Merge branch 'main' of github.com:abetlen/llama_cpp_python into better-server-params-and-fields
This commit is contained in:
commit
d8fddcce73
13 changed files with 341 additions and 142 deletions
80
.github/ISSUE_TEMPLATE/bug_report.md
vendored
Normal file
80
.github/ISSUE_TEMPLATE/bug_report.md
vendored
Normal file
|
@ -0,0 +1,80 @@
|
|||
---
|
||||
name: Bug report
|
||||
about: Create a report to help us improve
|
||||
title: ''
|
||||
labels: ''
|
||||
assignees: ''
|
||||
|
||||
---
|
||||
|
||||
# Prerequisites
|
||||
|
||||
Please answer the following questions for yourself before submitting an issue.
|
||||
|
||||
- [ ] I am running the latest code. Development is very rapid so there are no tagged versions as of now.
|
||||
- [ ] I carefully followed the [README.md](https://github.com/abetlen/llama-cpp-python/blob/main/README.md).
|
||||
- [ ] I [searched using keywords relevant to my issue](https://docs.github.com/en/issues/tracking-your-work-with-issues/filtering-and-searching-issues-and-pull-requests) to make sure that I am creating a new issue that is not already open (or closed).
|
||||
- [ ] I reviewed the [Discussions](https://github.com/abetlen/llama-cpp-python/discussions), and have a new bug or useful enhancement to share.
|
||||
|
||||
# Expected Behavior
|
||||
|
||||
Please provide a detailed written description of what you were trying to do, and what you expected `llama-cpp-python` to do.
|
||||
|
||||
# Current Behavior
|
||||
|
||||
Please provide a detailed written description of what `llama-cpp-python` did, instead.
|
||||
|
||||
# Environment and Context
|
||||
|
||||
Please provide detailed information about your computer setup. This is important in case the issue is not reproducible except for under certain specific conditions.
|
||||
|
||||
* Physical (or virtual) hardware you are using, e.g. for Linux:
|
||||
|
||||
`$ lscpu`
|
||||
|
||||
* Operating System, e.g. for Linux:
|
||||
|
||||
`$ uname -a`
|
||||
|
||||
* SDK version, e.g. for Linux:
|
||||
|
||||
```
|
||||
$ python3 --version
|
||||
$ make --version
|
||||
$ g++ --version
|
||||
```
|
||||
|
||||
# Failure Information (for bugs)
|
||||
|
||||
Please help provide information about the failure if this is a bug. If it is not a bug, please remove the rest of this template.
|
||||
|
||||
# Steps to Reproduce
|
||||
|
||||
Please provide detailed steps for reproducing the issue. We are not sitting in front of your screen, so the more detail the better.
|
||||
|
||||
1. step 1
|
||||
2. step 2
|
||||
3. step 3
|
||||
4. etc.
|
||||
|
||||
**Note: Many issues seem to be regarding performance issues / differences with `llama.cpp`. In these cases we need to confirm that you're comparing against the version of `llama.cpp` that was built with your python package, and which parameters you're passing to the context.**
|
||||
|
||||
# Failure Logs
|
||||
|
||||
Please include any relevant log snippets or files. If it works under one configuration but not under another, please provide logs for both configurations and their corresponding outputs so it is easy to see where behavior changes.
|
||||
|
||||
Also, please try to **avoid using screenshots** if at all possible. Instead, copy/paste the console output and use [Github's markdown](https://docs.github.com/en/get-started/writing-on-github/getting-started-with-writing-and-formatting-on-github/basic-writing-and-formatting-syntax) to cleanly format your logs for easy readability.
|
||||
|
||||
Example environment info:
|
||||
```
|
||||
llama-cpp-python$ git log | head -1
|
||||
commit 47b0aa6e957b93dbe2c29d53af16fbae2dd628f2
|
||||
|
||||
llama-cpp-python$ python3 --version
|
||||
Python 3.10.10
|
||||
|
||||
llama-cpp-python$ pip list | egrep "uvicorn|fastapi|sse-starlette"
|
||||
fastapi 0.95.0
|
||||
sse-starlette 1.3.3
|
||||
uvicorn 0.21.1
|
||||
```
|
20
.github/ISSUE_TEMPLATE/feature_request.md
vendored
Normal file
20
.github/ISSUE_TEMPLATE/feature_request.md
vendored
Normal file
|
@ -0,0 +1,20 @@
|
|||
---
|
||||
name: Feature request
|
||||
about: Suggest an idea for this project
|
||||
title: ''
|
||||
labels: ''
|
||||
assignees: ''
|
||||
|
||||
---
|
||||
|
||||
**Is your feature request related to a problem? Please describe.**
|
||||
A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]
|
||||
|
||||
**Describe the solution you'd like**
|
||||
A clear and concise description of what you want to happen.
|
||||
|
||||
**Describe alternatives you've considered**
|
||||
A clear and concise description of any alternative solutions or features you've considered.
|
||||
|
||||
**Additional context**
|
||||
Add any other context or screenshots about the feature request here.
|
11
.github/dependabot.yml
vendored
Normal file
11
.github/dependabot.yml
vendored
Normal file
|
@ -0,0 +1,11 @@
|
|||
# To get started with Dependabot version updates, you'll need to specify which
|
||||
# package ecosystems to update and where the package manifests are located.
|
||||
# Please see the documentation for all configuration options:
|
||||
# https://docs.github.com/github/administering-a-repository/configuration-options-for-dependency-updates
|
||||
|
||||
version: 2
|
||||
updates:
|
||||
- package-ecosystem: "pip" # See documentation for possible values
|
||||
directory: "/" # Location of package manifests
|
||||
schedule:
|
||||
interval: "weekly"
|
2
.github/workflows/build-docker.yaml
vendored
2
.github/workflows/build-docker.yaml
vendored
|
@ -36,4 +36,4 @@ jobs:
|
|||
push: true # push to registry
|
||||
pull: true # always fetch the latest base images
|
||||
platforms: linux/amd64,linux/arm64 # build for both amd64 and arm64
|
||||
tags: ghcr.io/abetlen/llama-cpp-python:latest
|
||||
tags: ghcr.io/abetlen/llama-cpp-python:latest
|
|
@ -1,4 +1,4 @@
|
|||
FROM python:3-bullseye
|
||||
FROM python:3-slim-bullseye
|
||||
|
||||
# We need to set the host to 0.0.0.0 to allow outside access
|
||||
ENV HOST 0.0.0.0
|
||||
|
@ -6,10 +6,10 @@ ENV HOST 0.0.0.0
|
|||
COPY . .
|
||||
|
||||
# Install the package
|
||||
RUN apt update && apt install -y libopenblas-dev
|
||||
RUN apt update && apt install -y libopenblas-dev ninja-build build-essential
|
||||
RUN python -m pip install --upgrade pip pytest cmake scikit-build setuptools fastapi uvicorn sse-starlette
|
||||
|
||||
RUN LLAMA_OPENBLAS=1 python3 setup.py develop
|
||||
|
||||
# Run the server
|
||||
CMD python3 -m llama_cpp.server
|
||||
CMD python3 -m llama_cpp.server
|
||||
|
|
33
README.md
33
README.md
|
@ -31,6 +31,10 @@ You can force the use of `cmake` on Linux / MacOS setting the `FORCE_CMAKE=1` en
|
|||
|
||||
## High-level API
|
||||
|
||||
The high-level API provides a simple managed interface through the `Llama` class.
|
||||
|
||||
Below is a short example demonstrating how to use the high-level API to generate text:
|
||||
|
||||
```python
|
||||
>>> from llama_cpp import Llama
|
||||
>>> llm = Llama(model_path="./models/7B/ggml-model.bin")
|
||||
|
@ -64,12 +68,20 @@ This allows you to use llama.cpp compatible models with any OpenAI compatible cl
|
|||
|
||||
To install the server package and get started:
|
||||
|
||||
Linux/MacOS
|
||||
```bash
|
||||
pip install llama-cpp-python[server]
|
||||
export MODEL=./models/7B/ggml-model.bin
|
||||
python3 -m llama_cpp.server
|
||||
```
|
||||
|
||||
Windows
|
||||
```cmd
|
||||
pip install llama-cpp-python[server]
|
||||
SET MODEL=..\models\7B\ggml-model.bin
|
||||
python3 -m llama_cpp.server
|
||||
```
|
||||
|
||||
Navigate to [http://localhost:8000/docs](http://localhost:8000/docs) to see the OpenAPI documentation.
|
||||
|
||||
## Docker image
|
||||
|
@ -82,8 +94,25 @@ docker run --rm -it -p8000:8000 -v /path/to/models:/models -eMODEL=/models/ggml-
|
|||
|
||||
## Low-level API
|
||||
|
||||
The low-level API is a direct `ctypes` binding to the C API provided by `llama.cpp`.
|
||||
The entire API can be found in [llama_cpp/llama_cpp.py](https://github.com/abetlen/llama-cpp-python/blob/master/llama_cpp/llama_cpp.py) and should mirror [llama.h](https://github.com/ggerganov/llama.cpp/blob/master/llama.h).
|
||||
The low-level API is a direct [`ctypes`](https://docs.python.org/3/library/ctypes.html) binding to the C API provided by `llama.cpp`.
|
||||
The entire lowe-level API can be found in [llama_cpp/llama_cpp.py](https://github.com/abetlen/llama-cpp-python/blob/master/llama_cpp/llama_cpp.py) and directly mirrors the C API in [llama.h](https://github.com/ggerganov/llama.cpp/blob/master/llama.h).
|
||||
|
||||
Below is a short example demonstrating how to use the low-level API to tokenize a prompt:
|
||||
|
||||
```python
|
||||
>>> import llama_cpp
|
||||
>>> import ctypes
|
||||
>>> params = llama_cpp.llama_context_default_params()
|
||||
# use bytes for char * params
|
||||
>>> ctx = llama_cpp.llama_init_from_file(b"./models/7b/ggml-model.bin", params)
|
||||
>>> max_tokens = params.n_ctx
|
||||
# use ctypes arrays for array params
|
||||
>>> tokens = (llama_cppp.llama_token * int(max_tokens))()
|
||||
>>> n_tokens = llama_cpp.llama_tokenize(ctx, b"Q: Name the planets in the solar system? A: ", tokens, max_tokens, add_bos=llama_cpp.c_bool(True))
|
||||
>>> llama_cpp.llama_free(ctx)
|
||||
```
|
||||
|
||||
Check out the [examples folder](examples/low_level_api) for more examples of using the low-level API.
|
||||
|
||||
|
||||
# Documentation
|
||||
|
|
|
@ -33,12 +33,10 @@ class LlamaCache:
|
|||
return k
|
||||
return None
|
||||
|
||||
def __getitem__(
|
||||
self, key: Sequence[llama_cpp.llama_token]
|
||||
) -> Optional["LlamaState"]:
|
||||
def __getitem__(self, key: Sequence[llama_cpp.llama_token]) -> "LlamaState":
|
||||
_key = self._find_key(tuple(key))
|
||||
if _key is None:
|
||||
return None
|
||||
raise KeyError(f"Key not found: {key}")
|
||||
return self.cache_state[_key]
|
||||
|
||||
def __contains__(self, key: Sequence[llama_cpp.llama_token]) -> bool:
|
||||
|
@ -53,8 +51,8 @@ class LlamaState:
|
|||
def __init__(
|
||||
self,
|
||||
eval_tokens: Deque[llama_cpp.llama_token],
|
||||
eval_logits: Deque[List[llama_cpp.c_float]],
|
||||
llama_state,
|
||||
eval_logits: Deque[List[float]],
|
||||
llama_state, # type: llama_cpp.Array[llama_cpp.c_uint8]
|
||||
llama_state_size: llama_cpp.c_size_t,
|
||||
):
|
||||
self.eval_tokens = eval_tokens
|
||||
|
@ -129,7 +127,7 @@ class Llama:
|
|||
self.last_n_tokens_size = last_n_tokens_size
|
||||
self.n_batch = min(n_ctx, n_batch)
|
||||
self.eval_tokens: Deque[llama_cpp.llama_token] = deque(maxlen=n_ctx)
|
||||
self.eval_logits: Deque[List[llama_cpp.c_float]] = deque(
|
||||
self.eval_logits: Deque[List[float]] = deque(
|
||||
maxlen=n_ctx if logits_all else 1
|
||||
)
|
||||
|
||||
|
@ -247,7 +245,7 @@ class Llama:
|
|||
n_vocab = llama_cpp.llama_n_vocab(self.ctx)
|
||||
cols = int(n_vocab)
|
||||
logits_view = llama_cpp.llama_get_logits(self.ctx)
|
||||
logits: List[List[llama_cpp.c_float]] = [
|
||||
logits: List[List[float]] = [
|
||||
[logits_view[i * cols + j] for j in range(cols)] for i in range(rows)
|
||||
]
|
||||
self.eval_logits.extend(logits)
|
||||
|
@ -289,7 +287,7 @@ class Llama:
|
|||
candidates=llama_cpp.ctypes.pointer(candidates),
|
||||
penalty=repeat_penalty,
|
||||
)
|
||||
if temp == 0.0:
|
||||
if float(temp.value) == 0.0:
|
||||
return llama_cpp.llama_sample_token_greedy(
|
||||
ctx=self.ctx,
|
||||
candidates=llama_cpp.ctypes.pointer(candidates),
|
||||
|
@ -299,21 +297,25 @@ class Llama:
|
|||
ctx=self.ctx,
|
||||
candidates=llama_cpp.ctypes.pointer(candidates),
|
||||
k=top_k,
|
||||
min_keep=llama_cpp.c_size_t(1),
|
||||
)
|
||||
llama_cpp.llama_sample_tail_free(
|
||||
ctx=self.ctx,
|
||||
candidates=llama_cpp.ctypes.pointer(candidates),
|
||||
z=llama_cpp.c_float(1.0),
|
||||
min_keep=llama_cpp.c_size_t(1),
|
||||
)
|
||||
llama_cpp.llama_sample_typical(
|
||||
ctx=self.ctx,
|
||||
candidates=llama_cpp.ctypes.pointer(candidates),
|
||||
p=llama_cpp.c_float(1.0),
|
||||
min_keep=llama_cpp.c_size_t(1),
|
||||
)
|
||||
llama_cpp.llama_sample_top_p(
|
||||
ctx=self.ctx,
|
||||
candidates=llama_cpp.ctypes.pointer(candidates),
|
||||
p=top_p,
|
||||
min_keep=llama_cpp.c_size_t(1),
|
||||
)
|
||||
llama_cpp.llama_sample_temperature(
|
||||
ctx=self.ctx,
|
||||
|
@ -390,18 +392,28 @@ class Llama:
|
|||
"""
|
||||
assert self.ctx is not None
|
||||
|
||||
if (
|
||||
reset
|
||||
and len(self.eval_tokens) > 0
|
||||
and tuple(self.eval_tokens) == tuple(tokens[: len(self.eval_tokens)])
|
||||
):
|
||||
if self.verbose:
|
||||
print("Llama.generate: cache hit", file=sys.stderr)
|
||||
reset = False
|
||||
tokens = tokens[len(self.eval_tokens) :]
|
||||
if reset and len(self.eval_tokens) > 0:
|
||||
longest_prefix = 0
|
||||
for a, b in zip(self.eval_tokens, tokens[:-1]):
|
||||
if a == b:
|
||||
longest_prefix += 1
|
||||
else:
|
||||
break
|
||||
if longest_prefix > 0:
|
||||
if self.verbose:
|
||||
print("Llama.generate: prefix-match hit", file=sys.stderr)
|
||||
reset = False
|
||||
tokens = tokens[longest_prefix:]
|
||||
for _ in range(len(self.eval_tokens) - longest_prefix):
|
||||
self.eval_tokens.pop()
|
||||
try:
|
||||
self.eval_logits.pop()
|
||||
except IndexError:
|
||||
pass
|
||||
|
||||
if reset:
|
||||
self.reset()
|
||||
|
||||
while True:
|
||||
self.eval(tokens)
|
||||
token = self.sample(
|
||||
|
@ -639,7 +651,10 @@ class Llama:
|
|||
self.detokenize([token]).decode("utf-8", errors="ignore")
|
||||
for token in all_tokens
|
||||
]
|
||||
all_logprobs = [Llama._logits_to_logprobs(row) for row in self.eval_logits]
|
||||
all_logprobs = [
|
||||
Llama.logits_to_logprobs(list(map(float, row)))
|
||||
for row in self.eval_logits
|
||||
]
|
||||
for token, token_str, logprobs_token in zip(
|
||||
all_tokens, all_token_strs, all_logprobs
|
||||
):
|
||||
|
@ -958,7 +973,10 @@ class Llama:
|
|||
llama_state_compact = (llama_cpp.c_uint8 * int(n_bytes))()
|
||||
llama_cpp.ctypes.memmove(llama_state_compact, llama_state, int(n_bytes))
|
||||
if self.verbose:
|
||||
print(f"Llama.save_state: saving {n_bytes} bytes of llama state", file=sys.stderr)
|
||||
print(
|
||||
f"Llama.save_state: saving {n_bytes} bytes of llama state",
|
||||
file=sys.stderr,
|
||||
)
|
||||
return LlamaState(
|
||||
eval_tokens=self.eval_tokens.copy(),
|
||||
eval_logits=self.eval_logits.copy(),
|
||||
|
@ -985,7 +1003,7 @@ class Llama:
|
|||
return llama_cpp.llama_token_bos()
|
||||
|
||||
@staticmethod
|
||||
def logits_to_logprobs(logits: List[llama_cpp.c_float]) -> List[llama_cpp.c_float]:
|
||||
def logits_to_logprobs(logits: List[float]) -> List[float]:
|
||||
exps = [math.exp(float(x)) for x in logits]
|
||||
sum_exps = sum(exps)
|
||||
return [llama_cpp.c_float(math.log(x / sum_exps)) for x in exps]
|
||||
return [math.log(x / sum_exps) for x in exps]
|
||||
|
|
|
@ -8,6 +8,7 @@ from ctypes import (
|
|||
c_void_p,
|
||||
c_bool,
|
||||
POINTER,
|
||||
_Pointer, # type: ignore
|
||||
Structure,
|
||||
Array,
|
||||
c_uint8,
|
||||
|
@ -17,7 +18,7 @@ import pathlib
|
|||
|
||||
|
||||
# Load the library
|
||||
def _load_shared_library(lib_base_name):
|
||||
def _load_shared_library(lib_base_name: str):
|
||||
# Determine the file extension based on the platform
|
||||
if sys.platform.startswith("linux"):
|
||||
lib_ext = ".so"
|
||||
|
@ -67,11 +68,11 @@ _lib_base_name = "llama"
|
|||
_lib = _load_shared_library(_lib_base_name)
|
||||
|
||||
# C types
|
||||
LLAMA_FILE_VERSION = ctypes.c_int(1)
|
||||
LLAMA_FILE_VERSION = c_int(1)
|
||||
LLAMA_FILE_MAGIC = b"ggjt"
|
||||
LLAMA_FILE_MAGIC_UNVERSIONED = b"ggml"
|
||||
LLAMA_SESSION_MAGIC = b"ggsn"
|
||||
LLAMA_SESSION_VERSION = ctypes.c_int(1)
|
||||
LLAMA_SESSION_VERSION = c_int(1)
|
||||
|
||||
llama_context_p = c_void_p
|
||||
|
||||
|
@ -127,18 +128,23 @@ class llama_context_params(Structure):
|
|||
|
||||
llama_context_params_p = POINTER(llama_context_params)
|
||||
|
||||
LLAMA_FTYPE_ALL_F32 = ctypes.c_int(0)
|
||||
LLAMA_FTYPE_MOSTLY_F16 = ctypes.c_int(1) # except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q4_0 = ctypes.c_int(2) # except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q4_1 = ctypes.c_int(3) # except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = ctypes.c_int(
|
||||
LLAMA_FTYPE_ALL_F32 = c_int(0)
|
||||
LLAMA_FTYPE_MOSTLY_F16 = c_int(1) # except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q4_0 = c_int(2) # except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q4_1 = c_int(3) # except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = c_int(
|
||||
4
|
||||
) # tok_embeddings.weight and output.weight are F16
|
||||
LLAMA_FTYPE_MOSTLY_Q4_2 = ctypes.c_int(5) # except 1d tensors
|
||||
# LLAMA_FTYPE_MOSTYL_Q4_3 = ctypes.c_int(6) # except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q8_0 = ctypes.c_int(7) # except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q5_0 = ctypes.c_int(8) # except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q5_1 = ctypes.c_int(9) # except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q4_2 = c_int(5) # except 1d tensors
|
||||
# LLAMA_FTYPE_MOSTYL_Q4_3 = c_int(6) # except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q8_0 = c_int(7) # except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q5_0 = c_int(8) # except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q5_1 = c_int(9) # except 1d tensors
|
||||
|
||||
# Misc
|
||||
c_float_p = POINTER(c_float)
|
||||
c_uint8_p = POINTER(c_uint8)
|
||||
c_size_t_p = POINTER(c_size_t)
|
||||
|
||||
# Functions
|
||||
|
||||
|
@ -210,8 +216,8 @@ _lib.llama_model_quantize.restype = c_int
|
|||
# Returns 0 on success
|
||||
def llama_apply_lora_from_file(
|
||||
ctx: llama_context_p,
|
||||
path_lora: ctypes.c_char_p,
|
||||
path_base_model: ctypes.c_char_p,
|
||||
path_lora: c_char_p,
|
||||
path_base_model: c_char_p,
|
||||
n_threads: c_int,
|
||||
) -> c_int:
|
||||
return _lib.llama_apply_lora_from_file(ctx, path_lora, path_base_model, n_threads)
|
||||
|
@ -252,21 +258,25 @@ _lib.llama_get_state_size.restype = c_size_t
|
|||
# Copies the state to the specified destination address.
|
||||
# Destination needs to have allocated enough memory.
|
||||
# Returns the number of bytes copied
|
||||
def llama_copy_state_data(ctx: llama_context_p, dest) -> c_size_t:
|
||||
def llama_copy_state_data(
|
||||
ctx: llama_context_p, dest # type: Array[c_uint8]
|
||||
) -> c_size_t:
|
||||
return _lib.llama_copy_state_data(ctx, dest)
|
||||
|
||||
|
||||
_lib.llama_copy_state_data.argtypes = [llama_context_p, POINTER(c_uint8)]
|
||||
_lib.llama_copy_state_data.argtypes = [llama_context_p, c_uint8_p]
|
||||
_lib.llama_copy_state_data.restype = c_size_t
|
||||
|
||||
|
||||
# Set the state reading from the specified address
|
||||
# Returns the number of bytes read
|
||||
def llama_set_state_data(ctx: llama_context_p, src) -> c_size_t:
|
||||
def llama_set_state_data(
|
||||
ctx: llama_context_p, src # type: Array[c_uint8]
|
||||
) -> c_size_t:
|
||||
return _lib.llama_set_state_data(ctx, src)
|
||||
|
||||
|
||||
_lib.llama_set_state_data.argtypes = [llama_context_p, POINTER(c_uint8)]
|
||||
_lib.llama_set_state_data.argtypes = [llama_context_p, c_uint8_p]
|
||||
_lib.llama_set_state_data.restype = c_size_t
|
||||
|
||||
|
||||
|
@ -274,9 +284,9 @@ _lib.llama_set_state_data.restype = c_size_t
|
|||
def llama_load_session_file(
|
||||
ctx: llama_context_p,
|
||||
path_session: bytes,
|
||||
tokens_out,
|
||||
tokens_out, # type: Array[llama_token]
|
||||
n_token_capacity: c_size_t,
|
||||
n_token_count_out,
|
||||
n_token_count_out, # type: _Pointer[c_size_t]
|
||||
) -> c_size_t:
|
||||
return _lib.llama_load_session_file(
|
||||
ctx, path_session, tokens_out, n_token_capacity, n_token_count_out
|
||||
|
@ -288,13 +298,16 @@ _lib.llama_load_session_file.argtypes = [
|
|||
c_char_p,
|
||||
llama_token_p,
|
||||
c_size_t,
|
||||
POINTER(c_size_t),
|
||||
c_size_t_p,
|
||||
]
|
||||
_lib.llama_load_session_file.restype = c_size_t
|
||||
|
||||
|
||||
def llama_save_session_file(
|
||||
ctx: llama_context_p, path_session: bytes, tokens, n_token_count: c_size_t
|
||||
ctx: llama_context_p,
|
||||
path_session: bytes,
|
||||
tokens, # type: Array[llama_token]
|
||||
n_token_count: c_size_t,
|
||||
) -> c_size_t:
|
||||
return _lib.llama_save_session_file(ctx, path_session, tokens, n_token_count)
|
||||
|
||||
|
@ -374,22 +387,22 @@ _lib.llama_n_embd.restype = c_int
|
|||
# Can be mutated in order to change the probabilities of the next token
|
||||
# Rows: n_tokens
|
||||
# Cols: n_vocab
|
||||
def llama_get_logits(ctx: llama_context_p):
|
||||
def llama_get_logits(ctx: llama_context_p): # type: (...) -> Array[float] # type: ignore
|
||||
return _lib.llama_get_logits(ctx)
|
||||
|
||||
|
||||
_lib.llama_get_logits.argtypes = [llama_context_p]
|
||||
_lib.llama_get_logits.restype = POINTER(c_float)
|
||||
_lib.llama_get_logits.restype = c_float_p
|
||||
|
||||
|
||||
# Get the embeddings for the input
|
||||
# shape: [n_embd] (1-dimensional)
|
||||
def llama_get_embeddings(ctx: llama_context_p):
|
||||
def llama_get_embeddings(ctx: llama_context_p): # type: (...) -> Array[float] # type: ignore
|
||||
return _lib.llama_get_embeddings(ctx)
|
||||
|
||||
|
||||
_lib.llama_get_embeddings.argtypes = [llama_context_p]
|
||||
_lib.llama_get_embeddings.restype = POINTER(c_float)
|
||||
_lib.llama_get_embeddings.restype = c_float_p
|
||||
|
||||
|
||||
# Token Id -> String. Uses the vocabulary in the provided context
|
||||
|
@ -433,8 +446,8 @@ _lib.llama_token_nl.restype = llama_token
|
|||
# @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
|
||||
def llama_sample_repetition_penalty(
|
||||
ctx: llama_context_p,
|
||||
candidates,
|
||||
last_tokens_data,
|
||||
candidates, # type: _Pointer[llama_token_data_array]
|
||||
last_tokens_data, # type: Array[llama_token]
|
||||
last_tokens_size: c_int,
|
||||
penalty: c_float,
|
||||
):
|
||||
|
@ -456,8 +469,8 @@ _lib.llama_sample_repetition_penalty.restype = None
|
|||
# @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
|
||||
def llama_sample_frequency_and_presence_penalties(
|
||||
ctx: llama_context_p,
|
||||
candidates,
|
||||
last_tokens_data,
|
||||
candidates, # type: _Pointer[llama_token_data_array]
|
||||
last_tokens_data, # type: Array[llama_token]
|
||||
last_tokens_size: c_int,
|
||||
alpha_frequency: c_float,
|
||||
alpha_presence: c_float,
|
||||
|
@ -484,7 +497,9 @@ _lib.llama_sample_frequency_and_presence_penalties.restype = None
|
|||
|
||||
|
||||
# @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
|
||||
def llama_sample_softmax(ctx: llama_context_p, candidates):
|
||||
def llama_sample_softmax(
|
||||
ctx: llama_context_p, candidates # type: _Pointer[llama_token_data]
|
||||
):
|
||||
return _lib.llama_sample_softmax(ctx, candidates)
|
||||
|
||||
|
||||
|
@ -497,7 +512,10 @@ _lib.llama_sample_softmax.restype = None
|
|||
|
||||
# @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
||||
def llama_sample_top_k(
|
||||
ctx: llama_context_p, candidates, k: c_int, min_keep: c_size_t = c_size_t(1)
|
||||
ctx: llama_context_p,
|
||||
candidates, # type: _Pointer[llama_token_data_array]
|
||||
k: c_int,
|
||||
min_keep: c_size_t,
|
||||
):
|
||||
return _lib.llama_sample_top_k(ctx, candidates, k, min_keep)
|
||||
|
||||
|
@ -513,7 +531,10 @@ _lib.llama_sample_top_k.restype = None
|
|||
|
||||
# @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
||||
def llama_sample_top_p(
|
||||
ctx: llama_context_p, candidates, p: c_float, min_keep: c_size_t = c_size_t(1)
|
||||
ctx: llama_context_p,
|
||||
candidates, # type: _Pointer[llama_token_data_array]
|
||||
p: c_float,
|
||||
min_keep: c_size_t,
|
||||
):
|
||||
return _lib.llama_sample_top_p(ctx, candidates, p, min_keep)
|
||||
|
||||
|
@ -529,7 +550,10 @@ _lib.llama_sample_top_p.restype = None
|
|||
|
||||
# @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
|
||||
def llama_sample_tail_free(
|
||||
ctx: llama_context_p, candidates, z: c_float, min_keep: c_size_t = c_size_t(1)
|
||||
ctx: llama_context_p,
|
||||
candidates, # type: _Pointer[llama_token_data_array]
|
||||
z: c_float,
|
||||
min_keep: c_size_t,
|
||||
):
|
||||
return _lib.llama_sample_tail_free(ctx, candidates, z, min_keep)
|
||||
|
||||
|
@ -545,7 +569,10 @@ _lib.llama_sample_tail_free.restype = None
|
|||
|
||||
# @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
|
||||
def llama_sample_typical(
|
||||
ctx: llama_context_p, candidates, p: c_float, min_keep: c_size_t = c_size_t(1)
|
||||
ctx: llama_context_p,
|
||||
candidates, # type: _Pointer[llama_token_data_array]
|
||||
p: c_float,
|
||||
min_keep: c_size_t,
|
||||
):
|
||||
return _lib.llama_sample_typical(ctx, candidates, p, min_keep)
|
||||
|
||||
|
@ -559,7 +586,11 @@ _lib.llama_sample_typical.argtypes = [
|
|||
_lib.llama_sample_typical.restype = None
|
||||
|
||||
|
||||
def llama_sample_temperature(ctx: llama_context_p, candidates, temp: c_float):
|
||||
def llama_sample_temperature(
|
||||
ctx: llama_context_p,
|
||||
candidates, # type: _Pointer[llama_token_data_array]
|
||||
temp: c_float,
|
||||
):
|
||||
return _lib.llama_sample_temperature(ctx, candidates, temp)
|
||||
|
||||
|
||||
|
@ -578,7 +609,12 @@ _lib.llama_sample_temperature.restype = None
|
|||
# @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
|
||||
# @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
|
||||
def llama_sample_token_mirostat(
|
||||
ctx: llama_context_p, candidates, tau: c_float, eta: c_float, m: c_int, mu
|
||||
ctx: llama_context_p,
|
||||
candidates, # type: _Pointer[llama_token_data_array]
|
||||
tau: c_float,
|
||||
eta: c_float,
|
||||
m: c_int,
|
||||
mu, # type: _Pointer[c_float]
|
||||
) -> llama_token:
|
||||
return _lib.llama_sample_token_mirostat(ctx, candidates, tau, eta, m, mu)
|
||||
|
||||
|
@ -589,7 +625,7 @@ _lib.llama_sample_token_mirostat.argtypes = [
|
|||
c_float,
|
||||
c_float,
|
||||
c_int,
|
||||
POINTER(c_float),
|
||||
c_float_p,
|
||||
]
|
||||
_lib.llama_sample_token_mirostat.restype = llama_token
|
||||
|
||||
|
@ -600,7 +636,11 @@ _lib.llama_sample_token_mirostat.restype = llama_token
|
|||
# @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
|
||||
# @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
|
||||
def llama_sample_token_mirostat_v2(
|
||||
ctx: llama_context_p, candidates, tau: c_float, eta: c_float, mu
|
||||
ctx: llama_context_p,
|
||||
candidates, # type: _Pointer[llama_token_data_array]
|
||||
tau: c_float,
|
||||
eta: c_float,
|
||||
mu, # type: _Pointer[c_float]
|
||||
) -> llama_token:
|
||||
return _lib.llama_sample_token_mirostat_v2(ctx, candidates, tau, eta, mu)
|
||||
|
||||
|
@ -610,13 +650,16 @@ _lib.llama_sample_token_mirostat_v2.argtypes = [
|
|||
llama_token_data_array_p,
|
||||
c_float,
|
||||
c_float,
|
||||
POINTER(c_float),
|
||||
c_float_p,
|
||||
]
|
||||
_lib.llama_sample_token_mirostat_v2.restype = llama_token
|
||||
|
||||
|
||||
# @details Selects the token with the highest probability.
|
||||
def llama_sample_token_greedy(ctx: llama_context_p, candidates) -> llama_token:
|
||||
def llama_sample_token_greedy(
|
||||
ctx: llama_context_p,
|
||||
candidates, # type: _Pointer[llama_token_data_array]
|
||||
) -> llama_token:
|
||||
return _lib.llama_sample_token_greedy(ctx, candidates)
|
||||
|
||||
|
||||
|
@ -628,7 +671,10 @@ _lib.llama_sample_token_greedy.restype = llama_token
|
|||
|
||||
|
||||
# @details Randomly selects a token from the candidates based on their probabilities.
|
||||
def llama_sample_token(ctx: llama_context_p, candidates) -> llama_token:
|
||||
def llama_sample_token(
|
||||
ctx: llama_context_p,
|
||||
candidates, # type: _Pointer[llama_token_data_array]
|
||||
) -> llama_token:
|
||||
return _lib.llama_sample_token(ctx, candidates)
|
||||
|
||||
|
||||
|
|
|
@ -22,12 +22,26 @@ Then visit http://localhost:8000/docs to see the interactive API docs.
|
|||
|
||||
"""
|
||||
import os
|
||||
import argparse
|
||||
|
||||
import uvicorn
|
||||
|
||||
from llama_cpp.server.app import create_app
|
||||
from llama_cpp.server.app import create_app, Settings
|
||||
|
||||
if __name__ == "__main__":
|
||||
app = create_app()
|
||||
parser = argparse.ArgumentParser()
|
||||
for name, field in Settings.__fields__.items():
|
||||
parser.add_argument(
|
||||
f"--{name}",
|
||||
dest=name,
|
||||
type=field.type_,
|
||||
default=field.default,
|
||||
help=field.field_info.description,
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
settings = Settings(**vars(args))
|
||||
app = create_app(settings=settings)
|
||||
|
||||
uvicorn.run(
|
||||
app, host=os.getenv("HOST", "localhost"), port=int(os.getenv("PORT", 8000))
|
||||
|
|
103
poetry.lock
generated
103
poetry.lock
generated
|
@ -1,4 +1,4 @@
|
|||
# This file is automatically @generated by Poetry 1.4.2 and should not be changed by hand.
|
||||
# This file is automatically @generated by Poetry and should not be changed by hand.
|
||||
|
||||
[[package]]
|
||||
name = "anyio"
|
||||
|
@ -21,58 +21,39 @@ doc = ["packaging", "sphinx-autodoc-typehints (>=1.2.0)", "sphinx-rtd-theme"]
|
|||
test = ["contextlib2", "coverage[toml] (>=4.5)", "hypothesis (>=4.0)", "mock (>=4)", "pytest (>=7.0)", "pytest-mock (>=3.6.1)", "trustme", "uvloop (<0.15)", "uvloop (>=0.15)"]
|
||||
trio = ["trio (>=0.16,<0.22)"]
|
||||
|
||||
[[package]]
|
||||
name = "attrs"
|
||||
version = "22.2.0"
|
||||
description = "Classes Without Boilerplate"
|
||||
category = "dev"
|
||||
optional = false
|
||||
python-versions = ">=3.6"
|
||||
files = [
|
||||
{file = "attrs-22.2.0-py3-none-any.whl", hash = "sha256:29e95c7f6778868dbd49170f98f8818f78f3dc5e0e37c0b1f474e3561b240836"},
|
||||
{file = "attrs-22.2.0.tar.gz", hash = "sha256:c9227bfc2f01993c03f68db37d1d15c9690188323c067c641f1a35ca58185f99"},
|
||||
]
|
||||
|
||||
[package.extras]
|
||||
cov = ["attrs[tests]", "coverage-enable-subprocess", "coverage[toml] (>=5.3)"]
|
||||
dev = ["attrs[docs,tests]"]
|
||||
docs = ["furo", "myst-parser", "sphinx", "sphinx-notfound-page", "sphinxcontrib-towncrier", "towncrier", "zope.interface"]
|
||||
tests = ["attrs[tests-no-zope]", "zope.interface"]
|
||||
tests-no-zope = ["cloudpickle", "cloudpickle", "hypothesis", "hypothesis", "mypy (>=0.971,<0.990)", "mypy (>=0.971,<0.990)", "pympler", "pympler", "pytest (>=4.3.0)", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-mypy-plugins", "pytest-xdist[psutil]", "pytest-xdist[psutil]"]
|
||||
|
||||
[[package]]
|
||||
name = "black"
|
||||
version = "23.1.0"
|
||||
version = "23.3.0"
|
||||
description = "The uncompromising code formatter."
|
||||
category = "dev"
|
||||
optional = false
|
||||
python-versions = ">=3.7"
|
||||
files = [
|
||||
{file = "black-23.1.0-cp310-cp310-macosx_10_16_arm64.whl", hash = "sha256:b6a92a41ee34b883b359998f0c8e6eb8e99803aa8bf3123bf2b2e6fec505a221"},
|
||||
{file = "black-23.1.0-cp310-cp310-macosx_10_16_universal2.whl", hash = "sha256:57c18c5165c1dbe291d5306e53fb3988122890e57bd9b3dcb75f967f13411a26"},
|
||||
{file = "black-23.1.0-cp310-cp310-macosx_10_16_x86_64.whl", hash = "sha256:9880d7d419bb7e709b37e28deb5e68a49227713b623c72b2b931028ea65f619b"},
|
||||
{file = "black-23.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e6663f91b6feca5d06f2ccd49a10f254f9298cc1f7f49c46e498a0771b507104"},
|
||||
{file = "black-23.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:9afd3f493666a0cd8f8df9a0200c6359ac53940cbde049dcb1a7eb6ee2dd7074"},
|
||||
{file = "black-23.1.0-cp311-cp311-macosx_10_16_arm64.whl", hash = "sha256:bfffba28dc52a58f04492181392ee380e95262af14ee01d4bc7bb1b1c6ca8d27"},
|
||||
{file = "black-23.1.0-cp311-cp311-macosx_10_16_universal2.whl", hash = "sha256:c1c476bc7b7d021321e7d93dc2cbd78ce103b84d5a4cf97ed535fbc0d6660648"},
|
||||
{file = "black-23.1.0-cp311-cp311-macosx_10_16_x86_64.whl", hash = "sha256:382998821f58e5c8238d3166c492139573325287820963d2f7de4d518bd76958"},
|
||||
{file = "black-23.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2bf649fda611c8550ca9d7592b69f0637218c2369b7744694c5e4902873b2f3a"},
|
||||
{file = "black-23.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:121ca7f10b4a01fd99951234abdbd97728e1240be89fde18480ffac16503d481"},
|
||||
{file = "black-23.1.0-cp37-cp37m-macosx_10_16_x86_64.whl", hash = "sha256:a8471939da5e824b891b25751955be52ee7f8a30a916d570a5ba8e0f2eb2ecad"},
|
||||
{file = "black-23.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8178318cb74f98bc571eef19068f6ab5613b3e59d4f47771582f04e175570ed8"},
|
||||
{file = "black-23.1.0-cp37-cp37m-win_amd64.whl", hash = "sha256:a436e7881d33acaf2536c46a454bb964a50eff59b21b51c6ccf5a40601fbef24"},
|
||||
{file = "black-23.1.0-cp38-cp38-macosx_10_16_arm64.whl", hash = "sha256:a59db0a2094d2259c554676403fa2fac3473ccf1354c1c63eccf7ae65aac8ab6"},
|
||||
{file = "black-23.1.0-cp38-cp38-macosx_10_16_universal2.whl", hash = "sha256:0052dba51dec07ed029ed61b18183942043e00008ec65d5028814afaab9a22fd"},
|
||||
{file = "black-23.1.0-cp38-cp38-macosx_10_16_x86_64.whl", hash = "sha256:49f7b39e30f326a34b5c9a4213213a6b221d7ae9d58ec70df1c4a307cf2a1580"},
|
||||
{file = "black-23.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:162e37d49e93bd6eb6f1afc3e17a3d23a823042530c37c3c42eeeaf026f38468"},
|
||||
{file = "black-23.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:8b70eb40a78dfac24842458476135f9b99ab952dd3f2dab738c1881a9b38b753"},
|
||||
{file = "black-23.1.0-cp39-cp39-macosx_10_16_arm64.whl", hash = "sha256:a29650759a6a0944e7cca036674655c2f0f63806ddecc45ed40b7b8aa314b651"},
|
||||
{file = "black-23.1.0-cp39-cp39-macosx_10_16_universal2.whl", hash = "sha256:bb460c8561c8c1bec7824ecbc3ce085eb50005883a6203dcfb0122e95797ee06"},
|
||||
{file = "black-23.1.0-cp39-cp39-macosx_10_16_x86_64.whl", hash = "sha256:c91dfc2c2a4e50df0026f88d2215e166616e0c80e86004d0003ece0488db2739"},
|
||||
{file = "black-23.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2a951cc83ab535d248c89f300eccbd625e80ab880fbcfb5ac8afb5f01a258ac9"},
|
||||
{file = "black-23.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:0680d4380db3719ebcfb2613f34e86c8e6d15ffeabcf8ec59355c5e7b85bb555"},
|
||||
{file = "black-23.1.0-py3-none-any.whl", hash = "sha256:7a0f701d314cfa0896b9001df70a530eb2472babb76086344e688829efd97d32"},
|
||||
{file = "black-23.1.0.tar.gz", hash = "sha256:b0bd97bea8903f5a2ba7219257a44e3f1f9d00073d6cc1add68f0beec69692ac"},
|
||||
{file = "black-23.3.0-cp310-cp310-macosx_10_16_arm64.whl", hash = "sha256:0945e13506be58bf7db93ee5853243eb368ace1c08a24c65ce108986eac65915"},
|
||||
{file = "black-23.3.0-cp310-cp310-macosx_10_16_universal2.whl", hash = "sha256:67de8d0c209eb5b330cce2469503de11bca4085880d62f1628bd9972cc3366b9"},
|
||||
{file = "black-23.3.0-cp310-cp310-macosx_10_16_x86_64.whl", hash = "sha256:7c3eb7cea23904399866c55826b31c1f55bbcd3890ce22ff70466b907b6775c2"},
|
||||
{file = "black-23.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:32daa9783106c28815d05b724238e30718f34155653d4d6e125dc7daec8e260c"},
|
||||
{file = "black-23.3.0-cp310-cp310-win_amd64.whl", hash = "sha256:35d1381d7a22cc5b2be2f72c7dfdae4072a3336060635718cc7e1ede24221d6c"},
|
||||
{file = "black-23.3.0-cp311-cp311-macosx_10_16_arm64.whl", hash = "sha256:a8a968125d0a6a404842fa1bf0b349a568634f856aa08ffaff40ae0dfa52e7c6"},
|
||||
{file = "black-23.3.0-cp311-cp311-macosx_10_16_universal2.whl", hash = "sha256:c7ab5790333c448903c4b721b59c0d80b11fe5e9803d8703e84dcb8da56fec1b"},
|
||||
{file = "black-23.3.0-cp311-cp311-macosx_10_16_x86_64.whl", hash = "sha256:a6f6886c9869d4daae2d1715ce34a19bbc4b95006d20ed785ca00fa03cba312d"},
|
||||
{file = "black-23.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6f3c333ea1dd6771b2d3777482429864f8e258899f6ff05826c3a4fcc5ce3f70"},
|
||||
{file = "black-23.3.0-cp311-cp311-win_amd64.whl", hash = "sha256:11c410f71b876f961d1de77b9699ad19f939094c3a677323f43d7a29855fe326"},
|
||||
{file = "black-23.3.0-cp37-cp37m-macosx_10_16_x86_64.whl", hash = "sha256:1d06691f1eb8de91cd1b322f21e3bfc9efe0c7ca1f0e1eb1db44ea367dff656b"},
|
||||
{file = "black-23.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:50cb33cac881766a5cd9913e10ff75b1e8eb71babf4c7104f2e9c52da1fb7de2"},
|
||||
{file = "black-23.3.0-cp37-cp37m-win_amd64.whl", hash = "sha256:e114420bf26b90d4b9daa597351337762b63039752bdf72bf361364c1aa05925"},
|
||||
{file = "black-23.3.0-cp38-cp38-macosx_10_16_arm64.whl", hash = "sha256:48f9d345675bb7fbc3dd85821b12487e1b9a75242028adad0333ce36ed2a6d27"},
|
||||
{file = "black-23.3.0-cp38-cp38-macosx_10_16_universal2.whl", hash = "sha256:714290490c18fb0126baa0fca0a54ee795f7502b44177e1ce7624ba1c00f2331"},
|
||||
{file = "black-23.3.0-cp38-cp38-macosx_10_16_x86_64.whl", hash = "sha256:064101748afa12ad2291c2b91c960be28b817c0c7eaa35bec09cc63aa56493c5"},
|
||||
{file = "black-23.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:562bd3a70495facf56814293149e51aa1be9931567474993c7942ff7d3533961"},
|
||||
{file = "black-23.3.0-cp38-cp38-win_amd64.whl", hash = "sha256:e198cf27888ad6f4ff331ca1c48ffc038848ea9f031a3b40ba36aced7e22f2c8"},
|
||||
{file = "black-23.3.0-cp39-cp39-macosx_10_16_arm64.whl", hash = "sha256:3238f2aacf827d18d26db07524e44741233ae09a584273aa059066d644ca7b30"},
|
||||
{file = "black-23.3.0-cp39-cp39-macosx_10_16_universal2.whl", hash = "sha256:f0bd2f4a58d6666500542b26354978218a9babcdc972722f4bf90779524515f3"},
|
||||
{file = "black-23.3.0-cp39-cp39-macosx_10_16_x86_64.whl", hash = "sha256:92c543f6854c28a3c7f39f4d9b7694f9a6eb9d3c5e2ece488c327b6e7ea9b266"},
|
||||
{file = "black-23.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3a150542a204124ed00683f0db1f5cf1c2aaaa9cc3495b7a3b5976fb136090ab"},
|
||||
{file = "black-23.3.0-cp39-cp39-win_amd64.whl", hash = "sha256:6b39abdfb402002b8a7d030ccc85cf5afff64ee90fa4c5aebc531e3ad0175ddb"},
|
||||
{file = "black-23.3.0-py3-none-any.whl", hash = "sha256:ec751418022185b0c1bb7d7736e6933d40bbb14c14a0abcf9123d1b159f98dd4"},
|
||||
{file = "black-23.3.0.tar.gz", hash = "sha256:1c7b8d606e728a41ea1ccbd7264677e494e87cf630e399262ced92d4a8dac940"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
|
@ -747,14 +728,14 @@ files = [
|
|||
|
||||
[[package]]
|
||||
name = "mkdocs"
|
||||
version = "1.4.2"
|
||||
version = "1.4.3"
|
||||
description = "Project documentation with Markdown."
|
||||
category = "dev"
|
||||
optional = false
|
||||
python-versions = ">=3.7"
|
||||
files = [
|
||||
{file = "mkdocs-1.4.2-py3-none-any.whl", hash = "sha256:c8856a832c1e56702577023cd64cc5f84948280c1c0fcc6af4cd39006ea6aa8c"},
|
||||
{file = "mkdocs-1.4.2.tar.gz", hash = "sha256:8947af423a6d0facf41ea1195b8e1e8c85ad94ac95ae307fe11232e0424b11c5"},
|
||||
{file = "mkdocs-1.4.3-py3-none-any.whl", hash = "sha256:6ee46d309bda331aac915cd24aab882c179a933bd9e77b80ce7d2eaaa3f689dd"},
|
||||
{file = "mkdocs-1.4.3.tar.gz", hash = "sha256:5955093bbd4dd2e9403c5afaf57324ad8b04f16886512a3ee6ef828956481c57"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
|
@ -792,14 +773,14 @@ mkdocs = ">=1.1"
|
|||
|
||||
[[package]]
|
||||
name = "mkdocs-material"
|
||||
version = "9.1.4"
|
||||
version = "9.1.9"
|
||||
description = "Documentation that simply works"
|
||||
category = "dev"
|
||||
optional = false
|
||||
python-versions = ">=3.7"
|
||||
files = [
|
||||
{file = "mkdocs_material-9.1.4-py3-none-any.whl", hash = "sha256:4c92dcf9365068259bef3eed8e0dd5410056b6f7187bdea2d52848c0f94cd94c"},
|
||||
{file = "mkdocs_material-9.1.4.tar.gz", hash = "sha256:c3a8943e9e4a7d2624291da365bbccf0b9f88688aa6947a46260d8c165cd4389"},
|
||||
{file = "mkdocs_material-9.1.9-py3-none-any.whl", hash = "sha256:7db24261cb17400e132c46d17eea712bfe71056d892a9beba32cf68210297141"},
|
||||
{file = "mkdocs_material-9.1.9.tar.gz", hash = "sha256:74d8da1371ab3a326868fe47bae3cbc4aa22e93c048b4ca5117e6817b88bd734"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
|
@ -827,14 +808,14 @@ files = [
|
|||
|
||||
[[package]]
|
||||
name = "mkdocstrings"
|
||||
version = "0.20.0"
|
||||
version = "0.21.2"
|
||||
description = "Automatic documentation from sources, for MkDocs."
|
||||
category = "dev"
|
||||
optional = false
|
||||
python-versions = ">=3.7"
|
||||
files = [
|
||||
{file = "mkdocstrings-0.20.0-py3-none-any.whl", hash = "sha256:f17fc2c4f760ec302b069075ef9e31045aa6372ca91d2f35ded3adba8e25a472"},
|
||||
{file = "mkdocstrings-0.20.0.tar.gz", hash = "sha256:c757f4f646d4f939491d6bc9256bfe33e36c5f8026392f49eaa351d241c838e5"},
|
||||
{file = "mkdocstrings-0.21.2-py3-none-any.whl", hash = "sha256:949ef8da92df9d692ca07be50616459a6b536083a25520fd54b00e8814ce019b"},
|
||||
{file = "mkdocstrings-0.21.2.tar.gz", hash = "sha256:304e56a2e90595708a38a13a278e538a67ad82052dd5c8b71f77a604a4f3d911"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
|
@ -845,6 +826,7 @@ mkdocs = ">=1.2"
|
|||
mkdocs-autorefs = ">=0.3.1"
|
||||
mkdocstrings-python = {version = ">=0.5.2", optional = true, markers = "extra == \"python\""}
|
||||
pymdown-extensions = ">=6.3"
|
||||
typing-extensions = {version = ">=4.1", markers = "python_version < \"3.10\""}
|
||||
|
||||
[package.extras]
|
||||
crystal = ["mkdocstrings-crystal (>=0.3.4)"]
|
||||
|
@ -1007,18 +989,17 @@ pyyaml = "*"
|
|||
|
||||
[[package]]
|
||||
name = "pytest"
|
||||
version = "7.2.2"
|
||||
version = "7.3.1"
|
||||
description = "pytest: simple powerful testing with Python"
|
||||
category = "dev"
|
||||
optional = false
|
||||
python-versions = ">=3.7"
|
||||
files = [
|
||||
{file = "pytest-7.2.2-py3-none-any.whl", hash = "sha256:130328f552dcfac0b1cec75c12e3f005619dc5f874f0a06e8ff7263f0ee6225e"},
|
||||
{file = "pytest-7.2.2.tar.gz", hash = "sha256:c99ab0c73aceb050f68929bc93af19ab6db0558791c6a0715723abe9d0ade9d4"},
|
||||
{file = "pytest-7.3.1-py3-none-any.whl", hash = "sha256:3799fa815351fea3a5e96ac7e503a96fa51cc9942c3753cda7651b93c1cfa362"},
|
||||
{file = "pytest-7.3.1.tar.gz", hash = "sha256:434afafd78b1d78ed0addf160ad2b77a30d35d4bdf8af234fe621919d9ed15e3"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
attrs = ">=19.2.0"
|
||||
colorama = {version = "*", markers = "sys_platform == \"win32\""}
|
||||
exceptiongroup = {version = ">=1.0.0rc8", markers = "python_version < \"3.11\""}
|
||||
iniconfig = "*"
|
||||
|
@ -1027,7 +1008,7 @@ pluggy = ">=0.12,<2.0"
|
|||
tomli = {version = ">=1.0.0", markers = "python_version < \"3.11\""}
|
||||
|
||||
[package.extras]
|
||||
testing = ["argcomplete", "hypothesis (>=3.56)", "mock", "nose", "pygments (>=2.7.2)", "requests", "xmlschema"]
|
||||
testing = ["argcomplete", "attrs (>=19.2.0)", "hypothesis (>=3.56)", "mock", "nose", "pygments (>=2.7.2)", "requests", "xmlschema"]
|
||||
|
||||
[[package]]
|
||||
name = "python-dateutil"
|
||||
|
@ -1458,4 +1439,4 @@ testing = ["big-O", "flake8 (<5)", "jaraco.functools", "jaraco.itertools", "more
|
|||
[metadata]
|
||||
lock-version = "2.0"
|
||||
python-versions = "^3.8.1"
|
||||
content-hash = "aa15e57300668bd23c051b4cd87bec4c1a58dcccd2f2b4767579fea7f2c5fa41"
|
||||
content-hash = "e87403dcd0a0b8484436b02c392326adfaf22b8d7e182d77e4a155c67a7435bc"
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
[tool.poetry]
|
||||
name = "llama_cpp_python"
|
||||
version = "0.1.41"
|
||||
version = "0.1.43"
|
||||
description = "Python bindings for the llama.cpp library"
|
||||
authors = ["Andrei Betlen <abetlen@gmail.com>"]
|
||||
license = "MIT"
|
||||
|
@ -18,12 +18,12 @@ typing-extensions = "^4.5.0"
|
|||
|
||||
|
||||
[tool.poetry.group.dev.dependencies]
|
||||
black = "^23.1.0"
|
||||
black = "^23.3.0"
|
||||
twine = "^4.0.2"
|
||||
mkdocs = "^1.4.2"
|
||||
mkdocstrings = {extras = ["python"], version = "^0.20.0"}
|
||||
mkdocs-material = "^9.1.4"
|
||||
pytest = "^7.2.2"
|
||||
mkdocs = "^1.4.3"
|
||||
mkdocstrings = {extras = ["python"], version = "^0.21.2"}
|
||||
mkdocs-material = "^9.1.9"
|
||||
pytest = "^7.3.1"
|
||||
httpx = "^0.24.0"
|
||||
|
||||
[build-system]
|
||||
|
|
2
setup.py
2
setup.py
|
@ -10,7 +10,7 @@ setup(
|
|||
description="A Python wrapper for llama.cpp",
|
||||
long_description=long_description,
|
||||
long_description_content_type="text/markdown",
|
||||
version="0.1.41",
|
||||
version="0.1.43",
|
||||
author="Andrei Betlen",
|
||||
author_email="abetlen@gmail.com",
|
||||
license="MIT",
|
||||
|
|
2
vendor/llama.cpp
vendored
2
vendor/llama.cpp
vendored
|
@ -1 +1 @@
|
|||
Subproject commit e216aa04633892b972d013719e38b59fd4917341
|
||||
Subproject commit 1b0fd454650ef4d68a980e3225488b79e6e9af25
|
Loading…
Reference in a new issue