Prefer explicit imports

This commit is contained in:
Andrei Betlen 2023-05-05 14:05:31 -04:00
parent 40501435c1
commit e24c3d7447

View file

@ -68,11 +68,11 @@ _lib_base_name = "llama"
_lib = _load_shared_library(_lib_base_name)
# C types
LLAMA_FILE_VERSION = ctypes.c_int(1)
LLAMA_FILE_VERSION = c_int(1)
LLAMA_FILE_MAGIC = b"ggjt"
LLAMA_FILE_MAGIC_UNVERSIONED = b"ggml"
LLAMA_SESSION_MAGIC = b"ggsn"
LLAMA_SESSION_VERSION = ctypes.c_int(1)
LLAMA_SESSION_VERSION = c_int(1)
llama_context_p = c_void_p
@ -128,18 +128,18 @@ class llama_context_params(Structure):
llama_context_params_p = POINTER(llama_context_params)
LLAMA_FTYPE_ALL_F32 = ctypes.c_int(0)
LLAMA_FTYPE_MOSTLY_F16 = ctypes.c_int(1) # except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_0 = ctypes.c_int(2) # except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_1 = ctypes.c_int(3) # except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = ctypes.c_int(
LLAMA_FTYPE_ALL_F32 = c_int(0)
LLAMA_FTYPE_MOSTLY_F16 = c_int(1) # except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_0 = c_int(2) # except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_1 = c_int(3) # except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = c_int(
4
) # tok_embeddings.weight and output.weight are F16
LLAMA_FTYPE_MOSTLY_Q4_2 = ctypes.c_int(5) # except 1d tensors
# LLAMA_FTYPE_MOSTYL_Q4_3 = ctypes.c_int(6) # except 1d tensors
LLAMA_FTYPE_MOSTLY_Q8_0 = ctypes.c_int(7) # except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_0 = ctypes.c_int(8) # except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_1 = ctypes.c_int(9) # except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_2 = c_int(5) # except 1d tensors
# LLAMA_FTYPE_MOSTYL_Q4_3 = c_int(6) # except 1d tensors
LLAMA_FTYPE_MOSTLY_Q8_0 = c_int(7) # except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_0 = c_int(8) # except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_1 = c_int(9) # except 1d tensors
# Misc
c_float_p = POINTER(c_float)
@ -216,8 +216,8 @@ _lib.llama_model_quantize.restype = c_int
# Returns 0 on success
def llama_apply_lora_from_file(
ctx: llama_context_p,
path_lora: ctypes.c_char_p,
path_base_model: ctypes.c_char_p,
path_lora: c_char_p,
path_base_model: c_char_p,
n_threads: c_int,
) -> c_int:
return _lib.llama_apply_lora_from_file(ctx, path_lora, path_base_model, n_threads)