bugfix: pydantic v2 fields
This commit is contained in:
parent
896ab7b88a
commit
de4cc5a233
1 changed files with 49 additions and 57 deletions
|
@ -31,9 +31,7 @@ class Settings(BaseSettings):
|
||||||
ge=0,
|
ge=0,
|
||||||
description="The number of layers to put on the GPU. The rest will be on the CPU.",
|
description="The number of layers to put on the GPU. The rest will be on the CPU.",
|
||||||
)
|
)
|
||||||
seed: int = Field(
|
seed: int = Field(default=1337, description="Random seed. -1 for random.")
|
||||||
default=1337, description="Random seed. -1 for random."
|
|
||||||
)
|
|
||||||
n_batch: int = Field(
|
n_batch: int = Field(
|
||||||
default=512, ge=1, description="The batch size to use per eval."
|
default=512, ge=1, description="The batch size to use per eval."
|
||||||
)
|
)
|
||||||
|
@ -80,12 +78,8 @@ class Settings(BaseSettings):
|
||||||
verbose: bool = Field(
|
verbose: bool = Field(
|
||||||
default=True, description="Whether to print debug information."
|
default=True, description="Whether to print debug information."
|
||||||
)
|
)
|
||||||
host: str = Field(
|
host: str = Field(default="localhost", description="Listen address")
|
||||||
default="localhost", description="Listen address"
|
port: int = Field(default=8000, description="Listen port")
|
||||||
)
|
|
||||||
port: int = Field(
|
|
||||||
default=8000, description="Listen port"
|
|
||||||
)
|
|
||||||
interrupt_requests: bool = Field(
|
interrupt_requests: bool = Field(
|
||||||
default=True,
|
default=True,
|
||||||
description="Whether to interrupt requests when a new request is received.",
|
description="Whether to interrupt requests when a new request is received.",
|
||||||
|
@ -178,7 +172,7 @@ def get_settings():
|
||||||
yield settings
|
yield settings
|
||||||
|
|
||||||
|
|
||||||
model_field = Field(description="The model to use for generating completions.")
|
model_field = Field(description="The model to use for generating completions.", default=None)
|
||||||
|
|
||||||
max_tokens_field = Field(
|
max_tokens_field = Field(
|
||||||
default=16, ge=1, le=2048, description="The maximum number of tokens to generate."
|
default=16, ge=1, le=2048, description="The maximum number of tokens to generate."
|
||||||
|
@ -242,21 +236,18 @@ mirostat_mode_field = Field(
|
||||||
default=0,
|
default=0,
|
||||||
ge=0,
|
ge=0,
|
||||||
le=2,
|
le=2,
|
||||||
description="Enable Mirostat constant-perplexity algorithm of the specified version (1 or 2; 0 = disabled)"
|
description="Enable Mirostat constant-perplexity algorithm of the specified version (1 or 2; 0 = disabled)",
|
||||||
)
|
)
|
||||||
|
|
||||||
mirostat_tau_field = Field(
|
mirostat_tau_field = Field(
|
||||||
default=5.0,
|
default=5.0,
|
||||||
ge=0.0,
|
ge=0.0,
|
||||||
le=10.0,
|
le=10.0,
|
||||||
description="Mirostat target entropy, i.e. the target perplexity - lower values produce focused and coherent text, larger values produce more diverse and less coherent text"
|
description="Mirostat target entropy, i.e. the target perplexity - lower values produce focused and coherent text, larger values produce more diverse and less coherent text",
|
||||||
)
|
)
|
||||||
|
|
||||||
mirostat_eta_field = Field(
|
mirostat_eta_field = Field(
|
||||||
default=0.1,
|
default=0.1, ge=0.001, le=1.0, description="Mirostat learning rate"
|
||||||
ge=0.001,
|
|
||||||
le=1.0,
|
|
||||||
description="Mirostat learning rate"
|
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@ -294,22 +285,23 @@ class CreateCompletionRequest(BaseModel):
|
||||||
model: Optional[str] = model_field
|
model: Optional[str] = model_field
|
||||||
n: Optional[int] = 1
|
n: Optional[int] = 1
|
||||||
best_of: Optional[int] = 1
|
best_of: Optional[int] = 1
|
||||||
user: Optional[str] = Field(None)
|
user: Optional[str] = Field(default=None)
|
||||||
|
|
||||||
# llama.cpp specific parameters
|
# llama.cpp specific parameters
|
||||||
top_k: int = top_k_field
|
top_k: int = top_k_field
|
||||||
repeat_penalty: float = repeat_penalty_field
|
repeat_penalty: float = repeat_penalty_field
|
||||||
logit_bias_type: Optional[Literal["input_ids", "tokens"]] = Field(None)
|
logit_bias_type: Optional[Literal["input_ids", "tokens"]] = Field(None)
|
||||||
|
|
||||||
class Config:
|
model_config = {
|
||||||
schema_extra = {
|
"json_schema_extra": {
|
||||||
"example": {
|
"examples": [
|
||||||
|
{
|
||||||
"prompt": "\n\n### Instructions:\nWhat is the capital of France?\n\n### Response:\n",
|
"prompt": "\n\n### Instructions:\nWhat is the capital of France?\n\n### Response:\n",
|
||||||
"stop": ["\n", "###"],
|
"stop": ["\n", "###"],
|
||||||
}
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def make_logit_bias_processor(
|
def make_logit_bias_processor(
|
||||||
|
@ -328,7 +320,7 @@ def make_logit_bias_processor(
|
||||||
|
|
||||||
elif logit_bias_type == "tokens":
|
elif logit_bias_type == "tokens":
|
||||||
for token, score in logit_bias.items():
|
for token, score in logit_bias.items():
|
||||||
token = token.encode('utf-8')
|
token = token.encode("utf-8")
|
||||||
for input_id in llama.tokenize(token, add_bos=False):
|
for input_id in llama.tokenize(token, add_bos=False):
|
||||||
to_bias[input_id] = score
|
to_bias[input_id] = score
|
||||||
|
|
||||||
|
@ -352,7 +344,7 @@ async def create_completion(
|
||||||
request: Request,
|
request: Request,
|
||||||
body: CreateCompletionRequest,
|
body: CreateCompletionRequest,
|
||||||
llama: llama_cpp.Llama = Depends(get_llama),
|
llama: llama_cpp.Llama = Depends(get_llama),
|
||||||
):
|
) -> llama_cpp.Completion:
|
||||||
if isinstance(body.prompt, list):
|
if isinstance(body.prompt, list):
|
||||||
assert len(body.prompt) <= 1
|
assert len(body.prompt) <= 1
|
||||||
body.prompt = body.prompt[0] if len(body.prompt) > 0 else ""
|
body.prompt = body.prompt[0] if len(body.prompt) > 0 else ""
|
||||||
|
@ -364,7 +356,7 @@ async def create_completion(
|
||||||
"logit_bias_type",
|
"logit_bias_type",
|
||||||
"user",
|
"user",
|
||||||
}
|
}
|
||||||
kwargs = body.dict(exclude=exclude)
|
kwargs = body.model_dump(exclude=exclude)
|
||||||
|
|
||||||
if body.logit_bias is not None:
|
if body.logit_bias is not None:
|
||||||
kwargs['logits_processor'] = llama_cpp.LogitsProcessorList([
|
kwargs['logits_processor'] = llama_cpp.LogitsProcessorList([
|
||||||
|
@ -396,7 +388,7 @@ async def create_completion(
|
||||||
|
|
||||||
return EventSourceResponse(
|
return EventSourceResponse(
|
||||||
recv_chan, data_sender_callable=partial(event_publisher, send_chan)
|
recv_chan, data_sender_callable=partial(event_publisher, send_chan)
|
||||||
)
|
) # type: ignore
|
||||||
else:
|
else:
|
||||||
completion: llama_cpp.Completion = await run_in_threadpool(llama, **kwargs) # type: ignore
|
completion: llama_cpp.Completion = await run_in_threadpool(llama, **kwargs) # type: ignore
|
||||||
return completion
|
return completion
|
||||||
|
@ -405,16 +397,17 @@ async def create_completion(
|
||||||
class CreateEmbeddingRequest(BaseModel):
|
class CreateEmbeddingRequest(BaseModel):
|
||||||
model: Optional[str] = model_field
|
model: Optional[str] = model_field
|
||||||
input: Union[str, List[str]] = Field(description="The input to embed.")
|
input: Union[str, List[str]] = Field(description="The input to embed.")
|
||||||
user: Optional[str]
|
user: Optional[str] = Field(default=None)
|
||||||
|
|
||||||
class Config:
|
model_config = {
|
||||||
schema_extra = {
|
"json_schema_extra": {
|
||||||
"example": {
|
"examples": [
|
||||||
|
{
|
||||||
"input": "The food was delicious and the waiter...",
|
"input": "The food was delicious and the waiter...",
|
||||||
}
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@router.post(
|
@router.post(
|
||||||
|
@ -424,7 +417,7 @@ async def create_embedding(
|
||||||
request: CreateEmbeddingRequest, llama: llama_cpp.Llama = Depends(get_llama)
|
request: CreateEmbeddingRequest, llama: llama_cpp.Llama = Depends(get_llama)
|
||||||
):
|
):
|
||||||
return await run_in_threadpool(
|
return await run_in_threadpool(
|
||||||
llama.create_embedding, **request.dict(exclude={"user"})
|
llama.create_embedding, **request.model_dump(exclude={"user"})
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@ -461,23 +454,24 @@ class CreateChatCompletionRequest(BaseModel):
|
||||||
repeat_penalty: float = repeat_penalty_field
|
repeat_penalty: float = repeat_penalty_field
|
||||||
logit_bias_type: Optional[Literal["input_ids", "tokens"]] = Field(None)
|
logit_bias_type: Optional[Literal["input_ids", "tokens"]] = Field(None)
|
||||||
|
|
||||||
class Config:
|
model_config = {
|
||||||
schema_extra = {
|
"json_schema_extra": {
|
||||||
"example": {
|
"examples": [
|
||||||
|
{
|
||||||
"messages": [
|
"messages": [
|
||||||
ChatCompletionRequestMessage(
|
ChatCompletionRequestMessage(
|
||||||
role="system", content="You are a helpful assistant."
|
role="system", content="You are a helpful assistant."
|
||||||
),
|
).model_dump(),
|
||||||
ChatCompletionRequestMessage(
|
ChatCompletionRequestMessage(
|
||||||
role="user", content="What is the capital of France?"
|
role="user", content="What is the capital of France?"
|
||||||
),
|
).model_dump(),
|
||||||
|
]
|
||||||
|
}
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@router.post(
|
@router.post(
|
||||||
"/v1/chat/completions",
|
"/v1/chat/completions",
|
||||||
)
|
)
|
||||||
|
@ -486,14 +480,14 @@ async def create_chat_completion(
|
||||||
body: CreateChatCompletionRequest,
|
body: CreateChatCompletionRequest,
|
||||||
llama: llama_cpp.Llama = Depends(get_llama),
|
llama: llama_cpp.Llama = Depends(get_llama),
|
||||||
settings: Settings = Depends(get_settings),
|
settings: Settings = Depends(get_settings),
|
||||||
) -> Union[llama_cpp.ChatCompletion]: # type: ignore
|
) -> llama_cpp.ChatCompletion:
|
||||||
exclude = {
|
exclude = {
|
||||||
"n",
|
"n",
|
||||||
"logit_bias",
|
"logit_bias",
|
||||||
"logit_bias_type",
|
"logit_bias_type",
|
||||||
"user",
|
"user",
|
||||||
}
|
}
|
||||||
kwargs = body.dict(exclude=exclude)
|
kwargs = body.model_dump(exclude=exclude)
|
||||||
|
|
||||||
if body.logit_bias is not None:
|
if body.logit_bias is not None:
|
||||||
kwargs['logits_processor'] = llama_cpp.LogitsProcessorList([
|
kwargs['logits_processor'] = llama_cpp.LogitsProcessorList([
|
||||||
|
@ -526,7 +520,7 @@ async def create_chat_completion(
|
||||||
return EventSourceResponse(
|
return EventSourceResponse(
|
||||||
recv_chan,
|
recv_chan,
|
||||||
data_sender_callable=partial(event_publisher, send_chan),
|
data_sender_callable=partial(event_publisher, send_chan),
|
||||||
)
|
) # type: ignore
|
||||||
else:
|
else:
|
||||||
completion: llama_cpp.ChatCompletion = await run_in_threadpool(
|
completion: llama_cpp.ChatCompletion = await run_in_threadpool(
|
||||||
llama.create_chat_completion, **kwargs # type: ignore
|
llama.create_chat_completion, **kwargs # type: ignore
|
||||||
|
@ -546,8 +540,6 @@ class ModelList(TypedDict):
|
||||||
data: List[ModelData]
|
data: List[ModelData]
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@router.get("/v1/models")
|
@router.get("/v1/models")
|
||||||
async def get_models(
|
async def get_models(
|
||||||
settings: Settings = Depends(get_settings),
|
settings: Settings = Depends(get_settings),
|
||||||
|
|
Loading…
Reference in a new issue