Merge branch 'main' of github.com:abetlen/llama_cpp_python into main
This commit is contained in:
commit
fe4ae72ad2
3 changed files with 265 additions and 191 deletions
|
@ -4,6 +4,7 @@ import uuid
|
||||||
import time
|
import time
|
||||||
import math
|
import math
|
||||||
import multiprocessing
|
import multiprocessing
|
||||||
|
from abc import ABC
|
||||||
from typing import (
|
from typing import (
|
||||||
List,
|
List,
|
||||||
Optional,
|
Optional,
|
||||||
|
@ -17,6 +18,8 @@ from typing import (
|
||||||
)
|
)
|
||||||
from collections import deque, OrderedDict
|
from collections import deque, OrderedDict
|
||||||
|
|
||||||
|
import diskcache
|
||||||
|
|
||||||
from . import llama_cpp
|
from . import llama_cpp
|
||||||
from .llama_types import *
|
from .llama_types import *
|
||||||
|
|
||||||
|
@ -24,12 +27,39 @@ import numpy as np
|
||||||
import numpy.typing as npt
|
import numpy.typing as npt
|
||||||
|
|
||||||
|
|
||||||
class LlamaCache:
|
class LlamaCache(ABC):
|
||||||
"""Cache for a llama.cpp model."""
|
"""Base cache class for a llama.cpp model."""
|
||||||
|
|
||||||
def __init__(self, capacity_bytes: int = (2 << 30)):
|
def __init__(self, capacity_bytes: int = (2 << 30)):
|
||||||
self.cache_state: OrderedDict[Tuple[int, ...], "LlamaState"] = OrderedDict()
|
pass
|
||||||
|
|
||||||
|
@property
|
||||||
|
def cache_size(self):
|
||||||
|
return 0
|
||||||
|
|
||||||
|
def _find_longest_prefix_key(
|
||||||
|
self,
|
||||||
|
key: Tuple[int, ...],
|
||||||
|
) -> Optional[Tuple[int, ...]]:
|
||||||
|
pass
|
||||||
|
|
||||||
|
def __getitem__(self, key: Sequence[int]) -> "LlamaState":
|
||||||
|
pass
|
||||||
|
|
||||||
|
def __contains__(self, key: Sequence[int]) -> bool:
|
||||||
|
pass
|
||||||
|
|
||||||
|
def __setitem__(self, key: Sequence[int], value: "LlamaState"):
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
class LlamaRAMCache(LlamaCache):
|
||||||
|
"""Cache for a llama.cpp model using RAM."""
|
||||||
|
|
||||||
|
def __init__(self, capacity_bytes: int = (2 << 30)):
|
||||||
|
super().__init__(capacity_bytes)
|
||||||
self.capacity_bytes = capacity_bytes
|
self.capacity_bytes = capacity_bytes
|
||||||
|
self.cache_state: OrderedDict[Tuple[int, ...], "LlamaState"] = OrderedDict()
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def cache_size(self):
|
def cache_size(self):
|
||||||
|
@ -54,7 +84,7 @@ class LlamaCache:
|
||||||
key = tuple(key)
|
key = tuple(key)
|
||||||
_key = self._find_longest_prefix_key(key)
|
_key = self._find_longest_prefix_key(key)
|
||||||
if _key is None:
|
if _key is None:
|
||||||
raise KeyError(f"Key not found")
|
raise KeyError("Key not found")
|
||||||
value = self.cache_state[_key]
|
value = self.cache_state[_key]
|
||||||
self.cache_state.move_to_end(_key)
|
self.cache_state.move_to_end(_key)
|
||||||
return value
|
return value
|
||||||
|
@ -71,6 +101,49 @@ class LlamaCache:
|
||||||
self.cache_state.popitem(last=False)
|
self.cache_state.popitem(last=False)
|
||||||
|
|
||||||
|
|
||||||
|
class LlamaDiskCache(LlamaCache):
|
||||||
|
"""Cache for a llama.cpp model using disk."""
|
||||||
|
|
||||||
|
def __init__(self, cache_dir="./llama_cache", capacity_bytes: int = (2 << 30)):
|
||||||
|
super().__init__(capacity_bytes)
|
||||||
|
self.cache = diskcache.Cache(cache_dir)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def cache_size(self):
|
||||||
|
return self.cache.volume()
|
||||||
|
|
||||||
|
def _find_longest_prefix_key(
|
||||||
|
self,
|
||||||
|
key: Tuple[int, ...],
|
||||||
|
) -> Optional[Tuple[int, ...]]:
|
||||||
|
min_len = 0
|
||||||
|
min_key = None
|
||||||
|
for k in self.cache.iterkeys():
|
||||||
|
prefix_len = Llama.longest_token_prefix(k, key)
|
||||||
|
if prefix_len > min_len:
|
||||||
|
min_len = prefix_len
|
||||||
|
min_key = k
|
||||||
|
return min_key
|
||||||
|
|
||||||
|
def __getitem__(self, key: Sequence[int]) -> "LlamaState":
|
||||||
|
key = tuple(key)
|
||||||
|
_key = self._find_longest_prefix_key(key)
|
||||||
|
if _key is None:
|
||||||
|
raise KeyError("Key not found")
|
||||||
|
value = self.cache.pop(_key)
|
||||||
|
self.cache.push(_key)
|
||||||
|
return value
|
||||||
|
|
||||||
|
def __setitem__(self, key: Sequence[int], value: "LlamaState"):
|
||||||
|
key = tuple(key)
|
||||||
|
if key in self.cache:
|
||||||
|
del self.cache[key]
|
||||||
|
self.cache[key] = value
|
||||||
|
while self.cache_size > self.capacity_bytes:
|
||||||
|
key_to_remove = next(iter(self.cache))
|
||||||
|
del self.cache[key_to_remove]
|
||||||
|
|
||||||
|
|
||||||
class LlamaState:
|
class LlamaState:
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
|
@ -314,7 +387,7 @@ class Llama:
|
||||||
assert self.ctx is not None
|
assert self.ctx is not None
|
||||||
n_ctx = self._n_ctx
|
n_ctx = self._n_ctx
|
||||||
for i in range(0, len(tokens), self.n_batch):
|
for i in range(0, len(tokens), self.n_batch):
|
||||||
batch = tokens[i : min(len(tokens), i + self.n_batch)]
|
batch = tokens[i: min(len(tokens), i + self.n_batch)]
|
||||||
n_past = min(n_ctx - len(batch), len(self._input_ids))
|
n_past = min(n_ctx - len(batch), len(self._input_ids))
|
||||||
n_tokens = len(batch)
|
n_tokens = len(batch)
|
||||||
return_code = llama_cpp.llama_eval(
|
return_code = llama_cpp.llama_eval(
|
||||||
|
@ -336,7 +409,7 @@ class Llama:
|
||||||
n_vocab = self._n_vocab
|
n_vocab = self._n_vocab
|
||||||
cols = n_vocab
|
cols = n_vocab
|
||||||
logits_view = llama_cpp.llama_get_logits(self.ctx)
|
logits_view = llama_cpp.llama_get_logits(self.ctx)
|
||||||
logits = [logits_view[i * cols : (i + 1) * cols] for i in range(rows)]
|
logits = [logits_view[i * cols: (i + 1) * cols] for i in range(rows)]
|
||||||
self.eval_logits.extend(logits)
|
self.eval_logits.extend(logits)
|
||||||
self._scores: npt.NDArray[np.single] = np.concatenate(
|
self._scores: npt.NDArray[np.single] = np.concatenate(
|
||||||
(self._scores, np.array(logits, dtype=np.single)), axis=0
|
(self._scores, np.array(logits, dtype=np.single)), axis=0
|
||||||
|
@ -505,7 +578,7 @@ class Llama:
|
||||||
assert self.ctx is not None
|
assert self.ctx is not None
|
||||||
last_n_tokens_data = [llama_cpp.llama_token(0)] * max(
|
last_n_tokens_data = [llama_cpp.llama_token(0)] * max(
|
||||||
0, self.last_n_tokens_size - len(self._input_ids)
|
0, self.last_n_tokens_size - len(self._input_ids)
|
||||||
) + self._input_ids[-self.last_n_tokens_size :].tolist()
|
) + self._input_ids[-self.last_n_tokens_size:].tolist()
|
||||||
return self._sample(
|
return self._sample(
|
||||||
last_n_tokens_data=(llama_cpp.llama_token * self.last_n_tokens_size)(
|
last_n_tokens_data=(llama_cpp.llama_token * self.last_n_tokens_size)(
|
||||||
*last_n_tokens_data
|
*last_n_tokens_data
|
||||||
|
|
|
@ -16,6 +16,7 @@ include = [
|
||||||
python = "^3.8.1"
|
python = "^3.8.1"
|
||||||
typing-extensions = "^4.6.3"
|
typing-extensions = "^4.6.3"
|
||||||
numpy = "^1.20.0"
|
numpy = "^1.20.0"
|
||||||
|
diskcache = "^5.6.1"
|
||||||
uvicorn = { version = "^0.22.0", optional = true }
|
uvicorn = { version = "^0.22.0", optional = true }
|
||||||
fastapi = { version = "^0.96.0", optional = true }
|
fastapi = { version = "^0.96.0", optional = true }
|
||||||
sse-starlette = { version = "^1.6.1", optional = true }
|
sse-starlette = { version = "^1.6.1", optional = true }
|
||||||
|
|
2
setup.py
2
setup.py
|
@ -16,7 +16,7 @@ setup(
|
||||||
license="MIT",
|
license="MIT",
|
||||||
package_dir={"llama_cpp": "llama_cpp", "llama_cpp.server": "llama_cpp/server"},
|
package_dir={"llama_cpp": "llama_cpp", "llama_cpp.server": "llama_cpp/server"},
|
||||||
packages=["llama_cpp", "llama_cpp.server"],
|
packages=["llama_cpp", "llama_cpp.server"],
|
||||||
install_requires=["typing-extensions>=4.5.0", "numpy>=1.20.0"],
|
install_requires=["typing-extensions>=4.5.0", "numpy>=1.20.0", "diskcache>=5.6.1"],
|
||||||
extras_require={
|
extras_require={
|
||||||
"server": ["uvicorn>=0.21.1", "fastapi>=0.95.0", "sse-starlette>=1.3.3"],
|
"server": ["uvicorn>=0.21.1", "fastapi>=0.95.0", "sse-starlette>=1.3.3"],
|
||||||
},
|
},
|
||||||
|
|
Loading…
Add table
Reference in a new issue