Merge branch main into custom_rope
This commit is contained in:
parent
3f8f276f9f
commit
f0797a6054
8 changed files with 211 additions and 68 deletions
10
CHANGELOG.md
10
CHANGELOG.md
|
@ -7,6 +7,16 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
|
|||
|
||||
## [Unreleased]
|
||||
|
||||
## [0.1.71]
|
||||
|
||||
### Added
|
||||
|
||||
- (llama.cpp) Update llama.cpp
|
||||
|
||||
### Fixed
|
||||
|
||||
- (server) Fix several pydantic v2 migration bugs
|
||||
|
||||
## [0.1.70]
|
||||
|
||||
### Fixed
|
||||
|
|
|
@ -135,6 +135,7 @@ A Docker image is available on [GHCR](https://ghcr.io/abetlen/llama-cpp-python).
|
|||
```bash
|
||||
docker run --rm -it -p 8000:8000 -v /path/to/models:/models -e MODEL=/models/ggml-model-name.bin ghcr.io/abetlen/llama-cpp-python:latest
|
||||
```
|
||||
[Docker on termux (requires root)](https://gist.github.com/FreddieOliveira/efe850df7ff3951cb62d74bd770dce27) is currently the only known way to run this on phones, see [termux support issue](https://github.com/abetlen/llama-cpp-python/issues/389)
|
||||
|
||||
## Low-level API
|
||||
|
||||
|
|
|
@ -19,6 +19,7 @@ from typing import (
|
|||
from collections import deque, OrderedDict
|
||||
|
||||
import diskcache
|
||||
import ctypes
|
||||
|
||||
from . import llama_cpp
|
||||
from .llama_types import *
|
||||
|
@ -26,7 +27,6 @@ from .llama_types import *
|
|||
import numpy as np
|
||||
import numpy.typing as npt
|
||||
|
||||
|
||||
class BaseLlamaCache(ABC):
|
||||
"""Base cache class for a llama.cpp model."""
|
||||
|
||||
|
@ -222,6 +222,7 @@ class Llama:
|
|||
lora_base: Optional[str] = None,
|
||||
lora_path: Optional[str] = None,
|
||||
low_vram: bool = False,
|
||||
tensor_split: Optional[List[float]] = None,
|
||||
verbose: bool = True,
|
||||
):
|
||||
"""Load a llama.cpp model from `model_path`.
|
||||
|
@ -244,6 +245,7 @@ class Llama:
|
|||
last_n_tokens_size: Maximum number of tokens to keep in the last_n_tokens deque.
|
||||
lora_base: Optional path to base model, useful if using a quantized base model and you want to apply LoRA to an f16 model.
|
||||
lora_path: Path to a LoRA file to apply to the model.
|
||||
tensor_split: List of floats to split the model across multiple GPUs. If None, the model is not split.
|
||||
verbose: Print verbose output to stderr.
|
||||
|
||||
Raises:
|
||||
|
@ -252,6 +254,7 @@ class Llama:
|
|||
Returns:
|
||||
A Llama instance.
|
||||
"""
|
||||
|
||||
self.verbose = verbose
|
||||
self.model_path = model_path
|
||||
|
||||
|
@ -269,6 +272,15 @@ class Llama:
|
|||
self.params.embedding = embedding
|
||||
self.params.low_vram = low_vram
|
||||
|
||||
self.tensor_split = tensor_split
|
||||
self._c_tensor_split = None
|
||||
|
||||
if self.tensor_split is not None:
|
||||
#Type conversion and expand the list to the length of LLAMA_MAX_DEVICES
|
||||
FloatArray = ctypes.c_float * llama_cpp.LLAMA_MAX_DEVICES.value
|
||||
self._c_tensor_split = FloatArray(*tensor_split) # keep a reference to the array so it is not gc'd
|
||||
self.params.tensor_split = self._c_tensor_split
|
||||
|
||||
self.last_n_tokens_size = last_n_tokens_size
|
||||
self.n_batch = min(n_ctx, n_batch)
|
||||
|
||||
|
@ -1509,6 +1521,7 @@ class Llama:
|
|||
n_threads=self.n_threads,
|
||||
lora_base=self.lora_base,
|
||||
lora_path=self.lora_path,
|
||||
tensor_split=self.tensor_split,
|
||||
### DEPRECATED ###
|
||||
n_parts=self.n_parts,
|
||||
### DEPRECATED ###
|
||||
|
@ -1533,6 +1546,7 @@ class Llama:
|
|||
last_n_tokens_size=state["last_n_tokens_size"],
|
||||
lora_base=state["lora_base"],
|
||||
lora_path=state["lora_path"],
|
||||
tensor_split=state["tensor_split"],
|
||||
verbose=state["verbose"],
|
||||
)
|
||||
|
||||
|
|
|
@ -165,12 +165,16 @@ llama_progress_callback = ctypes.CFUNCTYPE(None, c_float, c_void_p)
|
|||
# int32_t n_gpu_layers; // number of layers to store in VRAM
|
||||
# int32_t main_gpu; // the GPU that is used for scratch and small tensors
|
||||
# float tensor_split[LLAMA_MAX_DEVICES]; // how to split layers across multiple GPUs
|
||||
|
||||
# // ref: https://github.com/ggerganov/llama.cpp/pull/2054
|
||||
# float rope_freq_base; // RoPE base frequency
|
||||
# float rope_freq_scale; // RoPE frequency scaling factor
|
||||
|
||||
# // called with a progress value between 0 and 1, pass NULL to disable
|
||||
# llama_progress_callback progress_callback;
|
||||
# // context pointer passed to the progress callback
|
||||
# void * progress_callback_user_data;
|
||||
|
||||
|
||||
# // Keep the booleans together to avoid misalignment during copy-by-value.
|
||||
# bool low_vram; // if true, reduce VRAM usage at the cost of performance
|
||||
# bool f16_kv; // use fp16 for KV cache
|
||||
|
@ -190,6 +194,8 @@ class llama_context_params(Structure):
|
|||
("n_gpu_layers", c_int32),
|
||||
("main_gpu", c_int32),
|
||||
("tensor_split", c_float * LLAMA_MAX_DEVICES.value),
|
||||
("rope_freq_base", c_float),
|
||||
("rope_freq_scale", c_float),
|
||||
("progress_callback", llama_progress_callback),
|
||||
("progress_callback_user_data", c_void_p),
|
||||
("low_vram", c_bool),
|
||||
|
@ -328,13 +334,23 @@ _lib.llama_mlock_supported.restype = c_bool
|
|||
# // Initialize the llama + ggml backend
|
||||
# // If numa is true, use NUMA optimizations
|
||||
# // Call once at the start of the program
|
||||
# LLAMA_API void llama_init_backend(bool numa);
|
||||
def llama_init_backend(numa: c_bool):
|
||||
return _lib.llama_init_backend(numa)
|
||||
# LLAMA_API void llama_backend_init(bool numa);
|
||||
def llama_backend_init(numa: c_bool):
|
||||
return _lib.llama_backend_init(numa)
|
||||
|
||||
|
||||
_lib.llama_init_backend.argtypes = [c_bool]
|
||||
_lib.llama_init_backend.restype = None
|
||||
_lib.llama_backend_init.argtypes = [c_bool]
|
||||
_lib.llama_backend_init.restype = None
|
||||
|
||||
|
||||
# // Call once at the end of the program - currently only used for MPI
|
||||
# LLAMA_API void llama_backend_free();
|
||||
def llama_backend_free():
|
||||
return _lib.llama_backend_free()
|
||||
|
||||
|
||||
_lib.llama_backend_free.argtypes = []
|
||||
_lib.llama_backend_free.restype = None
|
||||
|
||||
|
||||
# LLAMA_API struct llama_model * llama_load_model_from_file(
|
||||
|
@ -648,6 +664,22 @@ _lib.llama_tokenize.argtypes = [llama_context_p, c_char_p, llama_token_p, c_int,
|
|||
_lib.llama_tokenize.restype = c_int
|
||||
|
||||
|
||||
# LLAMA_API int llama_tokenize_with_model(
|
||||
# const struct llama_model * model,
|
||||
# const char * text,
|
||||
# llama_token * tokens,
|
||||
# int n_max_tokens,
|
||||
# bool add_bos);
|
||||
def llama_tokenize_with_model(
|
||||
model: llama_model_p,
|
||||
text: bytes,
|
||||
tokens, # type: Array[llama_token]
|
||||
n_max_tokens: c_int,
|
||||
add_bos: c_bool,
|
||||
) -> int:
|
||||
return _lib.llama_tokenize_with_model(model, text, tokens, n_max_tokens, add_bos)
|
||||
|
||||
|
||||
# LLAMA_API int llama_n_vocab(const struct llama_context * ctx);
|
||||
def llama_n_vocab(ctx: llama_context_p) -> int:
|
||||
return _lib.llama_n_vocab(ctx)
|
||||
|
@ -675,6 +707,33 @@ _lib.llama_n_embd.argtypes = [llama_context_p]
|
|||
_lib.llama_n_embd.restype = c_int
|
||||
|
||||
|
||||
# LLAMA_API int llama_n_vocab_from_model(const struct llama_model * model);
|
||||
def llama_n_vocab_from_model(model: llama_model_p) -> int:
|
||||
return _lib.llama_n_vocab_from_model(model)
|
||||
|
||||
|
||||
_lib.llama_n_vocab_from_model.argtypes = [llama_model_p]
|
||||
_lib.llama_n_vocab_from_model.restype = c_int
|
||||
|
||||
|
||||
# LLAMA_API int llama_n_ctx_from_model (const struct llama_model * model);
|
||||
def llama_n_ctx_from_model(model: llama_model_p) -> int:
|
||||
return _lib.llama_n_ctx_from_model(model)
|
||||
|
||||
|
||||
_lib.llama_n_ctx_from_model.argtypes = [llama_model_p]
|
||||
_lib.llama_n_ctx_from_model.restype = c_int
|
||||
|
||||
|
||||
# LLAMA_API int llama_n_embd_from_model (const struct llama_model * model);
|
||||
def llama_n_embd_from_model(model: llama_model_p) -> int:
|
||||
return _lib.llama_n_embd_from_model(model)
|
||||
|
||||
|
||||
_lib.llama_n_embd_from_model.argtypes = [llama_model_p]
|
||||
_lib.llama_n_embd_from_model.restype = c_int
|
||||
|
||||
|
||||
# // Get the vocabulary as output parameters.
|
||||
# // Returns number of results.
|
||||
# LLAMA_API int llama_get_vocab(
|
||||
|
@ -695,6 +754,20 @@ _lib.llama_get_vocab.argtypes = [llama_context_p, c_char_p, c_float, c_int]
|
|||
_lib.llama_get_vocab.restype = c_int
|
||||
|
||||
|
||||
# LLAMA_API int llama_get_vocab_from_model(
|
||||
# const struct llama_model * model,
|
||||
# const char * * strings,
|
||||
# float * scores,
|
||||
# int capacity);
|
||||
def llama_get_vocab_from_model(
|
||||
model: llama_model_p,
|
||||
strings, # type: Array[c_char_p] # type: ignore
|
||||
scores, # type: Array[c_float] # type: ignore
|
||||
capacity: c_int,
|
||||
) -> int:
|
||||
return _lib.llama_get_vocab_from_model(model, strings, scores, capacity)
|
||||
|
||||
|
||||
# Token logits obtained from the last call to llama_eval()
|
||||
# The logits for the last token are stored in the last row
|
||||
# Can be mutated in order to change the probabilities of the next token
|
||||
|
@ -724,8 +797,10 @@ _lib.llama_get_embeddings.argtypes = [llama_context_p]
|
|||
_lib.llama_get_embeddings.restype = c_float_p
|
||||
|
||||
|
||||
# Token Id -> String. Uses the vocabulary in the provided context
|
||||
# LLAMA_API const char * llama_token_to_str(const struct llama_context * ctx, llama_token token);
|
||||
# // Token Id -> String. Uses the vocabulary in the provided context
|
||||
# LLAMA_API const char * llama_token_to_str(
|
||||
# const struct llama_context * ctx,
|
||||
# llama_token token);
|
||||
def llama_token_to_str(ctx: llama_context_p, token: llama_token) -> bytes:
|
||||
return _lib.llama_token_to_str(ctx, token)
|
||||
|
||||
|
@ -733,6 +808,17 @@ def llama_token_to_str(ctx: llama_context_p, token: llama_token) -> bytes:
|
|||
_lib.llama_token_to_str.argtypes = [llama_context_p, llama_token]
|
||||
_lib.llama_token_to_str.restype = c_char_p
|
||||
|
||||
|
||||
# LLAMA_API const char * llama_token_to_str_with_model(
|
||||
# const struct llama_model * model,
|
||||
# llama_token token);
|
||||
def llama_token_to_str_with_model(model: llama_model_p, token: llama_token) -> bytes:
|
||||
return _lib.llama_token_to_str_with_model(model, token)
|
||||
|
||||
|
||||
_lib.llama_token_to_str_with_model.argtypes = [llama_model_p, llama_token]
|
||||
_lib.llama_token_to_str_with_model.restype = c_char_p
|
||||
|
||||
# Special tokens
|
||||
|
||||
|
||||
|
@ -821,6 +907,39 @@ _lib.llama_sample_frequency_and_presence_penalties.argtypes = [
|
|||
_lib.llama_sample_frequency_and_presence_penalties.restype = None
|
||||
|
||||
|
||||
# /// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
|
||||
# /// @param candidates A vector of `llama_token_data` containing the candidate tokens, the logits must be directly extracted from the original generation context without being sorted.
|
||||
# /// @params guidance_ctx A separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
|
||||
# /// @params scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
|
||||
# /// @params smooth_factor Smooth factor between guidance logits and original logits. 1.0f means only use guidance logits. 0.0f means only original logits.
|
||||
# LLAMA_API void llama_sample_classifier_free_guidance(
|
||||
# struct llama_context * ctx,
|
||||
# llama_token_data_array * candidates,
|
||||
# struct llama_context * guidance_ctx,
|
||||
# float scale,
|
||||
# float smooth_factor);
|
||||
def llama_sample_classifier_free_guidance(
|
||||
ctx: llama_context_p,
|
||||
candidates, # type: _Pointer[llama_token_data_array]
|
||||
guidance_ctx: llama_context_p,
|
||||
scale: c_float,
|
||||
smooth_factor: c_float,
|
||||
):
|
||||
return _lib.llama_sample_classifier_free_guidance(
|
||||
ctx, candidates, guidance_ctx, scale, smooth_factor
|
||||
)
|
||||
|
||||
|
||||
_lib.llama_sample_classifier_free_guidance.argtypes = [
|
||||
llama_context_p,
|
||||
llama_token_data_array_p,
|
||||
llama_context_p,
|
||||
c_float,
|
||||
c_float,
|
||||
]
|
||||
_lib.llama_sample_classifier_free_guidance.restype = None
|
||||
|
||||
|
||||
# @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
|
||||
# LLAMA_API void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates);
|
||||
def llama_sample_softmax(
|
||||
|
@ -1065,5 +1184,5 @@ _lib.llama_print_system_info.restype = c_char_p
|
|||
_llama_initialized = False
|
||||
|
||||
if not _llama_initialized:
|
||||
llama_init_backend(c_bool(False))
|
||||
llama_backend_init(c_bool(False))
|
||||
_llama_initialized = True
|
||||
|
|
|
@ -31,6 +31,10 @@ class Settings(BaseSettings):
|
|||
ge=0,
|
||||
description="The number of layers to put on the GPU. The rest will be on the CPU.",
|
||||
)
|
||||
tensor_split: Optional[List[float]] = Field(
|
||||
default=None,
|
||||
description="Split layers across multiple GPUs in proportion.",
|
||||
)
|
||||
seed: int = Field(
|
||||
default=1337, description="Random seed. -1 for random."
|
||||
)
|
||||
|
@ -80,12 +84,8 @@ class Settings(BaseSettings):
|
|||
verbose: bool = Field(
|
||||
default=True, description="Whether to print debug information."
|
||||
)
|
||||
host: str = Field(
|
||||
default="localhost", description="Listen address"
|
||||
)
|
||||
port: int = Field(
|
||||
default=8000, description="Listen port"
|
||||
)
|
||||
host: str = Field(default="localhost", description="Listen address")
|
||||
port: int = Field(default=8000, description="Listen port")
|
||||
interrupt_requests: bool = Field(
|
||||
default=True,
|
||||
description="Whether to interrupt requests when a new request is received.",
|
||||
|
@ -117,6 +117,7 @@ def create_app(settings: Optional[Settings] = None):
|
|||
llama = llama_cpp.Llama(
|
||||
model_path=settings.model,
|
||||
n_gpu_layers=settings.n_gpu_layers,
|
||||
tensor_split=settings.tensor_split,
|
||||
seed=settings.seed,
|
||||
f16_kv=settings.f16_kv,
|
||||
use_mlock=settings.use_mlock,
|
||||
|
@ -178,7 +179,7 @@ def get_settings():
|
|||
yield settings
|
||||
|
||||
|
||||
model_field = Field(description="The model to use for generating completions.")
|
||||
model_field = Field(description="The model to use for generating completions.", default=None)
|
||||
|
||||
max_tokens_field = Field(
|
||||
default=16, ge=1, le=2048, description="The maximum number of tokens to generate."
|
||||
|
@ -242,21 +243,18 @@ mirostat_mode_field = Field(
|
|||
default=0,
|
||||
ge=0,
|
||||
le=2,
|
||||
description="Enable Mirostat constant-perplexity algorithm of the specified version (1 or 2; 0 = disabled)"
|
||||
description="Enable Mirostat constant-perplexity algorithm of the specified version (1 or 2; 0 = disabled)",
|
||||
)
|
||||
|
||||
mirostat_tau_field = Field(
|
||||
default=5.0,
|
||||
ge=0.0,
|
||||
le=10.0,
|
||||
description="Mirostat target entropy, i.e. the target perplexity - lower values produce focused and coherent text, larger values produce more diverse and less coherent text"
|
||||
description="Mirostat target entropy, i.e. the target perplexity - lower values produce focused and coherent text, larger values produce more diverse and less coherent text",
|
||||
)
|
||||
|
||||
mirostat_eta_field = Field(
|
||||
default=0.1,
|
||||
ge=0.001,
|
||||
le=1.0,
|
||||
description="Mirostat learning rate"
|
||||
default=0.1, ge=0.001, le=1.0, description="Mirostat learning rate"
|
||||
)
|
||||
|
||||
|
||||
|
@ -294,22 +292,23 @@ class CreateCompletionRequest(BaseModel):
|
|||
model: Optional[str] = model_field
|
||||
n: Optional[int] = 1
|
||||
best_of: Optional[int] = 1
|
||||
user: Optional[str] = Field(None)
|
||||
user: Optional[str] = Field(default=None)
|
||||
|
||||
# llama.cpp specific parameters
|
||||
top_k: int = top_k_field
|
||||
repeat_penalty: float = repeat_penalty_field
|
||||
logit_bias_type: Optional[Literal["input_ids", "tokens"]] = Field(None)
|
||||
|
||||
class Config:
|
||||
schema_extra = {
|
||||
"example": {
|
||||
"prompt": "\n\n### Instructions:\nWhat is the capital of France?\n\n### Response:\n",
|
||||
"stop": ["\n", "###"],
|
||||
}
|
||||
model_config = {
|
||||
"json_schema_extra": {
|
||||
"examples": [
|
||||
{
|
||||
"prompt": "\n\n### Instructions:\nWhat is the capital of France?\n\n### Response:\n",
|
||||
"stop": ["\n", "###"],
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
def make_logit_bias_processor(
|
||||
|
@ -328,7 +327,7 @@ def make_logit_bias_processor(
|
|||
|
||||
elif logit_bias_type == "tokens":
|
||||
for token, score in logit_bias.items():
|
||||
token = token.encode('utf-8')
|
||||
token = token.encode("utf-8")
|
||||
for input_id in llama.tokenize(token, add_bos=False):
|
||||
to_bias[input_id] = score
|
||||
|
||||
|
@ -352,7 +351,7 @@ async def create_completion(
|
|||
request: Request,
|
||||
body: CreateCompletionRequest,
|
||||
llama: llama_cpp.Llama = Depends(get_llama),
|
||||
):
|
||||
) -> llama_cpp.Completion:
|
||||
if isinstance(body.prompt, list):
|
||||
assert len(body.prompt) <= 1
|
||||
body.prompt = body.prompt[0] if len(body.prompt) > 0 else ""
|
||||
|
@ -364,7 +363,7 @@ async def create_completion(
|
|||
"logit_bias_type",
|
||||
"user",
|
||||
}
|
||||
kwargs = body.dict(exclude=exclude)
|
||||
kwargs = body.model_dump(exclude=exclude)
|
||||
|
||||
if body.logit_bias is not None:
|
||||
kwargs['logits_processor'] = llama_cpp.LogitsProcessorList([
|
||||
|
@ -396,7 +395,7 @@ async def create_completion(
|
|||
|
||||
return EventSourceResponse(
|
||||
recv_chan, data_sender_callable=partial(event_publisher, send_chan)
|
||||
)
|
||||
) # type: ignore
|
||||
else:
|
||||
completion: llama_cpp.Completion = await run_in_threadpool(llama, **kwargs) # type: ignore
|
||||
return completion
|
||||
|
@ -405,16 +404,17 @@ async def create_completion(
|
|||
class CreateEmbeddingRequest(BaseModel):
|
||||
model: Optional[str] = model_field
|
||||
input: Union[str, List[str]] = Field(description="The input to embed.")
|
||||
user: Optional[str]
|
||||
user: Optional[str] = Field(default=None)
|
||||
|
||||
class Config:
|
||||
schema_extra = {
|
||||
"example": {
|
||||
"input": "The food was delicious and the waiter...",
|
||||
}
|
||||
model_config = {
|
||||
"json_schema_extra": {
|
||||
"examples": [
|
||||
{
|
||||
"input": "The food was delicious and the waiter...",
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
@router.post(
|
||||
|
@ -424,7 +424,7 @@ async def create_embedding(
|
|||
request: CreateEmbeddingRequest, llama: llama_cpp.Llama = Depends(get_llama)
|
||||
):
|
||||
return await run_in_threadpool(
|
||||
llama.create_embedding, **request.dict(exclude={"user"})
|
||||
llama.create_embedding, **request.model_dump(exclude={"user"})
|
||||
)
|
||||
|
||||
|
||||
|
@ -461,21 +461,22 @@ class CreateChatCompletionRequest(BaseModel):
|
|||
repeat_penalty: float = repeat_penalty_field
|
||||
logit_bias_type: Optional[Literal["input_ids", "tokens"]] = Field(None)
|
||||
|
||||
class Config:
|
||||
schema_extra = {
|
||||
"example": {
|
||||
"messages": [
|
||||
ChatCompletionRequestMessage(
|
||||
role="system", content="You are a helpful assistant."
|
||||
),
|
||||
ChatCompletionRequestMessage(
|
||||
role="user", content="What is the capital of France?"
|
||||
),
|
||||
]
|
||||
}
|
||||
model_config = {
|
||||
"json_schema_extra": {
|
||||
"examples": [
|
||||
{
|
||||
"messages": [
|
||||
ChatCompletionRequestMessage(
|
||||
role="system", content="You are a helpful assistant."
|
||||
).model_dump(),
|
||||
ChatCompletionRequestMessage(
|
||||
role="user", content="What is the capital of France?"
|
||||
).model_dump(),
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
@router.post(
|
||||
|
@ -486,14 +487,14 @@ async def create_chat_completion(
|
|||
body: CreateChatCompletionRequest,
|
||||
llama: llama_cpp.Llama = Depends(get_llama),
|
||||
settings: Settings = Depends(get_settings),
|
||||
) -> Union[llama_cpp.ChatCompletion]: # type: ignore
|
||||
) -> llama_cpp.ChatCompletion:
|
||||
exclude = {
|
||||
"n",
|
||||
"logit_bias",
|
||||
"logit_bias_type",
|
||||
"user",
|
||||
}
|
||||
kwargs = body.dict(exclude=exclude)
|
||||
kwargs = body.model_dump(exclude=exclude)
|
||||
|
||||
if body.logit_bias is not None:
|
||||
kwargs['logits_processor'] = llama_cpp.LogitsProcessorList([
|
||||
|
@ -526,7 +527,7 @@ async def create_chat_completion(
|
|||
return EventSourceResponse(
|
||||
recv_chan,
|
||||
data_sender_callable=partial(event_publisher, send_chan),
|
||||
)
|
||||
) # type: ignore
|
||||
else:
|
||||
completion: llama_cpp.ChatCompletion = await run_in_threadpool(
|
||||
llama.create_chat_completion, **kwargs # type: ignore
|
||||
|
@ -546,8 +547,6 @@ class ModelList(TypedDict):
|
|||
data: List[ModelData]
|
||||
|
||||
|
||||
|
||||
|
||||
@router.get("/v1/models")
|
||||
async def get_models(
|
||||
settings: Settings = Depends(get_settings),
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
[tool.poetry]
|
||||
name = "llama_cpp_python"
|
||||
version = "0.1.70"
|
||||
version = "0.1.71"
|
||||
description = "Python bindings for the llama.cpp library"
|
||||
authors = ["Andrei Betlen <abetlen@gmail.com>"]
|
||||
license = "MIT"
|
||||
|
|
4
setup.py
4
setup.py
|
@ -10,7 +10,7 @@ setup(
|
|||
description="A Python wrapper for llama.cpp",
|
||||
long_description=long_description,
|
||||
long_description_content_type="text/markdown",
|
||||
version="0.1.70",
|
||||
version="0.1.71",
|
||||
author="Andrei Betlen",
|
||||
author_email="abetlen@gmail.com",
|
||||
license="MIT",
|
||||
|
@ -18,7 +18,7 @@ setup(
|
|||
packages=["llama_cpp", "llama_cpp.server"],
|
||||
install_requires=["typing-extensions>=4.5.0", "numpy>=1.20.0", "diskcache>=5.6.1"],
|
||||
extras_require={
|
||||
"server": ["uvicorn>=0.22.1", "fastapi>=0.100.0", "pydantic-settings>=2.0.1", "sse-starlette>=1.6.1"],
|
||||
"server": ["uvicorn>=0.22.0", "fastapi>=0.100.0", "pydantic-settings>=2.0.1", "sse-starlette>=1.6.1"],
|
||||
},
|
||||
python_requires=">=3.7",
|
||||
classifiers=[
|
||||
|
|
2
vendor/llama.cpp
vendored
2
vendor/llama.cpp
vendored
|
@ -1 +1 @@
|
|||
Subproject commit a3b4d932859f4e51ed716bfa1f07e2d2eede2c23
|
||||
Subproject commit 6e7cca404748dd4b1a3affd0d1296e37f4ac0a6f
|
Loading…
Reference in a new issue