Working Open Llama 3B in a box
This commit is contained in:
parent
217d78320f
commit
cf4931a400
6 changed files with 64 additions and 14 deletions
|
@ -24,7 +24,7 @@
|
||||||
- `Dockerfile` - a single OpenBLAS and CuBLAS combined Dockerfile that automatically installs a previously downloaded model `model.bin`
|
- `Dockerfile` - a single OpenBLAS and CuBLAS combined Dockerfile that automatically installs a previously downloaded model `model.bin`
|
||||||
|
|
||||||
## Download a Llama Model from Hugging Face
|
## Download a Llama Model from Hugging Face
|
||||||
- To download a MIT licensed Llama model run: `python3 ./hug_model.py -a vihangd -s open_llama_7b_700bt_ggml`
|
- To download a MIT licensed Llama model you can run: `python3 ./hug_model.py -a vihangd -s open_llama_7b_700bt_ggml -f ggml-model-q5_1.bin`
|
||||||
- To select and install a restricted license Llama model run: `python3 ./hug_model.py -a TheBloke -t llama`
|
- To select and install a restricted license Llama model run: `python3 ./hug_model.py -a TheBloke -t llama`
|
||||||
- You should now have a model in the current directory and `model.bin` symlinked to it for the subsequent Docker build and copy step. e.g.
|
- You should now have a model in the current directory and `model.bin` symlinked to it for the subsequent Docker build and copy step. e.g.
|
||||||
```
|
```
|
||||||
|
@ -37,9 +37,10 @@ lrwxrwxrwx 1 user user 24 May 23 18:30 model.bin -> <downloaded-model-file>q5_
|
||||||
|
|
||||||
| Model | Quantized size |
|
| Model | Quantized size |
|
||||||
|------:|----------------:|
|
|------:|----------------:|
|
||||||
|
| 3B | 3 GB |
|
||||||
| 7B | 5 GB |
|
| 7B | 5 GB |
|
||||||
| 13B | 10 GB |
|
| 13B | 10 GB |
|
||||||
| 30B | 25 GB |
|
| 33B | 25 GB |
|
||||||
| 65B | 50 GB |
|
| 65B | 50 GB |
|
||||||
|
|
||||||
**Note #2:** If you want to pass or tune additional parameters, customise `./start_server.sh` before running `docker build ...`
|
**Note #2:** If you want to pass or tune additional parameters, customise `./start_server.sh` before running `docker build ...`
|
||||||
|
|
14
docker/open_llama/build.sh
Executable file
14
docker/open_llama/build.sh
Executable file
|
@ -0,0 +1,14 @@
|
||||||
|
#!/bin/sh
|
||||||
|
|
||||||
|
MODEL="open_llama_3b"
|
||||||
|
# Get open_llama_3b_ggml q5_1 quantization
|
||||||
|
python3 ./hug_model.py -a SlyEcho -s ${MODEL} -f "q5_1"
|
||||||
|
ls -lh *.bin
|
||||||
|
|
||||||
|
# Build the default OpenBLAS image
|
||||||
|
docker build -t $MODEL .
|
||||||
|
docker images | egrep "^(REPOSITORY|$MODEL)"
|
||||||
|
|
||||||
|
echo
|
||||||
|
echo "To start the docker container run:"
|
||||||
|
echo "docker run -t -p 8000:8000 $MODEL"
|
|
@ -76,13 +76,15 @@ def main():
|
||||||
|
|
||||||
# Arguments
|
# Arguments
|
||||||
parser.add_argument('-v', '--version', type=int, default=0x0003,
|
parser.add_argument('-v', '--version', type=int, default=0x0003,
|
||||||
help='an integer for the version to be used')
|
help='hexadecimal version number of ggml file')
|
||||||
parser.add_argument('-a', '--author', type=str, default='TheBloke',
|
parser.add_argument('-a', '--author', type=str, default='TheBloke',
|
||||||
help='an author to be filtered')
|
help='HuggingFace author filter')
|
||||||
parser.add_argument('-t', '--tags', type=str, default='llama',
|
parser.add_argument('-t', '--tag', type=str, default='llama',
|
||||||
help='tags for the content')
|
help='HuggingFace tag filter')
|
||||||
parser.add_argument('-s', '--search', type=str, default='',
|
parser.add_argument('-s', '--search', type=str, default='',
|
||||||
help='search term')
|
help='HuggingFace search filter')
|
||||||
|
parser.add_argument('-f', '--filename', type=str, default='q5_1',
|
||||||
|
help='HuggingFace model repository filename substring match')
|
||||||
|
|
||||||
# Parse the arguments
|
# Parse the arguments
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
@ -90,7 +92,7 @@ def main():
|
||||||
# Define the parameters
|
# Define the parameters
|
||||||
params = {
|
params = {
|
||||||
"author": args.author,
|
"author": args.author,
|
||||||
"tags": args.tags,
|
"tags": args.tag,
|
||||||
"search": args.search
|
"search": args.search
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -108,11 +110,15 @@ def main():
|
||||||
|
|
||||||
for sibling in model_info.get('siblings', []):
|
for sibling in model_info.get('siblings', []):
|
||||||
rfilename = sibling.get('rfilename')
|
rfilename = sibling.get('rfilename')
|
||||||
if rfilename and 'q5_1' in rfilename:
|
if rfilename and args.filename in rfilename:
|
||||||
model_list.append((model_id, rfilename))
|
model_list.append((model_id, rfilename))
|
||||||
|
|
||||||
# Choose the model
|
# Choose the model
|
||||||
if len(model_list) == 1:
|
model_list.sort(key=lambda x: x[0])
|
||||||
|
if len(model_list) == 0:
|
||||||
|
print("No models found")
|
||||||
|
exit(1)
|
||||||
|
elif len(model_list) == 1:
|
||||||
model_choice = model_list[0]
|
model_choice = model_list[0]
|
||||||
else:
|
else:
|
||||||
model_choice = get_user_choice(model_list)
|
model_choice = get_user_choice(model_list)
|
||||||
|
@ -120,13 +126,14 @@ def main():
|
||||||
if model_choice is not None:
|
if model_choice is not None:
|
||||||
model_id, rfilename = model_choice
|
model_id, rfilename = model_choice
|
||||||
url = f"https://huggingface.co/{model_id}/resolve/main/{rfilename}"
|
url = f"https://huggingface.co/{model_id}/resolve/main/{rfilename}"
|
||||||
download_file(url, rfilename)
|
dest = f"{model_id.replace('/', '_')}_{rfilename}"
|
||||||
_, version = check_magic_and_version(rfilename)
|
download_file(url, dest)
|
||||||
|
_, version = check_magic_and_version(dest)
|
||||||
if version != args.version:
|
if version != args.version:
|
||||||
print(f"Warning: Expected version {args.version}, but found different version in the file.")
|
print(f"Warning: Expected version {args.version}, but found different version in the file.")
|
||||||
else:
|
else:
|
||||||
print("Error - model choice was None")
|
print("Error - model choice was None")
|
||||||
exit(1)
|
exit(2)
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
main()
|
main()
|
28
docker/open_llama/start.sh
Executable file
28
docker/open_llama/start.sh
Executable file
|
@ -0,0 +1,28 @@
|
||||||
|
#!/bin/sh
|
||||||
|
|
||||||
|
MODEL="open_llama_3b"
|
||||||
|
|
||||||
|
# Start Docker container
|
||||||
|
docker run --cap-add SYS_RESOURCE -p 8000:8000 -t $MODEL &
|
||||||
|
sleep 10
|
||||||
|
echo
|
||||||
|
docker ps | egrep "(^CONTAINER|$MODEL)"
|
||||||
|
|
||||||
|
# Test the model works
|
||||||
|
echo
|
||||||
|
curl -X 'POST' 'http://localhost:8000/v1/completions' -H 'accept: application/json' -H 'Content-Type: application/json' -d '{
|
||||||
|
"prompt": "\n\n### Instructions:\nWhat is the capital of France?\n\n### Response:\n",
|
||||||
|
"stop": [
|
||||||
|
"\n",
|
||||||
|
"###"
|
||||||
|
]
|
||||||
|
}' | grep Paris
|
||||||
|
if [ $? -eq 0 ]
|
||||||
|
then
|
||||||
|
echo
|
||||||
|
echo "$MODEL is working!!"
|
||||||
|
else
|
||||||
|
echo
|
||||||
|
echo "ERROR: $MODEL not replying."
|
||||||
|
exit 1
|
||||||
|
fi
|
|
@ -1,6 +1,6 @@
|
||||||
#!/bin/sh
|
#!/bin/sh
|
||||||
|
|
||||||
# For mmap support
|
# For mlock support
|
||||||
ulimit -l unlimited
|
ulimit -l unlimited
|
||||||
|
|
||||||
if [ "$IMAGE" = "python:3-slim-bullseye" ]; then
|
if [ "$IMAGE" = "python:3-slim-bullseye" ]; then
|
Loading…
Add table
Reference in a new issue