(1, self.params.n_probs)
ctx_main.sample_top_k(
token_data_array, self.params.top_k, min_keep=min_keep
)
ctx_main.sample_tail_free(
token_data_array, self.params.tfs_z, min_keep=min_keep
)
ctx_main.sample_typical(
token_data_array, self.params.typical_p, min_keep=min_keep
)
ctx_main.sample_top_p(
token_data_array, self.params.top_p, min_keep=min_keep
)
ctx_main.sample_min_p(
token_data_array, self.params.min_p, min_keep=min_keep
)
ctx_main.sample_temp(token_data_array, self.params.temp)
id = ctx_main.sample_token(token_data_array)
return id
def accept(self, ctx_main: _LlamaContext, id: int, apply_grammar: bool):
if apply_grammar and self.grammar is not None:
ctx_main.grammar_accept_token(self.grammar, id)
self.prev.append(id)

View file

@ -1,8 +1,7 @@
import os import os
import sys import sys
import sys import sys, traceback
from typing import Any, Dict
# Avoid "LookupError: unknown encoding: ascii" when open() called in a destructor # Avoid "LookupError: unknown encoding: ascii" when open() called in a destructor
outnull_file = open(os.devnull, "w") outnull_file = open(os.devnull, "w")
@ -56,25 +55,3 @@ class suppress_stdout_stderr(object):
self.os.close(self.old_stdout_fileno) self.os.close(self.old_stdout_fileno)
self.os.close(self.old_stderr_fileno) self.os.close(self.old_stderr_fileno)
class MetaSingleton(type):
"""
Metaclass for implementing the Singleton pattern.
"""
_instances: Dict[type, Any] = {}
def __call__(cls, *args: Any, **kwargs: Any) -> Any:
if cls not in cls._instances:
cls._instances[cls] = super(MetaSingleton, cls).__call__(*args, **kwargs)
return cls._instances[cls]
class Singleton(object, metaclass=MetaSingleton):
"""
Base class for implementing the Singleton pattern.
"""
def __init__(self):
super(Singleton, self).__init__()

View file

@ -1,10 +1,9 @@
from __future__ import annotations
import os import os
import sys import sys
import uuid import uuid
import time import time
import multiprocessing import multiprocessing
from abc import ABC, abstractmethod
from typing import ( from typing import (
List, List,
Optional, Optional,
@ -13,20 +12,16 @@ from typing import (
Sequence, Sequence,
Iterator, Iterator,
Deque, Deque,
Tuple,
Callable, Callable,
) )
from collections import deque from collections import deque, OrderedDict
import diskcache
import ctypes import ctypes
from .llama_types import * from .llama_types import *
from .llama_grammar import LlamaGrammar from .llama_grammar import LlamaGrammar
from .llama_cache import (
BaseLlamaCache,
LlamaCache, # type: ignore
LlamaDiskCache, # type: ignore
LlamaRAMCache, # type: ignore
)
import llama_cpp.llama_cpp as llama_cpp import llama_cpp.llama_cpp as llama_cpp
import llama_cpp.llama_chat_format as llama_chat_format import llama_cpp.llama_chat_format as llama_chat_format
@ -34,12 +29,694 @@ import numpy as np
import numpy.typing as npt import numpy.typing as npt
from ._utils import suppress_stdout_stderr from ._utils import suppress_stdout_stderr
from ._internals import (
_LlamaModel, # type: ignore
_LlamaContext, # type: ignore class BaseLlamaCache(ABC):
_LlamaBatch, # type: ignore """Base cache class for a llama.cpp model."""
_LlamaTokenDataArray, # type: ignore
) def __init__(self, capacity_bytes: int = (2 << 30)):
self.capacity_bytes = capacity_bytes
@property
@abstractmethod
def cache_size(self) -> int:
raise NotImplementedError
def _find_longest_prefix_key(
self,
key: Tuple[int, ...],
) -> Optional[Tuple[int, ...]]:
pass
@abstractmethod
def __getitem__(self, key: Sequence[int]) -> "LlamaState":
raise NotImplementedError
@abstractmethod
def __contains__(self, key: Sequence[int]) -> bool:
raise NotImplementedError
@abstractmethod
def __setitem__(self, key: Sequence[int], value: "LlamaState") -> None:
raise NotImplementedError
class LlamaRAMCache(BaseLlamaCache):
"""Cache for a llama.cpp model using RAM."""
def __init__(self, capacity_bytes: int = (2 << 30)):
super().__init__(capacity_bytes)
self.capacity_bytes = capacity_bytes
self.cache_state: OrderedDict[Tuple[int, ...], "LlamaState"] = OrderedDict()
@property
def cache_size(self):
return sum([state.llama_state_size for state in self.cache_state.values()])
def _find_longest_prefix_key(
self,
key: Tuple[int, ...],
) -> Optional[Tuple[int, ...]]:
min_len = 0
min_key = None
keys = (
(k, Llama.longest_token_prefix(k, key)) for k in self.cache_state.keys()
)
for k, prefix_len in keys:
if prefix_len > min_len:
min_len = prefix_len
min_key = k
return min_key
def __getitem__(self, key: Sequence[int]) -> "LlamaState":
key = tuple(key)
_key = self._find_longest_prefix_key(key)
if _key is None:
raise KeyError("Key not found")
value = self.cache_state[_key]
self.cache_state.move_to_end(_key)
return value
def __contains__(self, key: Sequence[int]) -> bool:
return self._find_longest_prefix_key(tuple(key)) is not None
def __setitem__(self, key: Sequence[int], value: "LlamaState"):
key = tuple(key)
if key in self.cache_state:
del self.cache_state[key]
self.cache_state[key] = value
while self.cache_size > self.capacity_bytes and len(self.cache_state) > 0:
self.cache_state.popitem(last=False)
# Alias for backwards compatibility
LlamaCache = LlamaRAMCache
class LlamaDiskCache(BaseLlamaCache):
"""Cache for a llama.cpp model using disk."""
def __init__(
self, cache_dir: str = ".cache/llama_cache", capacity_bytes: int = (2 << 30)
):
super().__init__(capacity_bytes)
self.cache = diskcache.Cache(cache_dir)
@property
def cache_size(self):
return int(self.cache.volume()) # type: ignore
def _find_longest_prefix_key(
self,
key: Tuple[int, ...],
) -> Optional[Tuple[int, ...]]:
min_len = 0
min_key: Optional[Tuple[int, ...]] = None
for k in self.cache.iterkeys(): # type: ignore
prefix_len = Llama.longest_token_prefix(k, key)
if prefix_len > min_len:
min_len = prefix_len
min_key = k # type: ignore
return min_key
def __getitem__(self, key: Sequence[int]) -> "LlamaState":
key = tuple(key)
_key = self._find_longest_prefix_key(key)
if _key is None:
raise KeyError("Key not found")
value: "LlamaState" = self.cache.pop(_key) # type: ignore
# NOTE: This puts an integer as key in cache, which breaks,
# Llama.longest_token_prefix(k, key) above since k is not a tuple of ints/tokens
# self.cache.push(_key, side="front") # type: ignore
return value
def __contains__(self, key: Sequence[int]) -> bool:
return self._find_longest_prefix_key(tuple(key)) is not None
def __setitem__(self, key: Sequence[int], value: "LlamaState"):
print("LlamaDiskCache.__setitem__: called", file=sys.stderr)
key = tuple(key)
if key in self.cache:
print("LlamaDiskCache.__setitem__: delete", file=sys.stderr)
del self.cache[key]
self.cache[key] = value
print("LlamaDiskCache.__setitem__: set", file=sys.stderr)
while self.cache_size > self.capacity_bytes and len(self.cache) > 0:
key_to_remove = next(iter(self.cache))
del self.cache[key_to_remove]
print("LlamaDiskCache.__setitem__: trim", file=sys.stderr)
class LlamaState:
def __init__(
self,
input_ids: npt.NDArray[np.intc],
scores: npt.NDArray[np.single],
n_tokens: int,
llama_state: bytes,
llama_state_size: int,
):
self.input_ids = input_ids
self.scores = scores
self.n_tokens = n_tokens
self.llama_state = llama_state
self.llama_state_size = llama_state_size
LogitsProcessor = Callable[
[npt.NDArray[np.intc], npt.NDArray[np.single]], npt.NDArray[np.single]
]
class LogitsProcessorList(List[LogitsProcessor]):
def __call__(
self, input_ids: npt.NDArray[np.intc], scores: npt.NDArray[np.single]
) -> npt.NDArray[np.single]:
for processor in self:
scores = processor(input_ids, scores)
return scores
StoppingCriteria = Callable[[npt.NDArray[np.intc], npt.NDArray[np.single]], bool]
class StoppingCriteriaList(List[StoppingCriteria]):
def __call__(
self, input_ids: npt.NDArray[np.intc], logits: npt.NDArray[np.single]
) -> bool:
return any([stopping_criteria(input_ids, logits) for stopping_criteria in self])
class _LlamaModel:
"""Intermediate Python wrapper for a llama.cpp llama_model.
NOTE: For stability it's recommended you use the Llama class instead."""
_llama_free_model = None
# NOTE: this must be "saved" here to avoid exceptions when calling __del__
suppress_stdout_stderr = suppress_stdout_stderr
def __init__(
self,
*,
path_model: str,
params: llama_cpp.llama_model_params,
verbose: bool = True,
):
self.path_model = path_model
self.params = params
self.verbose = verbose
self._llama_free_model = llama_cpp._lib.llama_free_model # type: ignore
if not os.path.exists(path_model):
raise ValueError(f"Model path does not exist: {path_model}")
with suppress_stdout_stderr(disable=self.verbose):
self.model = llama_cpp.llama_load_model_from_file(
self.path_model.encode("utf-8"), self.params
)
def __del__(self):
with self.suppress_stdout_stderr(disable=self.verbose):
if self.model is not None and self._llama_free_model is not None:
self._llama_free_model(self.model)
self.model = None
def vocab_type(self) -> int:
assert self.model is not None
return llama_cpp.llama_vocab_type(self.model)
def n_vocab(self) -> int:
assert self.model is not None
return llama_cpp.llama_n_vocab(self.model)
def n_ctx_train(self) -> int:
assert self.model is not None
return llama_cpp.llama_n_ctx_train(self.model)
def n_embd(self) -> int:
assert self.model is not None
return llama_cpp.llama_n_embd(self.model)
def rope_freq_scale_train(self) -> float:
assert self.model is not None
return llama_cpp.llama_rope_freq_scale_train(self.model)
def desc(self) -> str:
assert self.model is not None
buf = ctypes.create_string_buffer(1024)
llama_cpp.llama_model_desc(self.model, buf, 1024) # type: ignore
return buf.value.decode("utf-8")
def size(self) -> int:
assert self.model is not None
return llama_cpp.llama_model_size(self.model)
def n_params(self) -> int:
assert self.model is not None
return llama_cpp.llama_model_n_params(self.model)
def get_tensor(self, name: str) -> ctypes.c_void_p:
assert self.model is not None
return llama_cpp.llama_get_model_tensor(self.model, name.encode("utf-8"))
def apply_lora_from_file(
self,
lora_path: str,
scale: float,
path_base_model: Optional[str],
n_threads: int,
):
assert self.model is not None
return llama_cpp.llama_model_apply_lora_from_file(
self.model,
lora_path.encode("utf-8"),
scale,
path_base_model.encode("utf-8")
if path_base_model is not None
else llama_cpp.c_char_p(0),
n_threads,
)
# Vocab
def token_get_text(self, token: int) -> str:
# TODO: Fix
assert self.model is not None
return llama_cpp.llama_token_get_text(self.model, token).decode("utf-8")
def token_get_score(self, token: int) -> float:
assert self.model is not None
return llama_cpp.llama_token_get_score(self.model, token)
def token_get_type(self, token: int) -> int:
assert self.model is not None
return llama_cpp.llama_token_get_type(self.model, token)
# Special tokens
def token_bos(self) -> int:
assert self.model is not None
return llama_cpp.llama_token_bos(self.model)
def token_eos(self) -> int:
assert self.model is not None
return llama_cpp.llama_token_eos(self.model)
def token_nl(self) -> int:
assert self.model is not None
return llama_cpp.llama_token_nl(self.model)
def token_prefix(self) -> int:
assert self.model is not None
return llama_cpp.llama_token_prefix(self.model)
def token_middle(self) -> int:
assert self.model is not None
return llama_cpp.llama_token_middle(self.model)
def token_suffix(self) -> int:
assert self.model is not None
return llama_cpp.llama_token_suffix(self.model)
def token_eot(self) -> int:
assert self.model is not None
return llama_cpp.llama_token_eot(self.model)
# Tokenization
def tokenize(self, text: bytes, add_bos: bool, special: bool):
assert self.model is not None
n_ctx = self.n_ctx_train()
tokens = (llama_cpp.llama_token * n_ctx)()
n_tokens = llama_cpp.llama_tokenize(
self.model, text, len(text), tokens, n_ctx, add_bos, special
)
if n_tokens < 0:
n_tokens = abs(n_tokens)
tokens = (llama_cpp.llama_token * n_tokens)()
n_tokens = llama_cpp.llama_tokenize(
self.model, text, len(text), tokens, n_tokens, add_bos, special
)
if n_tokens < 0:
raise RuntimeError(
f'Failed to tokenize: text="{text}" n_tokens={n_tokens}'
)
return list(tokens[:n_tokens])
def token_to_piece(self, token: int) -> bytes:
assert self.model is not None
buf = ctypes.create_string_buffer(32)
llama_cpp.llama_token_to_piece(self.model, token, buf, 32) # type: ignore
return bytes(buf)
def detokenize(self, tokens: List[int]) -> bytes:
assert self.model is not None
output = b""
size = 32
buffer = (ctypes.c_char * size)()
for token in tokens:
n = llama_cpp.llama_token_to_piece(
self.model, llama_cpp.llama_token(token), buffer, size
)
assert n <= size
output += bytes(buffer[:n])
# NOTE: Llama1 models automatically added a space at the start of the prompt
# this line removes a leading space if the first token is a beginning of sentence token
return (
output[1:] if len(tokens) > 0 and tokens[0] == self.token_bos() else output
)
@staticmethod
def default_params():
"""Get the default llama_model_params."""
return llama_cpp.llama_model_default_params()
class _LlamaContext:
"""Intermediate Python wrapper for a llama.cpp llama_context.
NOTE: For stability it's recommended you use the Llama class instead."""
_llama_free = None
# NOTE: this must be "saved" here to avoid exceptions when calling __del__
suppress_stdout_stderr = suppress_stdout_stderr
def __init__(
self,
*,
model: _LlamaModel,
params: llama_cpp.llama_context_params,
verbose: bool = True,
):
self.model = model
self.params = params
self.verbose = verbose
self._llama_free = llama_cpp._lib.llama_free # type: ignore
with suppress_stdout_stderr(disable=self.verbose):
self.ctx = llama_cpp.llama_new_context_with_model(
self.model.model, self.params
)
def __del__(self):
with self.suppress_stdout_stderr(disable=self.verbose):
if self.ctx is not None and self._llama_free is not None:
self._llama_free(self.ctx)
self.ctx = None
def n_ctx(self) -> int:
assert self.ctx is not None
return llama_cpp.llama_n_ctx(self.ctx)
def kv_cache_clear(self):
assert self.ctx is not None
llama_cpp.llama_kv_cache_clear(self.ctx)
def kv_cache_seq_rm(self, seq_id: int, p0: int, p1: int):
assert self.ctx is not None
llama_cpp.llama_kv_cache_seq_rm(self.ctx, seq_id, p0, p1)
def kv_cache_seq_cp(self, seq_id_src: int, seq_id_dst: int, p0: int, p1: int):
assert self.ctx is not None
llama_cpp.llama_kv_cache_seq_cp(self.ctx, seq_id_src, seq_id_dst, p0, p1)
def kv_cache_seq_keep(self, seq_id: int):
assert self.ctx is not None
llama_cpp.llama_kv_cache_seq_keep(self.ctx, seq_id)
def kv_cache_seq_shift(self, seq_id: int, p0: int, p1: int, shift: int):
assert self.ctx is not None
llama_cpp.llama_kv_cache_seq_shift(self.ctx, seq_id, p0, p1, shift)
def get_state_size(self) -> int:
assert self.ctx is not None
return llama_cpp.llama_get_state_size(self.ctx)
# TODO: copy_state_data
# TODO: set_state_data
# TODO: llama_load_session_file
# TODO: llama_save_session_file
def decode(self, batch: "_LlamaBatch"):
assert self.ctx is not None
assert batch.batch is not None
return_code = llama_cpp.llama_decode(
ctx=self.ctx,
batch=batch.batch,
)
if return_code != 0:
raise RuntimeError(f"llama_decode returned {return_code}")
def set_n_threads(self, n_threads: int, n_threads_batch: int):
assert self.ctx is not None
llama_cpp.llama_set_n_threads(self.ctx, n_threads, n_threads_batch)
def get_logits(self):
assert self.ctx is not None
return llama_cpp.llama_get_logits(self.ctx)
def get_logits_ith(self, i: int):
assert self.ctx is not None
return llama_cpp.llama_get_logits_ith(self.ctx, i)
def get_embeddings(self):
assert self.ctx is not None
return llama_cpp.llama_get_embeddings(self.ctx)
# Sampling functions
def set_rng_seed(self, seed: int):
assert self.ctx is not None
llama_cpp.llama_set_rng_seed(self.ctx, seed)
def sample_repetition_penalties(
self,
candidates: "_LlamaTokenDataArray",
last_tokens_data: "llama_cpp.Array[llama_cpp.llama_token]",
penalty_last_n: int,
penalty_repeat: float,
penalty_freq: float,
penalty_present: float,
):
assert self.ctx is not None
llama_cpp.llama_sample_repetition_penalties(
self.ctx,
ctypes.byref(candidates.candidates), # type: ignore
last_tokens_data,
penalty_last_n,
penalty_repeat,
penalty_freq,
penalty_present,
)
def sample_classifier_free_guidance(
self,
candidates: "_LlamaTokenDataArray",
guidance_ctx: "_LlamaContext",
scale: float,
):
assert self.ctx is not None
assert guidance_ctx.ctx is not None
llama_cpp.llama_sample_classifier_free_guidance(
self.ctx,
ctypes.byref(candidates.candidates), # type: ignore
guidance_ctx.ctx,
scale,
)
def sample_softmax(self, candidates: "_LlamaTokenDataArray"):
assert self.ctx is not None
llama_cpp.llama_sample_softmax(
self.ctx,
ctypes.byref(candidates.candidates), # type: ignore
)
def sample_top_k(self, candidates: "_LlamaTokenDataArray", k: int, min_keep: int):
assert self.ctx is not None
llama_cpp.llama_sample_top_k(
self.ctx, ctypes.byref(candidates.candidates), k, min_keep # type: ignore
)
def sample_top_p(self, candidates: "_LlamaTokenDataArray", p: float, min_keep: int):
assert self.ctx is not None
llama_cpp.llama_sample_top_p(
self.ctx, ctypes.byref(candidates.candidates), p, min_keep # type: ignore
)
def sample_min_p(self, candidates: "_LlamaTokenDataArray", p: float, min_keep: int):
assert self.ctx is not None
llama_cpp.llama_sample_min_p(
self.ctx, ctypes.byref(candidates.candidates), p, min_keep # type: ignore
)
def sample_tail_free(
self, candidates: "_LlamaTokenDataArray", z: float, min_keep: int
):
assert self.ctx is not None
llama_cpp.llama_sample_tail_free(
self.ctx, ctypes.byref(candidates.candidates), z, min_keep # type: ignore
)
def sample_typical(
self, candidates: "_LlamaTokenDataArray", p: float, min_keep: int
):
assert self.ctx is not None
llama_cpp.llama_sample_typical(
self.ctx, ctypes.byref(candidates.candidates), p, min_keep # type: ignore
)
def sample_temp(self, candidates: "_LlamaTokenDataArray", temp: float):
assert self.ctx is not None
llama_cpp.llama_sample_temp(
self.ctx, ctypes.byref(candidates.candidates), temp # type: ignore
)
def sample_grammar(self, candidates: "_LlamaTokenDataArray", grammar: LlamaGrammar):
assert self.ctx is not None
assert grammar.grammar is not None
llama_cpp.llama_sample_grammar(
self.ctx,
ctypes.byref(candidates.candidates), # type: ignore
grammar.grammar,
)
def sample_token_mirostat(
self,
candidates: "_LlamaTokenDataArray",
tau: float,
eta: float,
m: int,
mu: float,
) -> int:
assert self.ctx is not None
return llama_cpp.llama_sample_token_mirostat(
self.ctx,
ctypes.byref(candidates.candidates), # type: ignore
tau,
eta,
m,
ctypes.pointer(ctypes.c_float(mu)),
)
def sample_token_mirostat_v2(
self, candidates: "_LlamaTokenDataArray", tau: float, eta: float, mu: float
) -> int:
assert self.ctx is not None
return llama_cpp.llama_sample_token_mirostat_v2(
self.ctx,
ctypes.byref(candidates.candidates), # type: ignore
tau,
eta,
ctypes.pointer(ctypes.c_float(mu)),
)
def sample_token_greedy(self, candidates: "_LlamaTokenDataArray") -> int:
assert self.ctx is not None
return llama_cpp.llama_sample_token_greedy(
self.ctx,
ctypes.byref(candidates.candidates), # type: ignore
)
def sample_token(self, candidates: "_LlamaTokenDataArray") -> int:
assert self.ctx is not None
return llama_cpp.llama_sample_token(
self.ctx,
ctypes.byref(candidates.candidates), # type: ignore
)
# Grammar
def grammar_accept_token(self, grammar: LlamaGrammar, token: int):
assert self.ctx is not None
assert grammar.grammar is not None
llama_cpp.llama_grammar_accept_token(self.ctx, grammar.grammar, token)
def reset_timings(self):
assert self.ctx is not None
llama_cpp.llama_reset_timings(self.ctx)
def print_timings(self):
assert self.ctx is not None
llama_cpp.llama_print_timings(self.ctx)
# Utility functions
@staticmethod
def default_params():
"""Get the default llama_context_params."""
return llama_cpp.llama_context_default_params()
class _LlamaBatch:
_llama_batch_free = None
# NOTE: this must be "saved" here to avoid exceptions when calling __del__
suppress_stdout_stderr = suppress_stdout_stderr
def __init__(
self, *, n_tokens: int, embd: int, n_seq_max: int, verbose: bool = True
):
self.n_tokens = n_tokens
self.embd = embd
self.n_seq_max = n_seq_max
self.verbose = verbose
self._llama_batch_free = llama_cpp._lib.llama_batch_free # type: ignore
with suppress_stdout_stderr(disable=self.verbose):
self.batch = llama_cpp.llama_batch_init(
self.n_tokens, self.embd, self.n_seq_max
)
def __del__(self):
with self.suppress_stdout_stderr(disable=self.verbose):
if self.batch is not None and self._llama_batch_free is not None:
self._llama_batch_free(self.batch)
self.batch = None
def set_batch(self, batch: Sequence[int], n_past: int, logits_all: bool):
assert self.batch is not None
n_tokens = len(batch)
self.batch.n_tokens = n_tokens
for i in range(n_tokens):
self.batch.token[i] = batch[i]
self.batch.pos[i] = n_past + i
self.batch.seq_id[i][0] = 0
self.batch.n_seq_id[i] = 1
self.batch.logits[i] = logits_all
self.batch.logits[n_tokens - 1] = True
class _LlamaTokenDataArray:
def __init__(self, *, n_vocab: int):
self.n_vocab = n_vocab
self.candidates_data = np.array(
[],
dtype=np.dtype(
[("id", np.intc), ("logit", np.single), ("p", np.single)], align=True
),
)
self.candidates_data.resize(3, self.n_vocab, refcheck=False)
self.candidates = llama_cpp.llama_token_data_array(
data=self.candidates_data.ctypes.data_as(llama_cpp.llama_token_data_p),
size=self.n_vocab,
sorted=False,
)
self.default_candidates_data_id = np.arange(self.n_vocab, dtype=np.intc)
self.default_candidates_data_p = np.zeros(self.n_vocab, dtype=np.single)
def copy_logits(self, logits: npt.NDArray[np.single]):
self.candidates_data["id"][:] = self.default_candidates_data_id
self.candidates_data["logit"][:] = logits
self.candidates_data["p"][:] = self.default_candidates_data_p
self.candidates.data = self.candidates_data.ctypes.data_as(
llama_cpp.llama_token_data_p
)
self.candidates.sorted = llama_cpp.c_bool(False)
self.candidates.size = llama_cpp.c_size_t(self.n_vocab)
class Llama: class Llama:
@ -77,7 +754,7 @@ class Llama:
mul_mat_q: bool = True, mul_mat_q: bool = True,
logits_all: bool = False, logits_all: bool = False,
embedding: bool = False, embedding: bool = False,
offload_kqv: bool = True, offload_kqv: bool = False,
# Sampling Params # Sampling Params
last_n_tokens_size: int = 64, last_n_tokens_size: int = 64,
# LoRA Params # LoRA Params
@ -329,18 +1006,6 @@ class Llama:
(n_ctx, self._n_vocab), dtype=np.single (n_ctx, self._n_vocab), dtype=np.single
) )
self._mirostat_mu = ctypes.c_float(2.0 * 5.0) # TODO: Move this to sampling context
try:
self.metadata = self._model.metadata()
except Exception as e:
self.metadata = {}
if self.verbose:
print(f"Failed to load metadata: {e}", file=sys.stderr)
if self.verbose:
print(f"Model metadata: {self.metadata}", file=sys.stderr)
@property @property
def ctx(self) -> llama_cpp.llama_context_p: def ctx(self) -> llama_cpp.llama_context_p:
assert self._ctx.ctx is not None assert self._ctx.ctx is not None
@ -528,7 +1193,7 @@ class Llama:
candidates=self._candidates, candidates=self._candidates,
tau=mirostat_tau, tau=mirostat_tau,
eta=mirostat_eta, eta=mirostat_eta,
mu=ctypes.pointer(self._mirostat_mu), mu=2.0 * mirostat_tau,
m=100, m=100,
) )
elif mirostat_mode == 2: elif mirostat_mode == 2:
@ -537,7 +1202,7 @@ class Llama:
candidates=self._candidates, candidates=self._candidates,
tau=mirostat_tau, tau=mirostat_tau,
eta=mirostat_eta, eta=mirostat_eta,
mu=ctypes.pointer(self._mirostat_mu) mu=2.0 * mirostat_tau,
) )
else: else:
self._ctx.sample_top_k(candidates=self._candidates, k=top_k, min_keep=1) self._ctx.sample_top_k(candidates=self._candidates, k=top_k, min_keep=1)
@ -593,10 +1258,6 @@ class Llama:
Yields: Yields:
The generated tokens. The generated tokens.
""" """
# Reset mirostat sampling
self._mirostat_mu = ctypes.c_float(2.0 * mirostat_tau)
# Check for kv cache prefix match
if reset and self.n_tokens > 0: if reset and self.n_tokens > 0:
longest_prefix = 0 longest_prefix = 0
for a, b in zip(self._input_ids, tokens[:-1]): for a, b in zip(self._input_ids, tokens[:-1]):
@ -611,15 +1272,12 @@ class Llama:
tokens = tokens[longest_prefix:] tokens = tokens[longest_prefix:]
self.n_tokens = longest_prefix self.n_tokens = longest_prefix
# Reset the model state
if reset: if reset:
self.reset() self.reset()
# Reset the grammar
if grammar is not None: if grammar is not None:
grammar.reset() grammar.reset()
# Eval and sample
while True: while True:
self.eval(tokens) self.eval(tokens)
token = self.sample( token = self.sample(
@ -1714,43 +2372,3 @@ class LlamaTokenizer:
@classmethod @classmethod
def from_ggml_file(cls, path: str) -> "LlamaTokenizer": def from_ggml_file(cls, path: str) -> "LlamaTokenizer":
return cls(Llama(model_path=path, vocab_only=True)) return cls(Llama(model_path=path, vocab_only=True))
class LlamaState:
def __init__(
self,
input_ids: npt.NDArray[np.intc],
scores: npt.NDArray[np.single],
n_tokens: int,
llama_state: bytes,
llama_state_size: int,
):
self.input_ids = input_ids
self.scores = scores
self.n_tokens = n_tokens
self.llama_state = llama_state
self.llama_state_size = llama_state_size
LogitsProcessor = Callable[
[npt.NDArray[np.intc], npt.NDArray[np.single]], npt.NDArray[np.single]
]
class LogitsProcessorList(List[LogitsProcessor]):
def __call__(
self, input_ids: npt.NDArray[np.intc], scores: npt.NDArray[np.single]
) -> npt.NDArray[np.single]:
for processor in self:
scores = processor(input_ids, scores)
return scores
StoppingCriteria = Callable[[npt.NDArray[np.intc], npt.NDArray[np.single]], bool]
class StoppingCriteriaList(List[StoppingCriteria]):
def __call__(
self, input_ids: npt.NDArray[np.intc], logits: npt.NDArray[np.single]
) -> bool:
return any([stopping_criteria(input_ids, logits) for stopping_criteria in self])

View file

@ -1,150 +0,0 @@
import sys
from abc import ABC, abstractmethod
from typing import (
Optional,
Sequence,
Tuple,
)
from collections import OrderedDict
import diskcache
import llama_cpp.llama
from .llama_types import *
class BaseLlamaCache(ABC):
"""Base cache class for a llama.cpp model."""
def __init__(self, capacity_bytes: int = (2 << 30)):
self.capacity_bytes = capacity_bytes
@property
@abstractmethod
def cache_size(self) -> int:
raise NotImplementedError
def _find_longest_prefix_key(
self,
key: Tuple[int, ...],
) -> Optional[Tuple[int, ...]]:
pass
@abstractmethod
def __getitem__(self, key: Sequence[int]) -> "llama_cpp.llama.LlamaState":
raise NotImplementedError
@abstractmethod
def __contains__(self, key: Sequence[int]) -> bool:
raise NotImplementedError
@abstractmethod
def __setitem__(self, key: Sequence[int], value: "llama_cpp.llama.LlamaState") -> None:
raise NotImplementedError
class LlamaRAMCache(BaseLlamaCache):
"""Cache for a llama.cpp model using RAM."""
def __init__(self, capacity_bytes: int = (2 << 30)):
super().__init__(capacity_bytes)
self.capacity_bytes = capacity_bytes
self.cache_state: OrderedDict[Tuple[int, ...], "llama_cpp.llama.LlamaState"] = OrderedDict()
@property
def cache_size(self):
return sum([state.llama_state_size for state in self.cache_state.values()])
def _find_longest_prefix_key(
self,
key: Tuple[int, ...],
) -> Optional[Tuple[int, ...]]:
min_len = 0
min_key = None
keys = (
(k, llama_cpp.llama.Llama.longest_token_prefix(k, key)) for k in self.cache_state.keys()
)
for k, prefix_len in keys:
if prefix_len > min_len:
min_len = prefix_len
min_key = k
return min_key
def __getitem__(self, key: Sequence[int]) -> "llama_cpp.llama.LlamaState":
key = tuple(key)
_key = self._find_longest_prefix_key(key)
if _key is None:
raise KeyError("Key not found")
value = self.cache_state[_key]
self.cache_state.move_to_end(_key)
return value
def __contains__(self, key: Sequence[int]) -> bool:
return self._find_longest_prefix_key(tuple(key)) is not None
def __setitem__(self, key: Sequence[int], value: "llama_cpp.llama.LlamaState"):
key = tuple(key)
if key in self.cache_state:
del self.cache_state[key]
self.cache_state[key] = value
while self.cache_size > self.capacity_bytes and len(self.cache_state) > 0:
self.cache_state.popitem(last=False)
# Alias for backwards compatibility
LlamaCache = LlamaRAMCache
class LlamaDiskCache(BaseLlamaCache):
"""Cache for a llama.cpp model using disk."""
def __init__(
self, cache_dir: str = ".cache/llama_cache", capacity_bytes: int = (2 << 30)
):
super().__init__(capacity_bytes)
self.cache = diskcache.Cache(cache_dir)
@property
def cache_size(self):
return int(self.cache.volume()) # type: ignore
def _find_longest_prefix_key(
self,
key: Tuple[int, ...],
) -> Optional[Tuple[int, ...]]:
min_len = 0
min_key: Optional[Tuple[int, ...]] = None
for k in self.cache.iterkeys(): # type: ignore
prefix_len = llama_cpp.llama.Llama.longest_token_prefix(k, key)
if prefix_len > min_len:
min_len = prefix_len
min_key = k # type: ignore
return min_key
def __getitem__(self, key: Sequence[int]) -> "llama_cpp.llama.LlamaState":
key = tuple(key)
_key = self._find_longest_prefix_key(key)
if _key is None:
raise KeyError("Key not found")
value: "llama_cpp.llama.LlamaState" = self.cache.pop(_key) # type: ignore
# NOTE: This puts an integer as key in cache, which breaks,
# Llama.longest_token_prefix(k, key) above since k is not a tuple of ints/tokens
# self.cache.push(_key, side="front") # type: ignore
return value
def __contains__(self, key: Sequence[int]) -> bool:
return self._find_longest_prefix_key(tuple(key)) is not None
def __setitem__(self, key: Sequence[int], value: "llama_cpp.llama.LlamaState"):
print("LlamaDiskCache.__setitem__: called", file=sys.stderr)
key = tuple(key)
if key in self.cache:
print("LlamaDiskCache.__setitem__: delete", file=sys.stderr)
del self.cache[key]
self.cache[key] = value
print("LlamaDiskCache.__setitem__: set", file=sys.stderr)
while self.cache_size > self.capacity_bytes and len(self.cache) > 0:
key_to_remove = next(iter(self.cache))
del self.cache[key_to_remove]
print("LlamaDiskCache.__setitem__: trim", file=sys.stderr)

View file

@ -6,28 +6,18 @@ import ctypes
import dataclasses import dataclasses
from typing import Any, Dict, Iterator, List, Optional, Tuple, Union, Protocol from typing import Any, Dict, Iterator, List, Optional, Tuple, Union, Protocol
import jinja2
import llama_cpp.llama as llama import llama_cpp.llama as llama
import llama_cpp.llama_types as llama_types import llama_cpp.llama_types as llama_types
import llama_cpp.llama_grammar as llama_grammar import llama_cpp.llama_grammar as llama_grammar
from ._utils import suppress_stdout_stderr, Singleton from ._utils import suppress_stdout_stderr
class LlamaChatCompletionHandler(Protocol): class LlamaChatCompletionHandler(Protocol):
"""Base Protocol for a llama chat completion handler.
Very generic protocol that can be used to implement any chat format.
The only hard requirement is that it must return a ChatCompletion when
stream=False and an iterator of ChatCompletionChunks when stream=True."""
def __call__( def __call__(
self, self,
*, *,
# llama.cpp instance
llama: llama.Llama, llama: llama.Llama,
# openai api parameters
messages: List[llama_types.ChatCompletionRequestMessage], messages: List[llama_types.ChatCompletionRequestMessage],
functions: Optional[List[llama_types.ChatCompletionFunction]] = None, functions: Optional[List[llama_types.ChatCompletionFunction]] = None,
function_call: Optional[llama_types.ChatCompletionRequestFunctionCall] = None, function_call: Optional[llama_types.ChatCompletionRequestFunctionCall] = None,
@ -36,6 +26,8 @@ class LlamaChatCompletionHandler(Protocol):
temperature: float = 0.2, temperature: float = 0.2,
top_p: float = 0.95, top_p: float = 0.95,
top_k: int = 40, top_k: int = 40,
min_p: float = 0.05,
typical_p: float = 1.0,
stream: bool = False, stream: bool = False,
stop: Optional[Union[str, List[str]]] = [], stop: Optional[Union[str, List[str]]] = [],
seed: Optional[int] = None, seed: Optional[int] = None,
@ -46,17 +38,14 @@ class LlamaChatCompletionHandler(Protocol):
presence_penalty: float = 0.0, presence_penalty: float = 0.0,
frequency_penalty: float = 0.0, frequency_penalty: float = 0.0,
repeat_penalty: float = 1.1, repeat_penalty: float = 1.1,
model: Optional[str] = None,
logit_bias: Optional[Dict[str, float]] = None,
# llama.cpp parameters
min_p: float = 0.05,
typical_p: float = 1.0,
tfs_z: float = 1.0, tfs_z: float = 1.0,
mirostat_mode: int = 0, mirostat_mode: int = 0,
mirostat_tau: float = 5.0, mirostat_tau: float = 5.0,
mirostat_eta: float = 0.1, mirostat_eta: float = 0.1,
model: Optional[str] = None,
logits_processor: Optional[llama.LogitsProcessorList] = None, logits_processor: Optional[llama.LogitsProcessorList] = None,
grammar: Optional[llama.LlamaGrammar] = None, grammar: Optional[llama.LlamaGrammar] = None,
logit_bias: Optional[Dict[str, float]] = None,
**kwargs, # type: ignore **kwargs, # type: ignore
) -> Union[ ) -> Union[
llama_types.CreateChatCompletionResponse, llama_types.CreateChatCompletionResponse,
@ -65,78 +54,146 @@ class LlamaChatCompletionHandler(Protocol):
... ...
class LlamaChatCompletionHandlerNotFoundException(Exception): CHAT_HANDLERS: Dict[str, LlamaChatCompletionHandler] = {}
pass
class LlamaChatCompletionHandlerRegistry(Singleton):
_chat_handlers: Dict[str, LlamaChatCompletionHandler] = {}
def register_chat_completion_handler(
self,
name: str,
chat_handler: LlamaChatCompletionHandler,
overwrite: bool = False,
):
if not overwrite and name in self._chat_handlers:
raise ValueError(
f"Formatter with name '{name}' is already registered. Use `overwrite=True` to overwrite it."
)
self._chat_handlers[name] = chat_handler
def unregister_chat_handler(self, name: str):
if name in self._chat_handlers:
del self._chat_handlers[name]
else:
raise ValueError(f"No formatter registered under the name '{name}'.")
def get_chat_completion_handler_by_name(
self, name: str
) -> LlamaChatCompletionHandler:
try:
chat_handler = self._chat_handlers[name]
return chat_handler
except KeyError:
raise LlamaChatCompletionHandlerNotFoundException(
f"Invalid chat handler: {name} (valid formats: {list(self._chat_handlers.keys())})"
)
def get_chat_completion_handler(name: str) -> LlamaChatCompletionHandler: def get_chat_completion_handler(name: str) -> LlamaChatCompletionHandler:
return LlamaChatCompletionHandlerRegistry().get_chat_completion_handler_by_name( return CHAT_HANDLERS[name]
name
)
def register_chat_completion_handler(name: str): def register_chat_completion_handler(name: str):
def decorator(f: LlamaChatCompletionHandler): def decorator(f: LlamaChatCompletionHandler):
LlamaChatCompletionHandlerRegistry().register_chat_completion_handler(name, f) CHAT_HANDLERS[name] = f
return f return f
return decorator return decorator
### Chat Formatter ### def _get_system_message(
messages: List[llama_types.ChatCompletionRequestMessage],
) -> str:
"""Get the first system message."""
for message in messages:
if message["role"] == "system":
return message["content"] or ""
return ""
def _map_roles(
messages: List[llama_types.ChatCompletionRequestMessage], role_map: Dict[str, str]
) -> List[Tuple[str, Optional[str]]]:
"""Map the message roles."""
output: List[Tuple[str, Optional[str]]] = []
for message in messages:
role = message["role"]
if role in role_map:
output.append((role_map[role], message["content"]))
return output
def _format_llama2(
system_message: str, messages: List[Tuple[str, Optional[str]]], sep: str, sep2: str
) -> str:
"""Format the prompt with the llama2 style."""
seps = [sep, sep2]
ret = system_message + sep
for i, (role, message) in enumerate(messages):
if system_message and i == 0:
ret += message + seps[i % 2]
elif message:
ret += role + message + " " + seps[i % 2]
else:
ret += role + " "
return ret
def _format_add_colon_single(
system_message: str, messages: List[Tuple[str, Optional[str]]], sep: str
) -> str:
"""Format the prompt with the add-colon-single style."""
ret = system_message + sep
for role, message in messages:
if message:
ret += role + ": " + message + sep
else:
ret += role + ":"
return ret
def _format_add_colon_two(
system_message: str, messages: List[Tuple[str, Optional[str]]], sep: str, sep2: str
) -> str:
"""Format the prompt with the add-colon-two style."""
seps = [sep, sep2]
ret = system_message + seps[0]
for i, (role, message) in enumerate(messages):
if message:
ret += role + ": " + message + seps[i % 2]
else:
ret += role + ":"
return ret
def _format_no_colon_single(
system_message: str, messages: List[Tuple[str, Optional[str]]], sep: str
) -> str:
"""Format the prompt with the no-colon-single style."""
ret = system_message
for role, message in messages:
if message:
ret += role + message + sep
else:
ret += role
return ret
def _format_add_colon_space_single(
system_message: str, messages: List[Tuple[str, Optional[str]]], sep: str
) -> str:
"""Format the prompt with the add-colon-space-single style."""
ret = system_message + sep
for role, message in messages:
if message:
ret += role + ": " + message + sep
else:
ret += role + ": " # must be end with a space
return ret
def _format_chatml(
system_message: str, messages: List[Tuple[str, Optional[str]]], sep: str
) -> str:
"""Format the prompt with the chatml style."""
ret = "" if system_message == "" else system_message + sep + "\n"
for role, message in messages:
if message:
ret += role + "\n" + message + sep + "\n"
else:
ret += role + "\n"
return ret
def _format_chatglm3(
system_message: str, messages: List[Tuple[str, Optional[str]]], sep: str
) -> str:
"""Format the prompt with the chatglm3 style."""
ret = ""
if system_message:
ret += system_message
for role, message in messages:
if message:
ret += role + "\n" + " " + message
else:
ret += role
return ret
@dataclasses.dataclass @dataclasses.dataclass
class ChatFormatterResponse: class ChatFormatterResponse:
"""Dataclass that stores completion parameters for a given chat format and
create_chat_completion request.
prompt contains the formatted prompt generated from the chat format and messages.
stop contains the stop token or list of stop tokens to use for the chat format."""
prompt: str prompt: str
stop: Optional[Union[str, List[str]]] = None stop: Optional[Union[str, List[str]]] = None
class ChatFormatter(Protocol): class ChatFormatter(Protocol):
"""Base Protocol for a chat formatter. A chat formatter is a function that
takes a list of messages and returns a chat format response which can be used
to generate a completion. The response can also include a stop token or list
of stop tokens to use for the completion."""
def __call__( def __call__(
self, self,
*, *,
@ -146,52 +203,14 @@ class ChatFormatter(Protocol):
... ...
class Jinja2ChatFormatter(ChatFormatter): class BasicChatHandler:
def __init__( def __init__(self, chat_format: str):
self, self.chat_format = chat_format
template: str,
eos_token: str,
bos_token: str,
add_generation_prompt: bool = True,
):
"""A chat formatter that uses jinja2 templates to format the prompt."""
self.template = template
self.eos_token = eos_token
self.bos_token = bos_token
self.add_generation_prompt = add_generation_prompt
self._environment = jinja2.Environment(
loader=jinja2.BaseLoader(),
trim_blocks=True,
lstrip_blocks=True,
).from_string(self.template)
def __call__(
self,
*,
messages: List[llama_types.ChatCompletionRequestMessage],
**kwargs: Any,
) -> ChatFormatterResponse:
if self.add_generation_prompt:
messages = [
*messages,
llama_types.ChatCompletionRequestAssistantMessage(
role="assistant", content=""
),
]
prompt = self._environment.render(
messages=messages, eos_token=self.eos_token, bos_token=self.bos_token
)
return ChatFormatterResponse(prompt=prompt, stop=[self.eos_token])
def to_chat_handler(self) -> LlamaChatCompletionHandler:
return chat_formatter_to_chat_completion_handler(self)
def _convert_text_completion_to_chat( def _convert_text_completion_to_chat(
completion: llama_types.Completion, completion: llama_types.Completion,
) -> llama_types.ChatCompletion: ) -> llama_types.ChatCompletion:
assert "usage" in completion
return { return {
"id": "chat" + completion["id"], "id": "chat" + completion["id"],
"object": "chat.completion", "object": "chat.completion",
@ -267,85 +286,103 @@ def _convert_completion_to_chat(
return _convert_text_completion_to_chat(completion) return _convert_text_completion_to_chat(completion)
def chat_formatter_to_chat_completion_handler( _CHAT_FORMATS: Dict[str, ChatFormatter] = {}
chat_formatter: ChatFormatter,
) -> LlamaChatCompletionHandler:
def chat_completion_handler( def register_chat_format(name: str):
*, def decorator(f: ChatFormatter):
llama: llama.Llama, def basic_create_chat_completion(
messages: List[llama_types.ChatCompletionRequestMessage], *,
functions: Optional[List[llama_types.ChatCompletionFunction]] = None, llama: llama.Llama,
function_call: Optional[llama_types.ChatCompletionRequestFunctionCall] = None, messages: List[llama_types.ChatCompletionRequestMessage],
tools: Optional[List[llama_types.ChatCompletionTool]] = None, functions: Optional[List[llama_types.ChatCompletionFunction]] = None,
tool_choice: Optional[llama_types.ChatCompletionToolChoiceOption] = None, function_call: Optional[
temperature: float = 0.2, llama_types.ChatCompletionRequestFunctionCall
top_p: float = 0.95, ] = None,
top_k: int = 40, tools: Optional[List[llama_types.ChatCompletionTool]] = None,
min_p: float = 0.05, tool_choice: Optional[llama_types.ChatCompletionToolChoiceOption] = None,
typical_p: float = 1.0, temperature: float = 0.2,
stream: bool = False, top_p: float = 0.95,
stop: Optional[Union[str, List[str]]] = [], top_k: int = 40,
seed: Optional[int] = None, min_p: float = 0.05,
response_format: Optional[ typical_p: float = 1.0,
llama_types.ChatCompletionRequestResponseFormat stream: bool = False,
] = None, stop: Optional[Union[str, List[str]]] = [],
max_tokens: Optional[int] = None, seed: Optional[int] = None,
presence_penalty: float = 0.0, response_format: Optional[
frequency_penalty: float = 0.0, llama_types.ChatCompletionRequestResponseFormat
repeat_penalty: float = 1.1, ] = None,
tfs_z: float = 1.0, max_tokens: Optional[int] = None,
mirostat_mode: int = 0, presence_penalty: float = 0.0,
mirostat_tau: float = 5.0, frequency_penalty: float = 0.0,
mirostat_eta: float = 0.1, repeat_penalty: float = 1.1,
model: Optional[str] = None, tfs_z: float = 1.0,
logits_processor: Optional[llama.LogitsProcessorList] = None, mirostat_mode: int = 0,
grammar: Optional[llama.LlamaGrammar] = None, mirostat_tau: float = 5.0,
logit_bias: Optional[Dict[str, float]] = None, mirostat_eta: float = 0.1,
**kwargs, # type: ignore model: Optional[str] = None,
) -> Union[ logits_processor: Optional[llama.LogitsProcessorList] = None,
llama_types.CreateChatCompletionResponse, grammar: Optional[llama.LlamaGrammar] = None,
Iterator[llama_types.CreateChatCompletionStreamResponse], logit_bias: Optional[Dict[str, float]] = None,
]: **kwargs, # type: ignore
result = chat_formatter( ) -> Union[
messages=messages, llama_types.CreateChatCompletionResponse,
functions=functions, Iterator[llama_types.CreateChatCompletionStreamResponse],
function_call=function_call, ]:
result = f(
messages=messages,
functions=functions,
function_call=function_call,
)
prompt = result.prompt
if result.stop is not None:
stop = [] if stop is None else [stop] if isinstance(stop, str) else stop
rstop = result.stop if isinstance(result.stop, list) else [result.stop]
stop = stop + rstop
if response_format is not None and response_format["type"] == "json_object":
grammar = llama_grammar.LlamaGrammar.from_string(
llama_grammar.JSON_GBNF
)
completion_or_chunks = llama.create_completion(
prompt=prompt,
temperature=temperature,
top_p=top_p,
top_k=top_k,
min_p=min_p,
typical_p=typical_p,
stream=stream,
stop=stop,
seed=seed,
max_tokens=max_tokens,
presence_penalty=presence_penalty,
frequency_penalty=frequency_penalty,
repeat_penalty=repeat_penalty,
tfs_z=tfs_z,
mirostat_mode=mirostat_mode,
mirostat_tau=mirostat_tau,
mirostat_eta=mirostat_eta,
model=model,
logits_processor=logits_processor,
grammar=grammar,
logit_bias=logit_bias,
)
return _convert_completion_to_chat(completion_or_chunks, stream=stream)
register_chat_completion_handler(name)(basic_create_chat_completion)
return f
return decorator
def get_chat_format(name: str):
try:
return _CHAT_FORMATS[name]
except KeyError:
raise ValueError(
f"Invalid chat format: {name} (valid formats: {list(_CHAT_FORMATS.keys())})"
) )
prompt = result.prompt
if result.stop is not None:
stop = [] if stop is None else [stop] if isinstance(stop, str) else stop
rstop = result.stop if isinstance(result.stop, list) else [result.stop]
stop = stop + rstop
if response_format is not None and response_format["type"] == "json_object":
grammar = llama_grammar.LlamaGrammar.from_string(llama_grammar.JSON_GBNF)
completion_or_chunks = llama.create_completion(
prompt=prompt,
temperature=temperature,
top_p=top_p,
top_k=top_k,
min_p=min_p,
typical_p=typical_p,
stream=stream,
stop=stop,
seed=seed,
max_tokens=max_tokens,
presence_penalty=presence_penalty,
frequency_penalty=frequency_penalty,
repeat_penalty=repeat_penalty,
tfs_z=tfs_z,
mirostat_mode=mirostat_mode,
mirostat_tau=mirostat_tau,
mirostat_eta=mirostat_eta,
model=model,
logits_processor=logits_processor,
grammar=grammar,
logit_bias=logit_bias,
)
return _convert_completion_to_chat(completion_or_chunks, stream=stream)
return chat_completion_handler
def hf_autotokenizer_to_chat_formatter( def hf_autotokenizer_to_chat_formatter(
@ -354,222 +391,22 @@ def hf_autotokenizer_to_chat_formatter(
# https://huggingface.co/docs/transformers/main/chat_templating # https://huggingface.co/docs/transformers/main/chat_templating
# https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1#instruction-format # https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1#instruction-format
# https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1/blob/main/tokenizer_config.json # https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1/blob/main/tokenizer_config.json
from transformers import AutoTokenizer # type: ignore from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path) # type: ignore tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path)
def format_autotokenizer( def format_autotokenizer(
messages: List[llama_types.ChatCompletionRequestMessage], messages: List[llama_types.ChatCompletionRequestMessage],
**kwargs: Any, **kwargs: Any,
) -> ChatFormatterResponse: ) -> ChatFormatterResponse:
tokenizer.use_default_system_prompt = False # type: ignore tokenizer.use_default_system_prompt = False
prompt: str = tokenizer.apply_chat_template(messages, tokenize=False) # type: ignore _prompt = tokenizer.apply_chat_template(messages, tokenize=False)
assert isinstance(prompt, str)
# Return formatted prompt and eos token by default # Return formatted prompt and eos token by default
return ChatFormatterResponse(prompt=prompt, stop=tokenizer.eos_token) return ChatFormatterResponse(prompt=_prompt, stop=tokenizer.eos_token)
return format_autotokenizer return format_autotokenizer
def hf_autotokenizer_to_chat_completion_handler(
pretrained_model_name_or_path: Union[str, os.PathLike[str]]
) -> LlamaChatCompletionHandler:
chat_formatter = hf_autotokenizer_to_chat_formatter(pretrained_model_name_or_path)
return chat_formatter_to_chat_completion_handler(chat_formatter)
def hf_tokenizer_config_to_chat_formatter(
tokenizer_config: Dict[str, Any]
) -> ChatFormatter:
assert isinstance(tokenizer_config, dict)
assert "chat_template" in tokenizer_config
assert isinstance(tokenizer_config["chat_template"], str)
chat_template = tokenizer_config["chat_template"]
assert "bos_token" in tokenizer_config
assert isinstance(tokenizer_config["bos_token"], str)
bos_token = tokenizer_config["bos_token"]
assert "eos_token" in tokenizer_config
assert isinstance(tokenizer_config["eos_token"], str)
eos_token = tokenizer_config["eos_token"]
env = jinja2.Environment(
loader=jinja2.BaseLoader(),
trim_blocks=True,
lstrip_blocks=True,
).from_string(chat_template)
def format_autotokenizer(
messages: List[llama_types.ChatCompletionRequestMessage],
**kwargs: Any,
) -> ChatFormatterResponse:
# TODO: veryify this is correct
# Add a blank assistant message to the end of the messages to prompt the model to generate a response
prompt = env.render(
messages=[
*messages,
llama_types.ChatCompletionRequestAssistantMessage(
role="assistant", content=""
),
],
bos_token=bos_token,
eos_token=eos_token,
)
return ChatFormatterResponse(prompt=prompt, stop=eos_token)
return format_autotokenizer
def hf_tokenizer_config_to_chat_completion_handler(
tokenizer_config: Dict[str, Any],
) -> LlamaChatCompletionHandler:
chat_formatter = hf_tokenizer_config_to_chat_formatter(tokenizer_config)
return chat_formatter_to_chat_completion_handler(chat_formatter)
### Utility functions for formatting chat prompts ###
def _get_system_message(
messages: List[llama_types.ChatCompletionRequestMessage],
) -> str:
"""Get the first system message."""
for message in messages:
if message["role"] == "system":
return message["content"] or ""
return ""
def _map_roles(
messages: List[llama_types.ChatCompletionRequestMessage],
role_map: Dict[str, str],
) -> List[Tuple[str, Optional[str]]]:
"""Map the message roles."""
output: List[Tuple[str, Optional[str]]] = []
for message in messages:
role = message["role"]
if role in role_map:
content: str | None = (
message["content"] if isinstance(message["content"], str) else None
)
output.append((role_map[role], content))
return output
def _format_llama2(
system_message: str, messages: List[Tuple[str, Optional[str]]], sep: str, sep2: str
) -> str:
"""Format the prompt with the llama2 style."""
seps = [sep, sep2]
ret = system_message + sep
for i, (role, message) in enumerate(messages):
if system_message and i == 0:
m = message or ""
ret += m + seps[i % 2]
elif message:
ret += role + message + " " + seps[i % 2]
else:
ret += role + " "
return ret
def _format_add_colon_single(
system_message: str, messages: List[Tuple[str, Optional[str]]], sep: str
) -> str:
"""Format the prompt with the add-colon-single style."""
ret = system_message + sep
for role, message in messages:
if message:
ret += role + ": " + message + sep
else:
ret += role + ":"
return ret
def _format_add_colon_two(
system_message: str, messages: List[Tuple[str, Optional[str]]], sep: str, sep2: str
) -> str:
"""Format the prompt with the add-colon-two style."""
seps = [sep, sep2]
ret = system_message + seps[0]
for i, (role, message) in enumerate(messages):
if message:
ret += role + ": " + message + seps[i % 2]
else:
ret += role + ":"
return ret
def _format_no_colon_single(
system_message: str, messages: List[Tuple[str, Optional[str]]], sep: str
) -> str:
"""Format the prompt with the no-colon-single style."""
ret = system_message
for role, message in messages:
if message:
ret += role + message + sep
else:
ret += role
return ret
def _format_add_colon_space_single(
system_message: str, messages: List[Tuple[str, Optional[str]]], sep: str
) -> str:
"""Format the prompt with the add-colon-space-single style."""
ret = system_message + sep
for role, message in messages:
if message:
ret += role + ": " + message + sep
else:
ret += role + ": " # must be end with a space
return ret
def _format_chatml(
system_message: str, messages: List[Tuple[str, Optional[str]]], sep: str
) -> str:
"""Format the prompt with the chatml style."""
ret = "" if system_message == "" else system_message + sep + "\n"
for role, message in messages:
if message:
ret += role + "\n" + message + sep + "\n"
else:
ret += role + "\n"
return ret
def _format_chatglm3(
system_message: str, messages: List[Tuple[str, Optional[str]]], sep: str
) -> str:
"""Format the prompt with the chatglm3 style."""
ret = ""
if system_message:
ret += system_message
for role, message in messages:
if message:
ret += role + "\n" + " " + message
else:
ret += role
return ret
### Chat Formats ###
def register_chat_format(name: str):
def decorator(f: ChatFormatter):
chat_completion_handler = chat_formatter_to_chat_completion_handler(f)
LlamaChatCompletionHandlerRegistry().register_chat_completion_handler(
name, chat_completion_handler
)
return f
return decorator
# see https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/tokenization_llama.py # see https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/tokenization_llama.py
# system prompt is "embedded" in the first message # system prompt is "embedded" in the first message
@register_chat_format("llama-2") @register_chat_format("llama-2")
@ -600,23 +437,21 @@ def format_alpaca(
_prompt = _format_add_colon_two(system_message, _messages, _sep, _sep2) _prompt = _format_add_colon_two(system_message, _messages, _sep, _sep2)
return ChatFormatterResponse(prompt=_prompt) return ChatFormatterResponse(prompt=_prompt)
@register_chat_format("qwen") @register_chat_format("qwen")
def format_qwen( def format_qwen(
messages: List[llama_types.ChatCompletionRequestMessage], messages: List[llama_types.ChatCompletionRequestMessage],
**kwargs: Any, **kwargs: Any,
) -> ChatFormatterResponse: ) -> ChatFormatterResponse:
_roles = dict(user="<|im_start|>user", assistant="<|im_start|>assistant") _roles = dict(user="<|im_start|>user", assistant="<|im_start|>assistant")
system_message = "You are a helpful assistant." system_message="You are a helpful assistant."
system_template = "<|im_start|>system\n{system_message}" system_template="<|im_start|>system\n{system_message}"
system_message = system_template.format(system_message=system_message) system_message=system_template.format(system_message=system_message)
_messages = _map_roles(messages, _roles) _messages = _map_roles(messages, _roles)
_messages.append((_roles["assistant"], None)) _messages.append((_roles["assistant"], None))
_sep = "<|im_end|>" _sep = "<|im_end|>"
_prompt = _format_chatml(system_message, _messages, _sep) _prompt = _format_chatml(system_message, _messages, _sep)
_sep2 = "<|endoftext|>" _sep2 = "<|endoftext|>"
return ChatFormatterResponse(prompt=_prompt, stop=_sep2) return ChatFormatterResponse(prompt=_prompt,stop=_sep2)
@register_chat_format("vicuna") @register_chat_format("vicuna")
def format( def format(
@ -815,7 +650,6 @@ def format_mistrallite(
_prompt = _format_no_colon_single(system_message, _messages, _sep) _prompt = _format_no_colon_single(system_message, _messages, _sep)
return ChatFormatterResponse(prompt=_prompt) return ChatFormatterResponse(prompt=_prompt)
@register_chat_format("zephyr") @register_chat_format("zephyr")
def format_zephyr( def format_zephyr(
messages: List[llama_types.ChatCompletionRequestMessage], messages: List[llama_types.ChatCompletionRequestMessage],
@ -865,7 +699,6 @@ def format_chatml(
_prompt = _format_chatml(system_message, _messages, _sep) _prompt = _format_chatml(system_message, _messages, _sep)
return ChatFormatterResponse(prompt=_prompt, stop=_sep) return ChatFormatterResponse(prompt=_prompt, stop=_sep)
@register_chat_format("chatglm3") @register_chat_format("chatglm3")
def format_chatglm3( def format_chatglm3(
messages: List[llama_types.ChatCompletionRequestMessage], messages: List[llama_types.ChatCompletionRequestMessage],
@ -906,7 +739,7 @@ def format_openchat(
@register_chat_format("saiga") @register_chat_format("saiga")
def format_saiga( def format_saiga(
messages: list[llama_types.ChatCompletionRequestMessage], messages: list[llama_types.ChatCompletionRequestMessage],
**kwargs: Any, **kwargs,
) -> ChatFormatterResponse: ) -> ChatFormatterResponse:
_message_template = "<s>{role}\n{content}</s>" _message_template = "<s>{role}\n{content}</s>"
_roles = dict(user="user", bot="bot", system="system") _roles = dict(user="user", bot="bot", system="system")

View file

@ -91,12 +91,6 @@ c_float_p = POINTER(c_float)
c_uint8_p = POINTER(c_uint8) c_uint8_p = POINTER(c_uint8)
c_size_t_p = POINTER(c_size_t) c_size_t_p = POINTER(c_size_t)
# from ggml-backend.h
# typedef bool (*ggml_backend_sched_eval_callback)(struct ggml_tensor * t, bool ask, void * user_data);
ggml_backend_sched_eval_callback = ctypes.CFUNCTYPE(
c_bool, c_void_p, c_bool, c_void_p
)
# llama.h bindings # llama.h bindings
_lib.llama_max_devices.argtypes = [] _lib.llama_max_devices.argtypes = []
@ -454,9 +448,6 @@ class llama_model_params(Structure):
# float yarn_beta_slow; // YaRN high correction dim # float yarn_beta_slow; // YaRN high correction dim
# uint32_t yarn_orig_ctx; // YaRN original context size # uint32_t yarn_orig_ctx; // YaRN original context size
# ggml_backend_sched_eval_callback cb_eval;
# void * cb_eval_user_data;
# enum ggml_type type_k; // data type for K cache # enum ggml_type type_k; // data type for K cache
# enum ggml_type type_v; // data type for V cache # enum ggml_type type_v; // data type for V cache
@ -484,8 +475,6 @@ class llama_context_params(Structure):
yarn_beta_fast (float): YaRN low correction dim yarn_beta_fast (float): YaRN low correction dim
yarn_beta_slow (float): YaRN high correction dim yarn_beta_slow (float): YaRN high correction dim
yarn_orig_ctx (int): YaRN original context size yarn_orig_ctx (int): YaRN original context size
cb_eval (ggml_backend_sched_eval_callback): callback for scheduling eval
cb_eval_user_data (ctypes.c_void_p): user data for cb_eval
type_k (int): data type for K cache type_k (int): data type for K cache
type_v (int): data type for V cache type_v (int): data type for V cache
mul_mat_q (bool): if true, use experimental mul_mat_q kernels (DEPRECATED - always true) mul_mat_q (bool): if true, use experimental mul_mat_q kernels (DEPRECATED - always true)
@ -508,8 +497,6 @@ class llama_context_params(Structure):
("yarn_beta_fast", c_float), ("yarn_beta_fast", c_float),
("yarn_beta_slow", c_float), ("yarn_beta_slow", c_float),
("yarn_orig_ctx", c_uint32), ("yarn_orig_ctx", c_uint32),
("cb_eval", ggml_backend_sched_eval_callback),
("cb_eval_user_data", c_void_p),
("type_k", c_int), ("type_k", c_int),
("type_v", c_int), ("type_v", c_int),
("mul_mat_q", c_bool), ("mul_mat_q", c_bool),

View file

@ -1432,6 +1432,7 @@ class SchemaConverter:
return key return key
def visit(self, schema: Dict[str, Any], name: str) -> str: def visit(self, schema: Dict[str, Any], name: str) -> str:
schema_type: Optional[str] = schema.get("type") # type: ignore
rule_name = name or "root" rule_name = name or "root"
if "$defs" in schema: if "$defs" in schema:
@ -1457,19 +1458,7 @@ class SchemaConverter:
rule = " | ".join((self._format_literal(v) for v in schema["enum"])) rule = " | ".join((self._format_literal(v) for v in schema["enum"]))
return self._add_rule(rule_name, rule) return self._add_rule(rule_name, rule)
elif "$ref" in schema: elif schema_type == "object" and "properties" in schema:
ref = schema["$ref"]
assert ref.startswith("#/$defs/"), f"Unrecognized schema: {schema}"
# inline $defs
def_name = ref[len("#/$defs/") :]
def_schema = self._defs[def_name]
return self.visit(def_schema, f'{name}{"-" if name else ""}{def_name}')
schema_type: Optional[str] = schema.get("type") # type: ignore
assert isinstance(schema_type, str), f"Unrecognized schema: {schema}"
if schema_type == "object" and "properties" in schema:
# TODO: `required` keyword # TODO: `required` keyword
prop_order = self._prop_order prop_order = self._prop_order
prop_pairs = sorted( prop_pairs = sorted(
@ -1500,6 +1489,14 @@ class SchemaConverter:
) )
return self._add_rule(rule_name, rule) return self._add_rule(rule_name, rule)
elif "$ref" in schema:
ref = schema["$ref"]
assert ref.startswith("#/$defs/"), f"Unrecognized schema: {schema}"
# inline $defs
def_name = ref[len("#/$defs/") :]
def_schema = self._defs[def_name]
return self.visit(def_schema, f'{name}{"-" if name else ""}{def_name}')
else: else:
assert schema_type in PRIMITIVE_RULES, f"Unrecognized schema: {schema}" assert schema_type in PRIMITIVE_RULES, f"Unrecognized schema: {schema}"
return self._add_rule( return self._add_rule(

View file

@ -55,7 +55,7 @@ def _parse_bool_arg(arg: str | bytes | bool) -> bool:
raise ValueError(f"Invalid boolean argument: {arg}") raise ValueError(f"Invalid boolean argument: {arg}")
def add_args_from_model(parser: argparse.ArgumentParser, model: Type[BaseModel]): def add_args_from_model(parser: argparse.ArgumentParser, model: type[BaseModel]):
"""Add arguments from a pydantic model to an argparse parser.""" """Add arguments from a pydantic model to an argparse parser."""
for name, field in model.model_fields.items(): for name, field in model.model_fields.items():
@ -83,7 +83,7 @@ def add_args_from_model(parser: argparse.ArgumentParser, model: Type[BaseModel])
) )
T = TypeVar("T", bound=Type[BaseModel]) T = TypeVar("T", bound=type[BaseModel])
def parse_model_from_args(model: T, args: argparse.Namespace) -> T: def parse_model_from_args(model: T, args: argparse.Namespace) -> T:

View file

@ -1,7 +1,5 @@
from __future__ import annotations from __future__ import annotations
import json
from typing import Dict, Optional, Union, List from typing import Dict, Optional, Union, List
import llama_cpp import llama_cpp
@ -73,24 +71,6 @@ class LlamaProxy:
chat_handler = llama_cpp.llama_chat_format.Llava15ChatHandler( chat_handler = llama_cpp.llama_chat_format.Llava15ChatHandler(
clip_model_path=settings.clip_model_path, verbose=settings.verbose clip_model_path=settings.clip_model_path, verbose=settings.verbose
) )
elif settings.chat_format == "hf-autotokenizer":
assert (
settings.hf_pretrained_model_name_or_path is not None
), "hf_pretrained_model_name_or_path must be set for hf-autotokenizer"
chat_handler = (
llama_cpp.llama_chat_format.hf_autotokenizer_to_chat_completion_handler(
settings.hf_pretrained_model_name_or_path
)
)
elif settings.chat_format == "hf-tokenizer-config":
assert (
settings.hf_tokenizer_config_path is not None
), "hf_tokenizer_config_path must be set for hf-tokenizer-config"
chat_handler = (
llama_cpp.llama_chat_format.hf_tokenizer_config_to_chat_completion_handler(
json.load(open(settings.hf_tokenizer_config_path))
)
)
kv_overrides: Optional[Dict[str, Union[bool, int, float]]] = None kv_overrides: Optional[Dict[str, Union[bool, int, float]]] = None
if settings.kv_overrides is not None: if settings.kv_overrides is not None:
@ -161,3 +141,4 @@ class LlamaProxy:
cache = llama_cpp.LlamaRAMCache(capacity_bytes=settings.cache_size) cache = llama_cpp.LlamaRAMCache(capacity_bytes=settings.cache_size)
_model.set_cache(cache) _model.set_cache(cache)
return _model return _model

View file

@ -90,7 +90,7 @@ class ModelSettings(BaseSettings):
logits_all: bool = Field(default=True, description="Whether to return logits.") logits_all: bool = Field(default=True, description="Whether to return logits.")
embedding: bool = Field(default=True, description="Whether to use embeddings.") embedding: bool = Field(default=True, description="Whether to use embeddings.")
offload_kqv: bool = Field( offload_kqv: bool = Field(
default=True, description="Whether to offload kqv to the GPU." default=False, description="Whether to offload kqv to the GPU."
) )
# Sampling Params # Sampling Params
last_n_tokens_size: int = Field( last_n_tokens_size: int = Field(
@ -134,15 +134,6 @@ class ModelSettings(BaseSettings):
default=2 << 30, default=2 << 30,
description="The size of the cache in bytes. Only used if cache is True.", description="The size of the cache in bytes. Only used if cache is True.",
) )
# Tokenizer Options
hf_tokenizer_config_path: Optional[str] = Field(
default=None,
description="The path to a HuggingFace tokenizer_config.json file.",
)
hf_pretrained_model_name_or_path: Optional[str] = Field(
default=None,
description="The model name or path to a pretrained HuggingFace tokenizer model. Same as you would pass to AutoTokenizer.from_pretrained().",
)
# Misc # Misc
verbose: bool = Field( verbose: bool = Field(
default=True, description="Whether to print debug information." default=True, description="Whether to print debug information."

View file

@ -15,7 +15,6 @@ dependencies = [
"typing-extensions>=4.5.0", "typing-extensions>=4.5.0",
"numpy>=1.20.0", "numpy>=1.20.0",
"diskcache>=5.6.1", "diskcache>=5.6.1",
"jinja2>=2.11.3",
] ]
requires-python = ">=3.8" requires-python = ">=3.8"
classifiers = [ classifiers = [
@ -73,3 +72,4 @@ Changelog = "https://llama-cpp-python.readthedocs.io/en/latest/changelog/"
[tool.pytest.ini_options] [tool.pytest.ini_options]
addopts = "--ignore=vendor" addopts = "--ignore=vendor"

View file

@ -50,29 +50,3 @@ def test_composed_pydantic_grammar():
grammar = llama_cpp.LlamaGrammar.from_json_schema(json.dumps(schema)) grammar = llama_cpp.LlamaGrammar.from_json_schema(json.dumps(schema))
assert grammar.grammar is not None assert grammar.grammar is not None
def test_grammar_anyof():
sch = {
"properties": {
"temperature": {
"description": "The temperature mentioned",
"type": "number",
},
"unit": {
"anyOf": [
{
"description": "Unit for temperature",
"enum": ["celsius", "fahrenheit"],
"type": "string",
},
{"type": "null"},
],
},
},
"type": "object",
}
grammar = llama_cpp.LlamaGrammar.from_json_schema(json.dumps(sch))
assert grammar.grammar is not None

View file

@ -1,65 +0,0 @@
import json
from llama_cpp import (
ChatCompletionRequestUserMessage,
)
from llama_cpp.llama_chat_format import hf_tokenizer_config_to_chat_formatter
mistral_7b_tokenizer_config = """{
"add_bos_token": true,
"add_eos_token": false,
"added_tokens_decoder": {
"0": {
"content": "<unk>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"1": {
"content": "<s>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"2": {
"content": "</s>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
}
},
"additional_special_tokens": [],
"bos_token": "<s>",
"clean_up_tokenization_spaces": false,
"eos_token": "</s>",
"legacy": true,
"model_max_length": 1000000000000000019884624838656,
"pad_token": null,
"sp_model_kwargs": {},
"spaces_between_special_tokens": false,
"tokenizer_class": "LlamaTokenizer",
"unk_token": "<unk>",
"use_default_system_prompt": false,
"chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}"
}"""
def test_hf_tokenizer_config_str_to_chat_formatter():
tokenizer_config = json.loads(mistral_7b_tokenizer_config)
chat_formatter = hf_tokenizer_config_to_chat_formatter(
tokenizer_config
)
chat_formatter_respoonse = chat_formatter(
messages=[
ChatCompletionRequestUserMessage(role="user", content="Hello, world!"),
]
)
assert chat_formatter_respoonse.prompt == ("<s>[INST] Hello, world! [/INST]</s>" "")

2
vendor/llama.cpp vendored

@ -1 +1 @@
Subproject commit 504dc37be8446fb09b1ede70300250ad41be32a2 Subproject commit 5c999609013a30c06e6fd28be8db5c2074bcc196