Merge branch 'main' into v0.2-wip
This commit is contained in:
commit
cf405f6764
11 changed files with 1730 additions and 330 deletions
|
@ -7,6 +7,13 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
|
|||
|
||||
## [Unreleased]
|
||||
|
||||
## [0.1.78]
|
||||
|
||||
### Added
|
||||
|
||||
- Grammar based sampling via LlamaGrammar which can be passed to completions
|
||||
- Make n_gpu_layers == -1 offload all layers
|
||||
|
||||
## [0.1.77]
|
||||
|
||||
- (llama.cpp) Update llama.cpp add support for LLaMa 2 70B
|
||||
|
|
|
@ -140,7 +140,7 @@ llm = Llama(model_path="./models/7B/ggml-model.bin", n_ctx=2048)
|
|||
Llama2 70b must set the `n_gqa` parameter (grouped-query attention factor) to 8 when loading:
|
||||
|
||||
```python
|
||||
llm = Llama(model_path="./models/7B/ggml-model.bin", n_gqa=8)
|
||||
llm = Llama(model_path="./models/70B/ggml-model.bin", n_gqa=8)
|
||||
```
|
||||
|
||||
## Web Server
|
||||
|
@ -169,7 +169,7 @@ docker run --rm -it -p 8000:8000 -v /path/to/models:/models -e MODEL=/models/ggm
|
|||
## Low-level API
|
||||
|
||||
The low-level API is a direct [`ctypes`](https://docs.python.org/3/library/ctypes.html) binding to the C API provided by `llama.cpp`.
|
||||
The entire lowe-level API can be found in [llama_cpp/llama_cpp.py](https://github.com/abetlen/llama-cpp-python/blob/master/llama_cpp/llama_cpp.py) and directly mirrors the C API in [llama.h](https://github.com/ggerganov/llama.cpp/blob/master/llama.h).
|
||||
The entire low-level API can be found in [llama_cpp/llama_cpp.py](https://github.com/abetlen/llama-cpp-python/blob/master/llama_cpp/llama_cpp.py) and directly mirrors the C API in [llama.h](https://github.com/ggerganov/llama.cpp/blob/master/llama.h).
|
||||
|
||||
Below is a short example demonstrating how to use the low-level API to tokenize a prompt:
|
||||
|
||||
|
|
|
@ -9,7 +9,7 @@ COPY . .
|
|||
RUN apt update && apt install -y libopenblas-dev ninja-build build-essential
|
||||
RUN python -m pip install --upgrade pip pytest cmake scikit-build setuptools fastapi uvicorn sse-starlette pydantic-settings
|
||||
|
||||
RUN LLAMA_OPENBLAS=1 pip install llama_cpp_python --verbose
|
||||
RUN CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama_cpp_python --verbose
|
||||
|
||||
# Run the server
|
||||
CMD python3 -m llama_cpp.server
|
||||
|
|
|
@ -23,10 +23,12 @@ import ctypes
|
|||
|
||||
from . import llama_cpp
|
||||
from .llama_types import *
|
||||
from .llama_grammar import LlamaGrammar
|
||||
|
||||
import numpy as np
|
||||
import numpy.typing as npt
|
||||
|
||||
from .utils import suppress_stdout_stderr
|
||||
|
||||
class BaseLlamaCache(ABC):
|
||||
"""Base cache class for a llama.cpp model."""
|
||||
|
@ -231,7 +233,8 @@ class Llama:
|
|||
rope_freq_base: float = 10000.0,
|
||||
rope_freq_scale: float = 1.0,
|
||||
n_gqa: Optional[int] = None, # (TEMPORARY) must be 8 for llama2 70b
|
||||
rms_norm_eps: Optional[float] = None, # (TEMPORARY)
|
||||
rms_norm_eps: Optional[float] = None, # (TEMPORARY)
|
||||
mul_mat_q: Optional[bool] = None, # (TEMPORARY)
|
||||
verbose: bool = True,
|
||||
):
|
||||
"""Load a llama.cpp model from `model_path`.
|
||||
|
@ -241,6 +244,7 @@ class Llama:
|
|||
n_ctx: Maximum context size.
|
||||
n_parts: Number of parts to split the model into. If -1, the number of parts is automatically determined.
|
||||
seed: Random seed. -1 for random.
|
||||
n_gpu_layers: Number of layers to offload to GPU (-ngl). If -1, all layers are offloaded.
|
||||
f16_kv: Use half-precision for key/value cache.
|
||||
logits_all: Return logits for all tokens, not just the last token.
|
||||
vocab_only: Only load the vocabulary no weights.
|
||||
|
@ -269,7 +273,7 @@ class Llama:
|
|||
|
||||
self.params = llama_cpp.llama_context_default_params()
|
||||
self.params.n_ctx = n_ctx
|
||||
self.params.n_gpu_layers = n_gpu_layers
|
||||
self.params.n_gpu_layers = 0x7FFFFFFF if n_gpu_layers == -1 else n_gpu_layers # 0x7FFFFFFF is INT32 max, will be auto set to all layers
|
||||
self.params.seed = seed
|
||||
self.params.f16_kv = f16_kv
|
||||
self.params.logits_all = logits_all
|
||||
|
@ -280,7 +284,7 @@ class Llama:
|
|||
self.params.low_vram = low_vram
|
||||
|
||||
self.tensor_split = tensor_split
|
||||
self._c_tensor_split = None
|
||||
self._p_tensor_split = None
|
||||
|
||||
if self.tensor_split is not None:
|
||||
# Type conversion and expand the list to the length of LLAMA_MAX_DEVICES
|
||||
|
@ -299,6 +303,9 @@ class Llama:
|
|||
if rms_norm_eps is not None:
|
||||
self.params.rms_norm_eps = rms_norm_eps
|
||||
|
||||
if mul_mat_q is not None:
|
||||
self.params.mul_mat_q = mul_mat_q
|
||||
|
||||
self.last_n_tokens_size = last_n_tokens_size
|
||||
self.n_batch = min(n_ctx, n_batch)
|
||||
|
||||
|
@ -316,12 +323,25 @@ class Llama:
|
|||
if not os.path.exists(model_path):
|
||||
raise ValueError(f"Model path does not exist: {model_path}")
|
||||
|
||||
self.model = llama_cpp.llama_load_model_from_file(
|
||||
self.model_path.encode("utf-8"), self.params
|
||||
)
|
||||
if verbose:
|
||||
self.model = llama_cpp.llama_load_model_from_file(
|
||||
self.model_path.encode("utf-8"), self.params
|
||||
)
|
||||
else:
|
||||
with suppress_stdout_stderr():
|
||||
self.model = llama_cpp.llama_load_model_from_file(
|
||||
self.model_path.encode("utf-8"), self.params
|
||||
)
|
||||
assert self.model is not None
|
||||
|
||||
self.ctx = llama_cpp.llama_new_context_with_model(self.model, self.params)
|
||||
if verbose:
|
||||
self.ctx = llama_cpp.llama_new_context_with_model(self.model, self.params)
|
||||
else:
|
||||
with suppress_stdout_stderr():
|
||||
print("here")
|
||||
self.ctx = llama_cpp.llama_new_context_with_model(
|
||||
self.model, self.params
|
||||
)
|
||||
|
||||
assert self.ctx is not None
|
||||
|
||||
|
@ -358,8 +378,8 @@ class Llama:
|
|||
sorted=sorted,
|
||||
)
|
||||
self._candidates = candidates
|
||||
self._token_nl = Llama.token_nl()
|
||||
self._token_eos = Llama.token_eos()
|
||||
self._token_nl = self.token_nl()
|
||||
self._token_eos = self.token_eos()
|
||||
self._candidates_data_id = np.arange(self._n_vocab, dtype=np.intc) # type: ignore
|
||||
self._candidates_data_p = np.zeros(self._n_vocab, dtype=np.single)
|
||||
|
||||
|
@ -437,10 +457,14 @@ class Llama:
|
|||
"""
|
||||
assert self.ctx is not None
|
||||
output = b""
|
||||
buffer_size = 32
|
||||
buffer = (ctypes.c_char * buffer_size)()
|
||||
for token in tokens:
|
||||
output += llama_cpp.llama_token_to_str(
|
||||
self.ctx, llama_cpp.llama_token(token)
|
||||
n = llama_cpp.llama_token_to_str(
|
||||
self.ctx, llama_cpp.llama_token(token), buffer, buffer_size
|
||||
)
|
||||
assert n <= buffer_size
|
||||
output += bytes(buffer[:n])
|
||||
return output
|
||||
|
||||
def set_cache(self, cache: Optional[BaseLlamaCache]):
|
||||
|
@ -506,6 +530,7 @@ class Llama:
|
|||
mirostat_eta: llama_cpp.c_float,
|
||||
penalize_nl: bool = True,
|
||||
logits_processor: Optional[LogitsProcessorList] = None,
|
||||
grammar: Optional[LlamaGrammar] = None,
|
||||
):
|
||||
assert self.ctx is not None
|
||||
assert self.n_tokens > 0
|
||||
|
@ -548,8 +573,16 @@ class Llama:
|
|||
)
|
||||
if not penalize_nl:
|
||||
candidates.data[self._token_nl].logit = llama_cpp.c_float(nl_logit)
|
||||
|
||||
if grammar is not None:
|
||||
llama_cpp.llama_sample_grammar(
|
||||
ctx=self.ctx,
|
||||
candidates=llama_cpp.ctypes.byref(candidates), # type: ignore
|
||||
grammar=grammar.grammar,
|
||||
)
|
||||
|
||||
if temp.value == 0.0:
|
||||
return llama_cpp.llama_sample_token_greedy(
|
||||
id = llama_cpp.llama_sample_token_greedy(
|
||||
ctx=self.ctx,
|
||||
candidates=llama_cpp.ctypes.byref(candidates), # type: ignore
|
||||
)
|
||||
|
@ -561,7 +594,7 @@ class Llama:
|
|||
candidates=llama_cpp.ctypes.byref(candidates), # type: ignore
|
||||
temp=temp,
|
||||
)
|
||||
return llama_cpp.llama_sample_token_mirostat(
|
||||
id = llama_cpp.llama_sample_token_mirostat(
|
||||
ctx=self.ctx,
|
||||
candidates=llama_cpp.ctypes.byref(candidates), # type: ignore
|
||||
tau=mirostat_tau,
|
||||
|
@ -576,7 +609,7 @@ class Llama:
|
|||
candidates=llama_cpp.ctypes.byref(candidates), # type: ignore
|
||||
temp=temp,
|
||||
)
|
||||
return llama_cpp.llama_sample_token_mirostat_v2(
|
||||
id = llama_cpp.llama_sample_token_mirostat_v2(
|
||||
ctx=self.ctx,
|
||||
candidates=llama_cpp.ctypes.byref(candidates), # type: ignore
|
||||
tau=mirostat_tau,
|
||||
|
@ -613,10 +646,17 @@ class Llama:
|
|||
candidates=llama_cpp.ctypes.byref(candidates), # type: ignore
|
||||
temp=temp,
|
||||
)
|
||||
return llama_cpp.llama_sample_token(
|
||||
id = llama_cpp.llama_sample_token(
|
||||
ctx=self.ctx,
|
||||
candidates=llama_cpp.ctypes.byref(candidates), # type: ignore
|
||||
)
|
||||
if grammar is not None:
|
||||
llama_cpp.llama_grammar_accept_token(
|
||||
ctx=self.ctx,
|
||||
grammar=grammar.grammar,
|
||||
token=llama_cpp.ctypes.c_int(id),
|
||||
)
|
||||
return id
|
||||
|
||||
def sample(
|
||||
self,
|
||||
|
@ -632,6 +672,7 @@ class Llama:
|
|||
mirostat_tau: float = 5.0,
|
||||
penalize_nl: bool = True,
|
||||
logits_processor: Optional[LogitsProcessorList] = None,
|
||||
grammar: Optional[LlamaGrammar] = None,
|
||||
):
|
||||
"""Sample a token from the model.
|
||||
|
||||
|
@ -665,6 +706,7 @@ class Llama:
|
|||
mirostat_eta=llama_cpp.c_float(mirostat_eta),
|
||||
penalize_nl=penalize_nl,
|
||||
logits_processor=logits_processor,
|
||||
grammar=grammar,
|
||||
)
|
||||
|
||||
def generate(
|
||||
|
@ -683,6 +725,7 @@ class Llama:
|
|||
mirostat_eta: float = 0.1,
|
||||
logits_processor: Optional[LogitsProcessorList] = None,
|
||||
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
||||
grammar: Optional[LlamaGrammar] = None,
|
||||
) -> Generator[int, Optional[Sequence[int]], None]:
|
||||
"""Create a generator of tokens from a prompt.
|
||||
|
||||
|
@ -704,7 +747,6 @@ class Llama:
|
|||
The generated tokens.
|
||||
"""
|
||||
assert self.ctx is not None
|
||||
|
||||
if reset and len(self._input_ids) > 0:
|
||||
longest_prefix = 0
|
||||
for a, b in zip(self._input_ids, tokens[:-1]):
|
||||
|
@ -722,6 +764,9 @@ class Llama:
|
|||
if reset:
|
||||
self.reset()
|
||||
|
||||
if grammar is not None:
|
||||
grammar.reset()
|
||||
|
||||
while True:
|
||||
self.eval(tokens)
|
||||
token = self.sample(
|
||||
|
@ -736,6 +781,7 @@ class Llama:
|
|||
mirostat_tau=mirostat_tau,
|
||||
mirostat_eta=mirostat_eta,
|
||||
logits_processor=logits_processor,
|
||||
grammar=grammar,
|
||||
)
|
||||
if stopping_criteria is not None and stopping_criteria(
|
||||
self._input_ids, self._scores[-1, :]
|
||||
|
@ -838,6 +884,7 @@ class Llama:
|
|||
model: Optional[str] = None,
|
||||
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
||||
logits_processor: Optional[LogitsProcessorList] = None,
|
||||
grammar: Optional[LlamaGrammar] = None,
|
||||
) -> Union[Iterator[Completion], Iterator[CompletionChunk]]:
|
||||
assert self.ctx is not None
|
||||
|
||||
|
@ -915,6 +962,7 @@ class Llama:
|
|||
repeat_penalty=repeat_penalty,
|
||||
stopping_criteria=stopping_criteria,
|
||||
logits_processor=logits_processor,
|
||||
grammar=grammar,
|
||||
):
|
||||
if token == self._token_eos:
|
||||
text = self.detokenize(completion_tokens)
|
||||
|
@ -965,9 +1013,7 @@ class Llama:
|
|||
for token in remaining_tokens:
|
||||
token_end_position += len(self.detokenize([token]))
|
||||
# Check if stop sequence is in the token
|
||||
if token_end_position >= (
|
||||
remaining_length - first_stop_position
|
||||
):
|
||||
if token_end_position >= (remaining_length - first_stop_position):
|
||||
break
|
||||
logprobs_or_none: Optional[CompletionLogprobs] = None
|
||||
if logprobs is not None:
|
||||
|
@ -1261,6 +1307,7 @@ class Llama:
|
|||
model: Optional[str] = None,
|
||||
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
||||
logits_processor: Optional[LogitsProcessorList] = None,
|
||||
grammar: Optional[LlamaGrammar] = None,
|
||||
) -> Union[Completion, Iterator[CompletionChunk]]:
|
||||
"""Generate text from a prompt.
|
||||
|
||||
|
@ -1305,6 +1352,7 @@ class Llama:
|
|||
model=model,
|
||||
stopping_criteria=stopping_criteria,
|
||||
logits_processor=logits_processor,
|
||||
grammar=grammar
|
||||
)
|
||||
if stream:
|
||||
chunks: Iterator[CompletionChunk] = completion_or_chunks
|
||||
|
@ -1334,6 +1382,7 @@ class Llama:
|
|||
model: Optional[str] = None,
|
||||
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
||||
logits_processor: Optional[LogitsProcessorList] = None,
|
||||
grammar: Optional[LlamaGrammar] = None,
|
||||
) -> Union[Completion, Iterator[CompletionChunk]]:
|
||||
"""Generate text from a prompt.
|
||||
|
||||
|
@ -1378,6 +1427,7 @@ class Llama:
|
|||
model=model,
|
||||
stopping_criteria=stopping_criteria,
|
||||
logits_processor=logits_processor,
|
||||
grammar=grammar,
|
||||
)
|
||||
|
||||
def _convert_text_completion_to_chat(
|
||||
|
@ -1460,6 +1510,7 @@ class Llama:
|
|||
mirostat_eta: float = 0.1,
|
||||
model: Optional[str] = None,
|
||||
logits_processor: Optional[LogitsProcessorList] = None,
|
||||
grammar: Optional[LlamaGrammar] = None,
|
||||
) -> Union[ChatCompletion, Iterator[ChatCompletionChunk]]:
|
||||
"""Generate a chat completion from a list of messages.
|
||||
|
||||
|
@ -1502,6 +1553,7 @@ class Llama:
|
|||
mirostat_eta=mirostat_eta,
|
||||
model=model,
|
||||
logits_processor=logits_processor,
|
||||
grammar=grammar,
|
||||
)
|
||||
if stream:
|
||||
chunks: Iterator[CompletionChunk] = completion_or_chunks # type: ignore
|
||||
|
@ -1511,10 +1563,10 @@ class Llama:
|
|||
return self._convert_text_completion_to_chat(completion)
|
||||
|
||||
def __del__(self):
|
||||
if self.model is not None:
|
||||
if hasattr(self, "model") and self.model is not None:
|
||||
llama_cpp.llama_free_model(self.model)
|
||||
self.model = None
|
||||
if self.ctx is not None:
|
||||
if hasattr(self, "ctx") and self.ctx is not None:
|
||||
llama_cpp.llama_free(self.ctx)
|
||||
self.ctx = None
|
||||
|
||||
|
@ -1638,20 +1690,20 @@ class Llama:
|
|||
assert self.ctx is not None
|
||||
return LlamaTokenizer(self)
|
||||
|
||||
@staticmethod
|
||||
def token_eos() -> int:
|
||||
def token_eos(self) -> int:
|
||||
"""Return the end-of-sequence token."""
|
||||
return llama_cpp.llama_token_eos()
|
||||
assert self.ctx is not None
|
||||
return llama_cpp.llama_token_eos(self.ctx)
|
||||
|
||||
@staticmethod
|
||||
def token_bos() -> int:
|
||||
def token_bos(self) -> int:
|
||||
"""Return the beginning-of-sequence token."""
|
||||
return llama_cpp.llama_token_bos()
|
||||
assert self.ctx is not None
|
||||
return llama_cpp.llama_token_bos(self.ctx)
|
||||
|
||||
@staticmethod
|
||||
def token_nl() -> int:
|
||||
def token_nl(self) -> int:
|
||||
"""Return the newline token."""
|
||||
return llama_cpp.llama_token_nl()
|
||||
assert self.ctx is not None
|
||||
return llama_cpp.llama_token_nl(self.ctx)
|
||||
|
||||
@staticmethod
|
||||
def logits_to_logprobs(logits: List[float]) -> List[float]:
|
||||
|
|
|
@ -90,26 +90,17 @@ GGML_USE_CUBLAS = hasattr(_lib, "ggml_init_cublas")
|
|||
GGML_CUDA_MAX_DEVICES = 16
|
||||
LLAMA_MAX_DEVICES = GGML_CUDA_MAX_DEVICES if GGML_USE_CUBLAS else 1
|
||||
|
||||
# #define LLAMA_FILE_MAGIC_GGJT 0x67676a74u // 'ggjt'
|
||||
LLAMA_FILE_MAGIC_GGJT = 0x67676A74
|
||||
# #define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
|
||||
LLAMA_FILE_MAGIC_GGLA = 0x67676C61
|
||||
# #define LLAMA_FILE_MAGIC_GGMF 0x67676d66u // 'ggmf'
|
||||
LLAMA_FILE_MAGIC_GGMF = 0x67676D66
|
||||
# #define LLAMA_FILE_MAGIC_GGML 0x67676d6cu // 'ggml'
|
||||
LLAMA_FILE_MAGIC_GGML = 0x67676D6C
|
||||
# #define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
|
||||
LLAMA_FILE_MAGIC_GGSN = 0x6767736E
|
||||
# define LLAMA_DEFAULT_SEED 0xFFFFFFFF
|
||||
LLAMA_DEFAULT_SEED = ctypes.c_int(0xFFFFFFFF)
|
||||
|
||||
# #define LLAMA_FILE_VERSION 3
|
||||
LLAMA_FILE_VERSION = 3
|
||||
LLAMA_FILE_MAGIC = LLAMA_FILE_MAGIC_GGJT
|
||||
LLAMA_FILE_MAGIC_UNVERSIONED = LLAMA_FILE_MAGIC_GGML
|
||||
# define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
|
||||
LLAMA_FILE_MAGIC_GGSN = ctypes.c_uint(0x6767736E)
|
||||
|
||||
# define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
|
||||
LLAMA_SESSION_MAGIC = LLAMA_FILE_MAGIC_GGSN
|
||||
LLAMA_SESSION_VERSION = 1
|
||||
# define LLAMA_SESSION_VERSION 1
|
||||
LLAMA_SESSION_VERSION = ctypes.c_int(1)
|
||||
|
||||
# #define LLAMA_DEFAULT_SEED 0xFFFFFFFF
|
||||
LLAMA_DEFAULT_SEED = 0xFFFFFFFF
|
||||
|
||||
# struct llama_model;
|
||||
llama_model_p = c_void_p
|
||||
|
@ -122,6 +113,82 @@ llama_context_p = c_void_p
|
|||
llama_token = c_int
|
||||
llama_token_p = POINTER(llama_token)
|
||||
|
||||
# enum llama_log_level {
|
||||
# LLAMA_LOG_LEVEL_ERROR = 2,
|
||||
# LLAMA_LOG_LEVEL_WARN = 3,
|
||||
# LLAMA_LOG_LEVEL_INFO = 4
|
||||
# };
|
||||
LLAMA_LOG_LEVEL_ERROR = c_int(2)
|
||||
LLAMA_LOG_LEVEL_WARN = c_int(3)
|
||||
LLAMA_LOG_LEVEL_INFO = c_int(4)
|
||||
|
||||
# enum llama_vocab_type {
|
||||
# LLAMA_VOCAB_TYPE_SPM = 0, // SentencePiece
|
||||
# LLAMA_VOCAB_TYPE_BPE = 1, // Byte Pair Encoding
|
||||
# };
|
||||
LLAMA_VOCAB_TYPE_SPM = c_int(0)
|
||||
LLAMA_VOCAB_TYPE_BPE = c_int(1)
|
||||
|
||||
|
||||
# enum llama_token_type {
|
||||
# LLAMA_TOKEN_TYPE_UNDEFINED = 0,
|
||||
# LLAMA_TOKEN_TYPE_NORMAL = 1,
|
||||
# LLAMA_TOKEN_TYPE_UNKNOWN = 2,
|
||||
# LLAMA_TOKEN_TYPE_CONTROL = 3,
|
||||
# LLAMA_TOKEN_TYPE_USER_DEFINED = 4,
|
||||
# LLAMA_TOKEN_TYPE_UNUSED = 5,
|
||||
# LLAMA_TOKEN_TYPE_BYTE = 6,
|
||||
# };
|
||||
LLAMA_TOKEN_TYPE_UNDEFINED = c_int(0)
|
||||
LLAMA_TOKEN_TYPE_NORMAL = c_int(1)
|
||||
LLAMA_TOKEN_TYPE_UNKNOWN = c_int(2)
|
||||
LLAMA_TOKEN_TYPE_CONTROL = c_int(3)
|
||||
LLAMA_TOKEN_TYPE_USER_DEFINED = c_int(4)
|
||||
LLAMA_TOKEN_TYPE_UNUSED = c_int(5)
|
||||
LLAMA_TOKEN_TYPE_BYTE = c_int(6)
|
||||
|
||||
# enum llama_ftype {
|
||||
# LLAMA_FTYPE_ALL_F32 = 0,
|
||||
# LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
|
||||
# LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
|
||||
# LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
|
||||
# LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
|
||||
# // LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
|
||||
# // LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
|
||||
# LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
|
||||
# LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
|
||||
# LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
|
||||
# LLAMA_FTYPE_MOSTLY_Q2_K = 10,// except 1d tensors
|
||||
# LLAMA_FTYPE_MOSTLY_Q3_K_S = 11,// except 1d tensors
|
||||
# LLAMA_FTYPE_MOSTLY_Q3_K_M = 12,// except 1d tensors
|
||||
# LLAMA_FTYPE_MOSTLY_Q3_K_L = 13,// except 1d tensors
|
||||
# LLAMA_FTYPE_MOSTLY_Q4_K_S = 14,// except 1d tensors
|
||||
# LLAMA_FTYPE_MOSTLY_Q4_K_M = 15,// except 1d tensors
|
||||
# LLAMA_FTYPE_MOSTLY_Q5_K_S = 16,// except 1d tensors
|
||||
# LLAMA_FTYPE_MOSTLY_Q5_K_M = 17,// except 1d tensors
|
||||
# LLAMA_FTYPE_MOSTLY_Q6_K = 18,// except 1d tensors
|
||||
#
|
||||
# LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
|
||||
# };
|
||||
LLAMA_FTYPE_ALL_F32 = c_int(0)
|
||||
LLAMA_FTYPE_MOSTLY_F16 = c_int(1)
|
||||
LLAMA_FTYPE_MOSTLY_Q4_0 = c_int(2)
|
||||
LLAMA_FTYPE_MOSTLY_Q4_1 = c_int(3)
|
||||
LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = c_int(4)
|
||||
LLAMA_FTYPE_MOSTLY_Q8_0 = c_int(7)
|
||||
LLAMA_FTYPE_MOSTLY_Q5_0 = c_int(8)
|
||||
LLAMA_FTYPE_MOSTLY_Q5_1 = c_int(9)
|
||||
LLAMA_FTYPE_MOSTLY_Q2_K = c_int(10)
|
||||
LLAMA_FTYPE_MOSTLY_Q3_K_S = c_int(11)
|
||||
LLAMA_FTYPE_MOSTLY_Q3_K_M = c_int(12)
|
||||
LLAMA_FTYPE_MOSTLY_Q3_K_L = c_int(13)
|
||||
LLAMA_FTYPE_MOSTLY_Q4_K_S = c_int(14)
|
||||
LLAMA_FTYPE_MOSTLY_Q4_K_M = c_int(15)
|
||||
LLAMA_FTYPE_MOSTLY_Q5_K_S = c_int(16)
|
||||
LLAMA_FTYPE_MOSTLY_Q5_K_M = c_int(17)
|
||||
LLAMA_FTYPE_MOSTLY_Q6_K = c_int(18)
|
||||
LLAMA_FTYPE_GUESSED = c_int(1024)
|
||||
|
||||
|
||||
# typedef struct llama_token_data {
|
||||
# llama_token id; // token id
|
||||
|
@ -157,16 +224,13 @@ llama_token_data_array_p = POINTER(llama_token_data_array)
|
|||
# typedef void (*llama_progress_callback)(float progress, void *ctx);
|
||||
llama_progress_callback = ctypes.CFUNCTYPE(None, c_float, c_void_p)
|
||||
|
||||
|
||||
# struct llama_context_params {
|
||||
# uint32_t seed; // RNG seed, -1 for random
|
||||
# int32_t n_ctx; // text context
|
||||
# int32_t n_batch; // prompt processing batch size
|
||||
# int32_t n_gqa; // grouped-query attention (TEMP - will be moved to model hparams)
|
||||
# float rms_norm_eps; // rms norm epsilon (TEMP - will be moved to model hparams)
|
||||
# int32_t n_gpu_layers; // number of layers to store in VRAM
|
||||
# int32_t main_gpu; // the GPU that is used for scratch and small tensors
|
||||
#
|
||||
|
||||
# const float * tensor_split; // how to split layers across multiple GPUs (size: LLAMA_MAX_DEVICES)
|
||||
|
||||
# // ref: https://github.com/ggerganov/llama.cpp/pull/2054
|
||||
|
@ -181,6 +245,7 @@ llama_progress_callback = ctypes.CFUNCTYPE(None, c_float, c_void_p)
|
|||
|
||||
# // Keep the booleans together to avoid misalignment during copy-by-value.
|
||||
# bool low_vram; // if true, reduce VRAM usage at the cost of performance
|
||||
# bool mul_mat_q; // if true, use experimental mul_mat_q kernels
|
||||
# bool f16_kv; // use fp16 for KV cache
|
||||
# bool logits_all; // the llama_eval() call computes all logits, not just the last one
|
||||
# bool vocab_only; // only load the vocabulary, no weights
|
||||
|
@ -193,16 +258,15 @@ class llama_context_params(Structure):
|
|||
("seed", c_uint32),
|
||||
("n_ctx", c_int32),
|
||||
("n_batch", c_int32),
|
||||
("n_gqa", c_int32),
|
||||
("rms_norm_eps", c_float),
|
||||
("n_gpu_layers", c_int32),
|
||||
("main_gpu", c_int32),
|
||||
("tensor_split", POINTER(c_float)),
|
||||
("tensor_split", c_float_p),
|
||||
("rope_freq_base", c_float),
|
||||
("rope_freq_scale", c_float),
|
||||
("progress_callback", llama_progress_callback),
|
||||
("progress_callback_user_data", c_void_p),
|
||||
("low_vram", c_bool),
|
||||
("mul_mat_q", c_bool),
|
||||
("f16_kv", c_bool),
|
||||
("logits_all", c_bool),
|
||||
("vocab_only", c_bool),
|
||||
|
@ -214,50 +278,20 @@ class llama_context_params(Structure):
|
|||
|
||||
llama_context_params_p = POINTER(llama_context_params)
|
||||
|
||||
# enum llama_ftype {
|
||||
# LLAMA_FTYPE_ALL_F32 = 0,
|
||||
# LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
|
||||
# LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
|
||||
# LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
|
||||
# LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
|
||||
# // LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
|
||||
# // LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
|
||||
# LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
|
||||
# LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
|
||||
# LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
|
||||
# LLAMA_FTYPE_MOSTLY_Q2_K = 10,// except 1d tensors
|
||||
# LLAMA_FTYPE_MOSTLY_Q3_K_S = 11,// except 1d tensors
|
||||
# LLAMA_FTYPE_MOSTLY_Q3_K_M = 12,// except 1d tensors
|
||||
# LLAMA_FTYPE_MOSTLY_Q3_K_L = 13,// except 1d tensors
|
||||
# LLAMA_FTYPE_MOSTLY_Q4_K_S = 14,// except 1d tensors
|
||||
# LLAMA_FTYPE_MOSTLY_Q4_K_M = 15,// except 1d tensors
|
||||
# LLAMA_FTYPE_MOSTLY_Q5_K_S = 16,// except 1d tensors
|
||||
# LLAMA_FTYPE_MOSTLY_Q5_K_M = 17,// except 1d tensors
|
||||
# LLAMA_FTYPE_MOSTLY_Q6_K = 18,// except 1d tensors
|
||||
# };
|
||||
LLAMA_FTYPE_ALL_F32 = 0
|
||||
LLAMA_FTYPE_MOSTLY_F16 = 1
|
||||
LLAMA_FTYPE_MOSTLY_Q4_0 = 2
|
||||
LLAMA_FTYPE_MOSTLY_Q4_1 = 3
|
||||
LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4
|
||||
LLAMA_FTYPE_MOSTLY_Q8_0 = 7
|
||||
LLAMA_FTYPE_MOSTLY_Q5_0 = 8
|
||||
LLAMA_FTYPE_MOSTLY_Q5_1 = 9
|
||||
LLAMA_FTYPE_MOSTLY_Q2_K = 10
|
||||
LLAMA_FTYPE_MOSTLY_Q3_K_S = 11
|
||||
LLAMA_FTYPE_MOSTLY_Q3_K_M = 12
|
||||
LLAMA_FTYPE_MOSTLY_Q3_K_L = 13
|
||||
LLAMA_FTYPE_MOSTLY_Q4_K_S = 14
|
||||
LLAMA_FTYPE_MOSTLY_Q4_K_M = 15
|
||||
LLAMA_FTYPE_MOSTLY_Q5_K_S = 16
|
||||
LLAMA_FTYPE_MOSTLY_Q5_K_M = 17
|
||||
LLAMA_FTYPE_MOSTLY_Q6_K = 18
|
||||
|
||||
# // Signature for logging events
|
||||
# // Note that text includes the new line character at the end for most events.
|
||||
# // If your logging mechanism cannot handle that, check if the last character is '\n' and strip it
|
||||
# // if it exists.
|
||||
# // It might not exist for progress report where '.' is output repeatedly.
|
||||
# typedef void (*llama_log_callback)(enum llama_log_level level, const char * text, void * user_data);
|
||||
llama_log_callback = ctypes.CFUNCTYPE(None, c_int, c_char_p, c_void_p)
|
||||
|
||||
|
||||
# // model quantization parameters
|
||||
# typedef struct llama_model_quantize_params {
|
||||
# int nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
|
||||
# enum llama_ftype ftype; // quantize to this llama_ftype
|
||||
# enum llama_ftype ftype; // quantize to this llama_ftype
|
||||
# bool allow_requantize; // allow quantizing non-f32/f16 tensors
|
||||
# bool quantize_output_tensor; // quantize output.weight
|
||||
# } llama_model_quantize_params;
|
||||
|
@ -349,16 +383,7 @@ class llama_timings(Structure):
|
|||
]
|
||||
|
||||
|
||||
# LLAMA_API int llama_max_devices();
|
||||
def llama_max_devices() -> int:
|
||||
return _lib.llama_max_devices()
|
||||
|
||||
|
||||
_lib.llama_max_devices.argtypes = []
|
||||
_lib.llama_max_devices.restype = c_int
|
||||
|
||||
|
||||
# LLAMA_API struct llama_context_params llama_context_default_params();
|
||||
# LLAMA_API struct llama_context_params llama_context_default_params(void);
|
||||
def llama_context_default_params() -> llama_context_params:
|
||||
return _lib.llama_context_default_params()
|
||||
|
||||
|
@ -367,7 +392,7 @@ _lib.llama_context_default_params.argtypes = []
|
|||
_lib.llama_context_default_params.restype = llama_context_params
|
||||
|
||||
|
||||
# LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params();
|
||||
# LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
|
||||
def llama_model_quantize_default_params() -> llama_model_quantize_params:
|
||||
return _lib.llama_model_quantize_default_params()
|
||||
|
||||
|
@ -376,25 +401,6 @@ _lib.llama_model_quantize_default_params.argtypes = []
|
|||
_lib.llama_model_quantize_default_params.restype = llama_model_quantize_params
|
||||
|
||||
|
||||
# LLAMA_API bool llama_mmap_supported();
|
||||
def llama_mmap_supported() -> bool:
|
||||
return _lib.llama_mmap_supported()
|
||||
|
||||
|
||||
_lib.llama_mmap_supported.argtypes = []
|
||||
_lib.llama_mmap_supported.restype = c_bool
|
||||
|
||||
|
||||
# LLAMA_API bool llama_mlock_supported();
|
||||
def llama_mlock_supported() -> bool:
|
||||
return _lib.llama_mlock_supported()
|
||||
|
||||
|
||||
_lib.llama_mlock_supported.argtypes = []
|
||||
_lib.llama_mlock_supported.restype = c_bool
|
||||
|
||||
|
||||
# // TODO: not great API - very likely to change
|
||||
# // Initialize the llama + ggml backend
|
||||
# // If numa is true, use NUMA optimizations
|
||||
# // Call once at the start of the program
|
||||
|
@ -408,7 +414,7 @@ _lib.llama_backend_init.restype = None
|
|||
|
||||
|
||||
# // Call once at the end of the program - currently only used for MPI
|
||||
# LLAMA_API void llama_backend_free();
|
||||
# LLAMA_API void llama_backend_free(void);
|
||||
def llama_backend_free():
|
||||
return _lib.llama_backend_free()
|
||||
|
||||
|
@ -418,7 +424,7 @@ _lib.llama_backend_free.restype = None
|
|||
|
||||
|
||||
# LLAMA_API struct llama_model * llama_load_model_from_file(
|
||||
# const char * path_model,
|
||||
# const char * path_model,
|
||||
# struct llama_context_params params);
|
||||
def llama_load_model_from_file(
|
||||
path_model: bytes, params: llama_context_params
|
||||
|
@ -440,7 +446,7 @@ _lib.llama_free_model.restype = None
|
|||
|
||||
|
||||
# LLAMA_API struct llama_context * llama_new_context_with_model(
|
||||
# struct llama_model * model,
|
||||
# struct llama_model * model,
|
||||
# struct llama_context_params params);
|
||||
def llama_new_context_with_model(
|
||||
model: llama_model_p, params: llama_context_params
|
||||
|
@ -452,7 +458,17 @@ _lib.llama_new_context_with_model.argtypes = [llama_model_p, llama_context_param
|
|||
_lib.llama_new_context_with_model.restype = llama_context_p
|
||||
|
||||
|
||||
# LLAMA_API int64_t llama_time_us();
|
||||
# // Frees all allocated memory
|
||||
# LLAMA_API void llama_free(struct llama_context * ctx);
|
||||
def llama_free(ctx: llama_context_p):
|
||||
return _lib.llama_free(ctx)
|
||||
|
||||
|
||||
_lib.llama_free.argtypes = [llama_context_p]
|
||||
_lib.llama_free.restype = None
|
||||
|
||||
|
||||
# LLAMA_API int64_t llama_time_us(void);
|
||||
def llama_time_us() -> int:
|
||||
return _lib.llama_time_us()
|
||||
|
||||
|
@ -461,30 +477,95 @@ _lib.llama_time_us.argtypes = []
|
|||
_lib.llama_time_us.restype = ctypes.c_int64
|
||||
|
||||
|
||||
# // Various functions for loading a ggml llama model.
|
||||
# // Allocate (almost) all memory needed for the model.
|
||||
# // Return NULL on failure
|
||||
# LLAMA_API struct llama_context * llama_init_from_file(
|
||||
# const char * path_model,
|
||||
# struct llama_context_params params);
|
||||
def llama_init_from_file(
|
||||
path_model: bytes, params: llama_context_params
|
||||
) -> llama_context_p:
|
||||
return _lib.llama_init_from_file(path_model, params)
|
||||
# LLAMA_API int llama_max_devices (void);
|
||||
def llama_max_devices() -> int:
|
||||
return _lib.llama_max_devices()
|
||||
|
||||
|
||||
_lib.llama_init_from_file.argtypes = [c_char_p, llama_context_params]
|
||||
_lib.llama_init_from_file.restype = llama_context_p
|
||||
_lib.llama_max_devices.argtypes = []
|
||||
_lib.llama_max_devices.restype = c_int
|
||||
|
||||
|
||||
# Frees all allocated memory
|
||||
# LLAMA_API void llama_free(struct llama_context * ctx);
|
||||
def llama_free(ctx: llama_context_p):
|
||||
return _lib.llama_free(ctx)
|
||||
# LLAMA_API bool llama_mmap_supported (void);
|
||||
def llama_mmap_supported() -> bool:
|
||||
return _lib.llama_mmap_supported()
|
||||
|
||||
|
||||
_lib.llama_free.argtypes = [llama_context_p]
|
||||
_lib.llama_free.restype = None
|
||||
_lib.llama_mmap_supported.argtypes = []
|
||||
_lib.llama_mmap_supported.restype = c_bool
|
||||
|
||||
|
||||
# LLAMA_API bool llama_mlock_supported(void);
|
||||
def llama_mlock_supported() -> bool:
|
||||
return _lib.llama_mlock_supported()
|
||||
|
||||
|
||||
_lib.llama_mlock_supported.argtypes = []
|
||||
_lib.llama_mlock_supported.restype = c_bool
|
||||
|
||||
|
||||
# LLAMA_API int llama_n_vocab(const struct llama_context * ctx);
|
||||
def llama_n_vocab(ctx: llama_context_p) -> int:
|
||||
return _lib.llama_n_vocab(ctx)
|
||||
|
||||
|
||||
_lib.llama_n_vocab.argtypes = [llama_context_p]
|
||||
_lib.llama_n_vocab.restype = c_int
|
||||
|
||||
|
||||
# LLAMA_API int llama_n_ctx (const struct llama_context * ctx);
|
||||
def llama_n_ctx(ctx: llama_context_p) -> int:
|
||||
return _lib.llama_n_ctx(ctx)
|
||||
|
||||
|
||||
_lib.llama_n_ctx.argtypes = [llama_context_p]
|
||||
_lib.llama_n_ctx.restype = c_int
|
||||
|
||||
|
||||
# LLAMA_API int llama_n_embd (const struct llama_context * ctx);
|
||||
def llama_n_embd(ctx: llama_context_p) -> int:
|
||||
return _lib.llama_n_embd(ctx)
|
||||
|
||||
|
||||
_lib.llama_n_embd.argtypes = [llama_context_p]
|
||||
_lib.llama_n_embd.restype = c_int
|
||||
|
||||
|
||||
# LLAMA_API int llama_model_n_vocab(const struct llama_model * model);
|
||||
def llama_model_n_vocab(model: llama_model_p) -> int:
|
||||
return _lib.llama_model_n_vocab(model)
|
||||
|
||||
|
||||
_lib.llama_model_n_vocab.argtypes = [llama_model_p]
|
||||
_lib.llama_model_n_vocab.restype = c_int
|
||||
|
||||
|
||||
# LLAMA_API int llama_model_n_ctx (const struct llama_model * model);
|
||||
def llama_model_n_ctx(model: llama_model_p) -> int:
|
||||
return _lib.llama_model_n_ctx(model)
|
||||
|
||||
|
||||
_lib.llama_model_n_ctx.argtypes = [llama_model_p]
|
||||
_lib.llama_model_n_ctx.restype = c_int
|
||||
|
||||
|
||||
# LLAMA_API int llama_model_n_embd (const struct llama_model * model);
|
||||
def llama_model_n_embd(model: llama_model_p) -> int:
|
||||
return _lib.llama_model_n_embd(model)
|
||||
|
||||
|
||||
_lib.llama_model_n_embd.argtypes = [llama_model_p]
|
||||
_lib.llama_model_n_embd.restype = c_int
|
||||
|
||||
|
||||
# // Get a string describing the model type
|
||||
# LLAMA_API int llama_model_type(const struct llama_model * model, char * buf, size_t buf_size);
|
||||
def llama_model_type(model: llama_model_p, buf: bytes, buf_size: c_size_t) -> int:
|
||||
return _lib.llama_model_type(model, buf, buf_size)
|
||||
|
||||
|
||||
_lib.llama_model_type.argtypes = [llama_model_p, c_char_p, c_size_t]
|
||||
_lib.llama_model_type.restype = c_int
|
||||
|
||||
|
||||
# // Returns 0 on success
|
||||
|
@ -703,147 +784,17 @@ _lib.llama_eval_embd.argtypes = [llama_context_p, c_float_p, c_int, c_int, c_int
|
|||
_lib.llama_eval_embd.restype = c_int
|
||||
|
||||
|
||||
# Convert the provided text into tokens.
|
||||
# The tokens pointer must be large enough to hold the resulting tokens.
|
||||
# Returns the number of tokens on success, no more than n_max_tokens
|
||||
# Returns a negative number on failure - the number of tokens that would have been returned
|
||||
# TODO: not sure if correct
|
||||
# LLAMA_API int llama_tokenize(
|
||||
# struct llama_context * ctx,
|
||||
# const char * text,
|
||||
# llama_token * tokens,
|
||||
# int n_max_tokens,
|
||||
# bool add_bos);
|
||||
def llama_tokenize(
|
||||
ctx: llama_context_p,
|
||||
text: bytes,
|
||||
tokens, # type: Array[llama_token]
|
||||
n_max_tokens: Union[c_int, int],
|
||||
add_bos: Union[c_bool, bool],
|
||||
) -> int:
|
||||
return _lib.llama_tokenize(ctx, text, tokens, n_max_tokens, add_bos)
|
||||
# // Export a static computation graph for context of 511 and batch size of 1
|
||||
# // NOTE: since this functionality is mostly for debugging and demonstration purposes, we hardcode these
|
||||
# // parameters here to keep things simple
|
||||
# // IMPORTANT: do not use for anything else other than debugging and testing!
|
||||
# LLAMA_API int llama_eval_export(struct llama_context * ctx, const char * fname);
|
||||
def llama_eval_export(ctx: llama_context_p, fname: bytes) -> int:
|
||||
return _lib.llama_eval_export(ctx, fname)
|
||||
|
||||
|
||||
_lib.llama_tokenize.argtypes = [llama_context_p, c_char_p, llama_token_p, c_int, c_bool]
|
||||
_lib.llama_tokenize.restype = c_int
|
||||
|
||||
|
||||
# LLAMA_API int llama_tokenize_with_model(
|
||||
# const struct llama_model * model,
|
||||
# const char * text,
|
||||
# llama_token * tokens,
|
||||
# int n_max_tokens,
|
||||
# bool add_bos);
|
||||
def llama_tokenize_with_model(
|
||||
model: llama_model_p,
|
||||
text: bytes,
|
||||
tokens, # type: Array[llama_token]
|
||||
n_max_tokens: Union[c_int, int],
|
||||
add_bos: Union[c_bool, bool],
|
||||
) -> int:
|
||||
return _lib.llama_tokenize_with_model(model, text, tokens, n_max_tokens, add_bos)
|
||||
|
||||
|
||||
# LLAMA_API int llama_n_vocab(const struct llama_context * ctx);
|
||||
def llama_n_vocab(ctx: llama_context_p) -> int:
|
||||
return _lib.llama_n_vocab(ctx)
|
||||
|
||||
|
||||
_lib.llama_n_vocab.argtypes = [llama_context_p]
|
||||
_lib.llama_n_vocab.restype = c_int
|
||||
|
||||
|
||||
# LLAMA_API int llama_n_ctx (const struct llama_context * ctx);
|
||||
def llama_n_ctx(ctx: llama_context_p) -> int:
|
||||
return _lib.llama_n_ctx(ctx)
|
||||
|
||||
|
||||
_lib.llama_n_ctx.argtypes = [llama_context_p]
|
||||
_lib.llama_n_ctx.restype = c_int
|
||||
|
||||
|
||||
# LLAMA_API int llama_n_embd (const struct llama_context * ctx);
|
||||
def llama_n_embd(ctx: llama_context_p) -> int:
|
||||
return _lib.llama_n_embd(ctx)
|
||||
|
||||
|
||||
_lib.llama_n_embd.argtypes = [llama_context_p]
|
||||
_lib.llama_n_embd.restype = c_int
|
||||
|
||||
|
||||
# LLAMA_API int llama_n_vocab_from_model(const struct llama_model * model);
|
||||
def llama_n_vocab_from_model(model: llama_model_p) -> int:
|
||||
return _lib.llama_n_vocab_from_model(model)
|
||||
|
||||
|
||||
_lib.llama_n_vocab_from_model.argtypes = [llama_model_p]
|
||||
_lib.llama_n_vocab_from_model.restype = c_int
|
||||
|
||||
|
||||
# LLAMA_API int llama_n_ctx_from_model (const struct llama_model * model);
|
||||
def llama_n_ctx_from_model(model: llama_model_p) -> int:
|
||||
return _lib.llama_n_ctx_from_model(model)
|
||||
|
||||
|
||||
_lib.llama_n_ctx_from_model.argtypes = [llama_model_p]
|
||||
_lib.llama_n_ctx_from_model.restype = c_int
|
||||
|
||||
|
||||
# LLAMA_API int llama_n_embd_from_model (const struct llama_model * model);
|
||||
def llama_n_embd_from_model(model: llama_model_p) -> int:
|
||||
return _lib.llama_n_embd_from_model(model)
|
||||
|
||||
|
||||
_lib.llama_n_embd_from_model.argtypes = [llama_model_p]
|
||||
_lib.llama_n_embd_from_model.restype = c_int
|
||||
|
||||
|
||||
# // Get the vocabulary as output parameters.
|
||||
# // Returns number of results.
|
||||
# LLAMA_API int llama_get_vocab(
|
||||
# const struct llama_context * ctx,
|
||||
# const char * * strings,
|
||||
# float * scores,
|
||||
# int capacity);
|
||||
def llama_get_vocab(
|
||||
ctx: llama_context_p,
|
||||
strings, # type: Array[c_char_p] # type: ignore
|
||||
scores, # type: Array[c_float] # type: ignore
|
||||
capacity: Union[c_int, int],
|
||||
) -> int:
|
||||
return _lib.llama_get_vocab(ctx, strings, scores, capacity)
|
||||
|
||||
|
||||
_lib.llama_get_vocab.argtypes = [
|
||||
llama_context_p,
|
||||
POINTER(c_char_p),
|
||||
POINTER(c_float),
|
||||
c_int,
|
||||
]
|
||||
_lib.llama_get_vocab.restype = c_int
|
||||
|
||||
|
||||
# LLAMA_API int llama_get_vocab_from_model(
|
||||
# const struct llama_model * model,
|
||||
# const char * * strings,
|
||||
# float * scores,
|
||||
# int capacity);
|
||||
def llama_get_vocab_from_model(
|
||||
model: llama_model_p,
|
||||
strings, # type: Array[c_char_p] # type: ignore
|
||||
scores, # type: Array[c_float] # type: ignore
|
||||
capacity: Union[c_int, int],
|
||||
) -> int:
|
||||
return _lib.llama_get_vocab_from_model(model, strings, scores, capacity)
|
||||
|
||||
|
||||
_lib.llama_get_vocab_from_model.argtypes = [
|
||||
llama_model_p,
|
||||
POINTER(c_char_p),
|
||||
POINTER(c_float),
|
||||
c_int,
|
||||
]
|
||||
_lib.llama_get_vocab_from_model.restype = c_int
|
||||
_lib.llama_eval_export.argtypes = [llama_context_p, c_char_p]
|
||||
_lib.llama_eval_export.restype = c_int
|
||||
|
||||
|
||||
# Token logits obtained from the last call to llama_eval()
|
||||
|
@ -875,16 +826,186 @@ _lib.llama_get_embeddings.argtypes = [llama_context_p]
|
|||
_lib.llama_get_embeddings.restype = c_float_p
|
||||
|
||||
|
||||
# //
|
||||
# // Vocab
|
||||
# //
|
||||
|
||||
|
||||
# LLAMA_API const char * llama_token_get_text(const struct llama_context * ctx, llama_token token);
|
||||
def llama_token_get_text(ctx: llama_context_p, token: llama_token) -> bytes:
|
||||
return _lib.llama_token_get_text(ctx, token)
|
||||
|
||||
|
||||
_lib.llama_token_get_text.argtypes = [llama_context_p, llama_token]
|
||||
_lib.llama_token_get_text.restype = c_char_p
|
||||
|
||||
|
||||
# LLAMA_API float llama_token_get_score(const struct llama_context * ctx, llama_token token);
|
||||
def llama_token_get_score(ctx: llama_context_p, token: llama_token) -> float:
|
||||
return _lib.llama_token_get_score(ctx, token)
|
||||
|
||||
|
||||
_lib.llama_token_get_score.argtypes = [llama_context_p, llama_token]
|
||||
_lib.llama_token_get_score.restype = c_float
|
||||
|
||||
|
||||
# LLAMA_API llama_token_type llama_token_get_type(const struct llama_context * ctx, llama_token token);
|
||||
def llama_token_get_type(ctx: llama_context_p, token: llama_token) -> int:
|
||||
return _lib.llama_token_get_type(ctx, token)
|
||||
|
||||
|
||||
_lib.llama_token_get_type.argtypes = [llama_context_p, llama_token]
|
||||
_lib.llama_token_get_type.restype = ctypes.c_int
|
||||
|
||||
|
||||
# // Special tokens
|
||||
|
||||
|
||||
# LLAMA_API llama_token llama_token_bos(const struct llama_context * ctx); // beginning-of-sentence
|
||||
def llama_token_bos(ctx: llama_context_p) -> llama_token:
|
||||
return _lib.llama_token_bos(ctx)
|
||||
|
||||
|
||||
_lib.llama_token_bos.argtypes = [llama_context_p]
|
||||
_lib.llama_token_bos.restype = llama_token
|
||||
|
||||
|
||||
# LLAMA_API llama_token llama_token_eos(const struct llama_context * ctx); // end-of-sentence
|
||||
def llama_token_eos(ctx: llama_context_p) -> llama_token:
|
||||
return _lib.llama_token_eos(ctx)
|
||||
|
||||
|
||||
_lib.llama_token_eos.argtypes = [llama_context_p]
|
||||
_lib.llama_token_eos.restype = llama_token
|
||||
|
||||
|
||||
# LLAMA_API llama_token llama_token_nl (const struct llama_context * ctx); // next-line
|
||||
def llama_token_nl(ctx: llama_context_p) -> llama_token:
|
||||
return _lib.llama_token_nl(ctx)
|
||||
|
||||
|
||||
_lib.llama_token_nl.argtypes = [llama_context_p]
|
||||
_lib.llama_token_nl.restype = llama_token
|
||||
|
||||
|
||||
# //
|
||||
# // Tokenization
|
||||
# //
|
||||
|
||||
|
||||
# Convert the provided text into tokens.
|
||||
# The tokens pointer must be large enough to hold the resulting tokens.
|
||||
# Returns the number of tokens on success, no more than n_max_tokens
|
||||
# Returns a negative number on failure - the number of tokens that would have been returned
|
||||
# TODO: not sure if correct
|
||||
# LLAMA_API int llama_tokenize(
|
||||
# struct llama_context * ctx,
|
||||
# const char * text,
|
||||
# llama_token * tokens,
|
||||
# int n_max_tokens,
|
||||
# bool add_bos);
|
||||
def llama_tokenize(
|
||||
ctx: llama_context_p,
|
||||
text: bytes,
|
||||
tokens, # type: Array[llama_token]
|
||||
n_max_tokens: c_int,
|
||||
add_bos: c_bool,
|
||||
) -> int:
|
||||
return _lib.llama_tokenize(ctx, text, tokens, n_max_tokens, add_bos)
|
||||
|
||||
|
||||
_lib.llama_tokenize.argtypes = [llama_context_p, c_char_p, llama_token_p, c_int, c_bool]
|
||||
_lib.llama_tokenize.restype = c_int
|
||||
|
||||
|
||||
# LLAMA_API int llama_tokenize_bpe(
|
||||
# struct llama_context * ctx,
|
||||
# const char * text,
|
||||
# llama_token * tokens,
|
||||
# int n_max_tokens,
|
||||
# bool add_bos);
|
||||
def llama_tokenize_bpe(
|
||||
ctx: llama_context_p,
|
||||
text: bytes,
|
||||
tokens, # type: Array[llama_token]
|
||||
n_max_tokens: c_int,
|
||||
add_bos: c_bool,
|
||||
) -> int:
|
||||
return _lib.llama_tokenize_bpe(ctx, text, tokens, n_max_tokens, add_bos)
|
||||
|
||||
|
||||
_lib.llama_tokenize_bpe.argtypes = [
|
||||
llama_context_p,
|
||||
c_char_p,
|
||||
llama_token_p,
|
||||
c_int,
|
||||
c_bool,
|
||||
]
|
||||
_lib.llama_tokenize_bpe.restype = c_int
|
||||
|
||||
|
||||
# LLAMA_API int llama_tokenize_with_model(
|
||||
# const struct llama_model * model,
|
||||
# const char * text,
|
||||
# llama_token * tokens,
|
||||
# int n_max_tokens,
|
||||
# bool add_bos);
|
||||
def llama_tokenize_with_model(
|
||||
model: llama_model_p,
|
||||
text: bytes,
|
||||
tokens, # type: Array[llama_token]
|
||||
n_max_tokens: c_int,
|
||||
add_bos: c_bool,
|
||||
) -> int:
|
||||
return _lib.llama_tokenize_with_model(model, text, tokens, n_max_tokens, add_bos)
|
||||
|
||||
|
||||
_lib.llama_tokenize_with_model.argtypes = [
|
||||
llama_model_p,
|
||||
c_char_p,
|
||||
llama_token_p,
|
||||
c_int,
|
||||
c_bool,
|
||||
]
|
||||
_lib.llama_tokenize_with_model.restype = c_int
|
||||
|
||||
|
||||
# // Token Id -> String. Uses the vocabulary in the provided context
|
||||
# LLAMA_API const char * llama_token_to_str(
|
||||
# // Does not write null terminator to the buffer
|
||||
# LLAMA_API int llama_token_to_str(
|
||||
# const struct llama_context * ctx,
|
||||
# llama_token token);
|
||||
def llama_token_to_str(ctx: llama_context_p, token: llama_token) -> bytes:
|
||||
return _lib.llama_token_to_str(ctx, token)
|
||||
# llama_token token,
|
||||
# char * buf,
|
||||
# int length);
|
||||
def llama_token_to_str(
|
||||
ctx: llama_context_p, token: llama_token, buf: bytes, length: c_int
|
||||
) -> int:
|
||||
return _lib.llama_token_to_str(ctx, token, buf, length)
|
||||
|
||||
|
||||
_lib.llama_token_to_str.argtypes = [llama_context_p, llama_token]
|
||||
_lib.llama_token_to_str.restype = c_char_p
|
||||
_lib.llama_tokenize_with_model.argtypes = [
|
||||
llama_model_p,
|
||||
c_char_p,
|
||||
llama_token_p,
|
||||
c_int,
|
||||
c_bool,
|
||||
]
|
||||
_lib.llama_tokenize_with_model.restype = c_int
|
||||
|
||||
|
||||
# LLAMA_API int llama_token_to_str_bpe(
|
||||
# const struct llama_context * ctx,
|
||||
# llama_token token,
|
||||
# char * buf,
|
||||
# int length);
|
||||
def llama_token_to_str_bpe(
|
||||
ctx: llama_context_p, token: llama_token, buf: bytes, length: c_int
|
||||
) -> int:
|
||||
return _lib.llama_token_to_str_bpe(ctx, token, buf, length)
|
||||
|
||||
|
||||
_lib.llama_token_to_str_bpe.argtypes = [llama_context_p, llama_token, c_char_p, c_int]
|
||||
_lib.llama_token_to_str_bpe.restype = c_int
|
||||
|
||||
|
||||
# LLAMA_API const char * llama_token_to_str_with_model(
|
||||
|
@ -897,38 +1018,12 @@ def llama_token_to_str_with_model(model: llama_model_p, token: llama_token) -> b
|
|||
_lib.llama_token_to_str_with_model.argtypes = [llama_model_p, llama_token]
|
||||
_lib.llama_token_to_str_with_model.restype = c_char_p
|
||||
|
||||
# Special tokens
|
||||
|
||||
|
||||
# LLAMA_API llama_token llama_token_bos(); // beginning-of-sentence
|
||||
def llama_token_bos() -> int:
|
||||
return _lib.llama_token_bos()
|
||||
|
||||
|
||||
_lib.llama_token_bos.argtypes = []
|
||||
_lib.llama_token_bos.restype = llama_token
|
||||
|
||||
|
||||
# LLAMA_API llama_token llama_token_eos(); // end-of-sentence
|
||||
def llama_token_eos() -> int:
|
||||
return _lib.llama_token_eos()
|
||||
|
||||
|
||||
_lib.llama_token_eos.argtypes = []
|
||||
_lib.llama_token_eos.restype = llama_token
|
||||
|
||||
|
||||
# LLAMA_API llama_token llama_token_nl(); // next-line
|
||||
def llama_token_nl() -> int:
|
||||
return _lib.llama_token_nl()
|
||||
|
||||
|
||||
_lib.llama_token_nl.argtypes = []
|
||||
_lib.llama_token_nl.restype = llama_token
|
||||
|
||||
|
||||
# //
|
||||
# // Grammar
|
||||
# //
|
||||
|
||||
|
||||
# LLAMA_API struct llama_grammar * llama_grammar_init(
|
||||
# const llama_grammar_element ** rules,
|
||||
# size_t n_rules,
|
||||
|
@ -958,7 +1053,9 @@ _lib.llama_grammar_free.argtypes = [llama_grammar_p]
|
|||
_lib.llama_grammar_free.restype = None
|
||||
|
||||
|
||||
# Sampling functions
|
||||
# //
|
||||
# // Sampling functions
|
||||
# //
|
||||
|
||||
|
||||
# @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
|
||||
|
@ -1157,12 +1254,11 @@ _lib.llama_sample_temperature.argtypes = [
|
|||
_lib.llama_sample_temperature.restype = None
|
||||
|
||||
|
||||
# /// @details Apply constraints from grammar
|
||||
# LLAMA_API void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar);
|
||||
def llama_sample_grammar(
|
||||
ctx: llama_context_p,
|
||||
candidates, # type: _Pointer[llama_token_data_array]
|
||||
grammar: llama_grammar_p,
|
||||
grammar, # type: llama_grammar_p
|
||||
):
|
||||
return _lib.llama_sample_grammar(ctx, candidates, grammar)
|
||||
|
||||
|
@ -1265,9 +1361,11 @@ _lib.llama_sample_token.restype = llama_token
|
|||
# /// @details Accepts the sampled token into the grammar
|
||||
# LLAMA_API void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token);
|
||||
def llama_grammar_accept_token(
|
||||
ctx: llama_context_p, grammar: llama_grammar_p, token: llama_token
|
||||
):
|
||||
return _lib.llama_grammar_accept_token(ctx, grammar, token)
|
||||
ctx: llama_context_p,
|
||||
grammar: llama_grammar_p,
|
||||
token: llama_token,
|
||||
) -> None:
|
||||
_lib.llama_grammar_accept_token(ctx, grammar, token)
|
||||
|
||||
|
||||
_lib.llama_grammar_accept_token.argtypes = [
|
||||
|
@ -1316,6 +1414,19 @@ def llama_print_system_info() -> bytes:
|
|||
_lib.llama_print_system_info.argtypes = []
|
||||
_lib.llama_print_system_info.restype = c_char_p
|
||||
|
||||
|
||||
# // Set callback for all future logging events.
|
||||
# // If this is not called, or NULL is supplied, everything is output on stderr.
|
||||
# LLAMA_API void llama_log_set(llama_log_callback log_callback, void * user_data);
|
||||
def llama_log_set(
|
||||
log_callback: "ctypes._FuncPointer", user_data: c_void_p # type: ignore
|
||||
):
|
||||
return _lib.llama_log_set(log_callback, user_data)
|
||||
|
||||
|
||||
_lib.llama_log_set.argtypes = [llama_log_callback, c_void_p]
|
||||
_lib.llama_log_set.restype = None
|
||||
|
||||
###################################################################################################
|
||||
|
||||
|
||||
|
|
1188
llama_cpp/llama_grammar.py
Normal file
1188
llama_cpp/llama_grammar.py
Normal file
File diff suppressed because it is too large
Load diff
0
llama_cpp/py.typed
Normal file
0
llama_cpp/py.typed
Normal file
|
@ -108,6 +108,10 @@ class Settings(BaseSettings):
|
|||
default=None,
|
||||
description="TEMPORARY",
|
||||
)
|
||||
mul_mat_q: Optional[bool] = Field(
|
||||
default=None,
|
||||
description="TEMPORARY",
|
||||
)
|
||||
|
||||
|
||||
class ErrorResponse(TypedDict):
|
||||
|
|
38
llama_cpp/utils.py
Normal file
38
llama_cpp/utils.py
Normal file
|
@ -0,0 +1,38 @@
|
|||
import os
|
||||
import sys
|
||||
|
||||
|
||||
class suppress_stdout_stderr(object):
|
||||
# Oddly enough this works better than the contextlib version
|
||||
def __enter__(self):
|
||||
self.outnull_file = open(os.devnull, "w")
|
||||
self.errnull_file = open(os.devnull, "w")
|
||||
|
||||
self.old_stdout_fileno_undup = sys.stdout.fileno()
|
||||
self.old_stderr_fileno_undup = sys.stderr.fileno()
|
||||
|
||||
self.old_stdout_fileno = os.dup(sys.stdout.fileno())
|
||||
self.old_stderr_fileno = os.dup(sys.stderr.fileno())
|
||||
|
||||
self.old_stdout = sys.stdout
|
||||
self.old_stderr = sys.stderr
|
||||
|
||||
os.dup2(self.outnull_file.fileno(), self.old_stdout_fileno_undup)
|
||||
os.dup2(self.errnull_file.fileno(), self.old_stderr_fileno_undup)
|
||||
|
||||
sys.stdout = self.outnull_file
|
||||
sys.stderr = self.errnull_file
|
||||
return self
|
||||
|
||||
def __exit__(self, *_):
|
||||
sys.stdout = self.old_stdout
|
||||
sys.stderr = self.old_stderr
|
||||
|
||||
os.dup2(self.old_stdout_fileno, self.old_stdout_fileno_undup)
|
||||
os.dup2(self.old_stderr_fileno, self.old_stderr_fileno_undup)
|
||||
|
||||
os.close(self.old_stdout_fileno)
|
||||
os.close(self.old_stderr_fileno)
|
||||
|
||||
self.outnull_file.close()
|
||||
self.errnull_file.close()
|
|
@ -4,7 +4,7 @@ build-backend = "scikit_build_core.build"
|
|||
|
||||
[project]
|
||||
name = "llama_cpp_python"
|
||||
version = "0.1.77"
|
||||
version = "0.1.78"
|
||||
description = "Python bindings for the llama.cpp library"
|
||||
readme = "README.md"
|
||||
license = { text = "MIT" }
|
||||
|
|
2
vendor/llama.cpp
vendored
2
vendor/llama.cpp
vendored
|
@ -1 +1 @@
|
|||
Subproject commit 41c674161fb2459bdf7806d1eebead15bc5d046e
|
||||
Subproject commit f5fe98d11bdf9e7797bcfb05c0c3601ffc4b9d26
|
Loading…
Reference in a new issue