Merge branch 'main' of github.com:abetlen/llama_cpp_python into main

This commit is contained in:
Andrei Betlen 2023-06-07 03:43:18 -04:00
commit fe4ae72ad2
3 changed files with 265 additions and 191 deletions

View file

@ -4,6 +4,7 @@ import uuid
import time import time
import math import math
import multiprocessing import multiprocessing
from abc import ABC
from typing import ( from typing import (
List, List,
Optional, Optional,
@ -17,6 +18,8 @@ from typing import (
) )
from collections import deque, OrderedDict from collections import deque, OrderedDict
import diskcache
from . import llama_cpp from . import llama_cpp
from .llama_types import * from .llama_types import *
@ -24,12 +27,39 @@ import numpy as np
import numpy.typing as npt import numpy.typing as npt
class LlamaCache: class LlamaCache(ABC):
"""Cache for a llama.cpp model.""" """Base cache class for a llama.cpp model."""
def __init__(self, capacity_bytes: int = (2 << 30)): def __init__(self, capacity_bytes: int = (2 << 30)):
self.cache_state: OrderedDict[Tuple[int, ...], "LlamaState"] = OrderedDict() pass
@property
def cache_size(self):
return 0
def _find_longest_prefix_key(
self,
key: Tuple[int, ...],
) -> Optional[Tuple[int, ...]]:
pass
def __getitem__(self, key: Sequence[int]) -> "LlamaState":
pass
def __contains__(self, key: Sequence[int]) -> bool:
pass
def __setitem__(self, key: Sequence[int], value: "LlamaState"):
pass
class LlamaRAMCache(LlamaCache):
"""Cache for a llama.cpp model using RAM."""
def __init__(self, capacity_bytes: int = (2 << 30)):
super().__init__(capacity_bytes)
self.capacity_bytes = capacity_bytes self.capacity_bytes = capacity_bytes
self.cache_state: OrderedDict[Tuple[int, ...], "LlamaState"] = OrderedDict()
@property @property
def cache_size(self): def cache_size(self):
@ -54,7 +84,7 @@ class LlamaCache:
key = tuple(key) key = tuple(key)
_key = self._find_longest_prefix_key(key) _key = self._find_longest_prefix_key(key)
if _key is None: if _key is None:
raise KeyError(f"Key not found") raise KeyError("Key not found")
value = self.cache_state[_key] value = self.cache_state[_key]
self.cache_state.move_to_end(_key) self.cache_state.move_to_end(_key)
return value return value
@ -71,6 +101,49 @@ class LlamaCache:
self.cache_state.popitem(last=False) self.cache_state.popitem(last=False)
class LlamaDiskCache(LlamaCache):
"""Cache for a llama.cpp model using disk."""
def __init__(self, cache_dir="./llama_cache", capacity_bytes: int = (2 << 30)):
super().__init__(capacity_bytes)
self.cache = diskcache.Cache(cache_dir)
@property
def cache_size(self):
return self.cache.volume()
def _find_longest_prefix_key(
self,
key: Tuple[int, ...],
) -> Optional[Tuple[int, ...]]:
min_len = 0
min_key = None
for k in self.cache.iterkeys():
prefix_len = Llama.longest_token_prefix(k, key)
if prefix_len > min_len:
min_len = prefix_len
min_key = k
return min_key
def __getitem__(self, key: Sequence[int]) -> "LlamaState":
key = tuple(key)
_key = self._find_longest_prefix_key(key)
if _key is None:
raise KeyError("Key not found")
value = self.cache.pop(_key)
self.cache.push(_key)
return value
def __setitem__(self, key: Sequence[int], value: "LlamaState"):
key = tuple(key)
if key in self.cache:
del self.cache[key]
self.cache[key] = value
while self.cache_size > self.capacity_bytes:
key_to_remove = next(iter(self.cache))
del self.cache[key_to_remove]
class LlamaState: class LlamaState:
def __init__( def __init__(
self, self,
@ -314,7 +387,7 @@ class Llama:
assert self.ctx is not None assert self.ctx is not None
n_ctx = self._n_ctx n_ctx = self._n_ctx
for i in range(0, len(tokens), self.n_batch): for i in range(0, len(tokens), self.n_batch):
batch = tokens[i : min(len(tokens), i + self.n_batch)] batch = tokens[i: min(len(tokens), i + self.n_batch)]
n_past = min(n_ctx - len(batch), len(self._input_ids)) n_past = min(n_ctx - len(batch), len(self._input_ids))
n_tokens = len(batch) n_tokens = len(batch)
return_code = llama_cpp.llama_eval( return_code = llama_cpp.llama_eval(
@ -336,7 +409,7 @@ class Llama:
n_vocab = self._n_vocab n_vocab = self._n_vocab
cols = n_vocab cols = n_vocab
logits_view = llama_cpp.llama_get_logits(self.ctx) logits_view = llama_cpp.llama_get_logits(self.ctx)
logits = [logits_view[i * cols : (i + 1) * cols] for i in range(rows)] logits = [logits_view[i * cols: (i + 1) * cols] for i in range(rows)]
self.eval_logits.extend(logits) self.eval_logits.extend(logits)
self._scores: npt.NDArray[np.single] = np.concatenate( self._scores: npt.NDArray[np.single] = np.concatenate(
(self._scores, np.array(logits, dtype=np.single)), axis=0 (self._scores, np.array(logits, dtype=np.single)), axis=0
@ -505,7 +578,7 @@ class Llama:
assert self.ctx is not None assert self.ctx is not None
last_n_tokens_data = [llama_cpp.llama_token(0)] * max( last_n_tokens_data = [llama_cpp.llama_token(0)] * max(
0, self.last_n_tokens_size - len(self._input_ids) 0, self.last_n_tokens_size - len(self._input_ids)
) + self._input_ids[-self.last_n_tokens_size :].tolist() ) + self._input_ids[-self.last_n_tokens_size:].tolist()
return self._sample( return self._sample(
last_n_tokens_data=(llama_cpp.llama_token * self.last_n_tokens_size)( last_n_tokens_data=(llama_cpp.llama_token * self.last_n_tokens_size)(
*last_n_tokens_data *last_n_tokens_data

View file

@ -16,6 +16,7 @@ include = [
python = "^3.8.1" python = "^3.8.1"
typing-extensions = "^4.6.3" typing-extensions = "^4.6.3"
numpy = "^1.20.0" numpy = "^1.20.0"
diskcache = "^5.6.1"
uvicorn = { version = "^0.22.0", optional = true } uvicorn = { version = "^0.22.0", optional = true }
fastapi = { version = "^0.96.0", optional = true } fastapi = { version = "^0.96.0", optional = true }
sse-starlette = { version = "^1.6.1", optional = true } sse-starlette = { version = "^1.6.1", optional = true }

View file

@ -16,7 +16,7 @@ setup(
license="MIT", license="MIT",
package_dir={"llama_cpp": "llama_cpp", "llama_cpp.server": "llama_cpp/server"}, package_dir={"llama_cpp": "llama_cpp", "llama_cpp.server": "llama_cpp/server"},
packages=["llama_cpp", "llama_cpp.server"], packages=["llama_cpp", "llama_cpp.server"],
install_requires=["typing-extensions>=4.5.0", "numpy>=1.20.0"], install_requires=["typing-extensions>=4.5.0", "numpy>=1.20.0", "diskcache>=5.6.1"],
extras_require={ extras_require={
"server": ["uvicorn>=0.21.1", "fastapi>=0.95.0", "sse-starlette>=1.3.3"], "server": ["uvicorn>=0.21.1", "fastapi>=0.95.0", "sse-starlette>=1.3.3"],
}, },