docs: Add docstrings from llama.cpp
This commit is contained in:
parent
31cf0ec680
commit
be1f64d569
1 changed files with 115 additions and 0 deletions
|
@ -272,6 +272,19 @@ llama_progress_callback = ctypes.CFUNCTYPE(None, c_float, c_void_p)
|
||||||
# llama_seq_id all_seq_id; // used if seq_id == NULL
|
# llama_seq_id all_seq_id; // used if seq_id == NULL
|
||||||
# } llama_batch;
|
# } llama_batch;
|
||||||
class llama_batch(Structure):
|
class llama_batch(Structure):
|
||||||
|
"""Input data for llama_decode
|
||||||
|
|
||||||
|
A llama_batch object can contain input about one or many sequences
|
||||||
|
|
||||||
|
The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
|
||||||
|
|
||||||
|
Attributes:
|
||||||
|
token (ctypes.Array[llama_token]): the token ids of the input (used when embd is NULL)
|
||||||
|
embd (ctypes.Array[ctypes.c_float]): token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
|
||||||
|
pos (ctypes.Array[ctypes.Array[llama_pos]]): the positions of the respective token in the sequence
|
||||||
|
seq_id (ctypes.Array[ctypes.Array[llama_seq_id]]): the sequence to which the respective token belongs
|
||||||
|
"""
|
||||||
|
|
||||||
_fields_ = [
|
_fields_ = [
|
||||||
("n_tokens", c_int32),
|
("n_tokens", c_int32),
|
||||||
("token", POINTER(llama_token)),
|
("token", POINTER(llama_token)),
|
||||||
|
@ -368,6 +381,11 @@ class llama_context_params(Structure):
|
||||||
# // It might not exist for progress report where '.' is output repeatedly.
|
# // It might not exist for progress report where '.' is output repeatedly.
|
||||||
# typedef void (*llama_log_callback)(enum llama_log_level level, const char * text, void * user_data);
|
# typedef void (*llama_log_callback)(enum llama_log_level level, const char * text, void * user_data);
|
||||||
llama_log_callback = ctypes.CFUNCTYPE(None, c_int, c_char_p, c_void_p)
|
llama_log_callback = ctypes.CFUNCTYPE(None, c_int, c_char_p, c_void_p)
|
||||||
|
"""Signature for logging events
|
||||||
|
Note that text includes the new line character at the end for most events.
|
||||||
|
If your logging mechanism cannot handle that, check if the last character is '\n' and strip it
|
||||||
|
if it exists.
|
||||||
|
It might not exist for progress report where '.' is output repeatedly."""
|
||||||
|
|
||||||
|
|
||||||
# // model quantization parameters
|
# // model quantization parameters
|
||||||
|
@ -501,6 +519,9 @@ _lib.llama_model_quantize_default_params.restype = llama_model_quantize_params
|
||||||
# // Call once at the start of the program
|
# // Call once at the start of the program
|
||||||
# LLAMA_API void llama_backend_init(bool numa);
|
# LLAMA_API void llama_backend_init(bool numa);
|
||||||
def llama_backend_init(numa: Union[c_bool, bool]):
|
def llama_backend_init(numa: Union[c_bool, bool]):
|
||||||
|
"""Initialize the llama + ggml backend
|
||||||
|
If numa is true, use NUMA optimizations
|
||||||
|
Call once at the start of the program"""
|
||||||
return _lib.llama_backend_init(numa)
|
return _lib.llama_backend_init(numa)
|
||||||
|
|
||||||
|
|
||||||
|
@ -511,6 +532,7 @@ _lib.llama_backend_init.restype = None
|
||||||
# // Call once at the end of the program - currently only used for MPI
|
# // Call once at the end of the program - currently only used for MPI
|
||||||
# LLAMA_API void llama_backend_free(void);
|
# LLAMA_API void llama_backend_free(void);
|
||||||
def llama_backend_free():
|
def llama_backend_free():
|
||||||
|
"""Call once at the end of the program - currently only used for MPI"""
|
||||||
return _lib.llama_backend_free()
|
return _lib.llama_backend_free()
|
||||||
|
|
||||||
|
|
||||||
|
@ -556,6 +578,7 @@ _lib.llama_new_context_with_model.restype = llama_context_p
|
||||||
# // Frees all allocated memory
|
# // Frees all allocated memory
|
||||||
# LLAMA_API void llama_free(struct llama_context * ctx);
|
# LLAMA_API void llama_free(struct llama_context * ctx);
|
||||||
def llama_free(ctx: llama_context_p):
|
def llama_free(ctx: llama_context_p):
|
||||||
|
"""Frees all allocated memory"""
|
||||||
return _lib.llama_free(ctx)
|
return _lib.llama_free(ctx)
|
||||||
|
|
||||||
|
|
||||||
|
@ -656,6 +679,7 @@ _lib.llama_n_embd.restype = c_int
|
||||||
# // Get the model's RoPE frequency scaling factor
|
# // Get the model's RoPE frequency scaling factor
|
||||||
# LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
|
# LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
|
||||||
def llama_rope_freq_scale_train(model: llama_model_p) -> float:
|
def llama_rope_freq_scale_train(model: llama_model_p) -> float:
|
||||||
|
"""Get the model's RoPE frequency scaling factor"""
|
||||||
return _lib.llama_rope_freq_scale_train(model)
|
return _lib.llama_rope_freq_scale_train(model)
|
||||||
|
|
||||||
|
|
||||||
|
@ -673,6 +697,7 @@ _lib.llama_rope_freq_scale_train.restype = c_float
|
||||||
def llama_model_meta_val_str(
|
def llama_model_meta_val_str(
|
||||||
model: llama_model_p, key: Union[c_char_p, bytes], buf: bytes, buf_size: int
|
model: llama_model_p, key: Union[c_char_p, bytes], buf: bytes, buf_size: int
|
||||||
) -> int:
|
) -> int:
|
||||||
|
"""Get metadata value as a string by key name"""
|
||||||
return _lib.llama_model_meta_val_str(model, key, buf, buf_size)
|
return _lib.llama_model_meta_val_str(model, key, buf, buf_size)
|
||||||
|
|
||||||
|
|
||||||
|
@ -683,6 +708,7 @@ _lib.llama_model_meta_val_str.restype = c_int
|
||||||
# // Get the number of metadata key/value pairs
|
# // Get the number of metadata key/value pairs
|
||||||
# LLAMA_API int llama_model_meta_count(const struct llama_model * model);
|
# LLAMA_API int llama_model_meta_count(const struct llama_model * model);
|
||||||
def llama_model_meta_count(model: llama_model_p) -> int:
|
def llama_model_meta_count(model: llama_model_p) -> int:
|
||||||
|
"""Get the number of metadata key/value pairs"""
|
||||||
return _lib.llama_model_meta_count(model)
|
return _lib.llama_model_meta_count(model)
|
||||||
|
|
||||||
|
|
||||||
|
@ -695,6 +721,7 @@ _lib.llama_model_meta_count.restype = c_int
|
||||||
def llama_model_meta_key_by_index(
|
def llama_model_meta_key_by_index(
|
||||||
model: llama_model_p, i: Union[c_int, int], buf: bytes, buf_size: int
|
model: llama_model_p, i: Union[c_int, int], buf: bytes, buf_size: int
|
||||||
) -> int:
|
) -> int:
|
||||||
|
"""Get metadata key name by index"""
|
||||||
return _lib.llama_model_meta_key_by_index(model, i, buf, buf_size)
|
return _lib.llama_model_meta_key_by_index(model, i, buf, buf_size)
|
||||||
|
|
||||||
|
|
||||||
|
@ -707,6 +734,7 @@ _lib.llama_model_meta_key_by_index.restype = c_int
|
||||||
def llama_model_meta_val_str_by_index(
|
def llama_model_meta_val_str_by_index(
|
||||||
model: llama_model_p, i: Union[c_int, int], buf: bytes, buf_size: int
|
model: llama_model_p, i: Union[c_int, int], buf: bytes, buf_size: int
|
||||||
) -> int:
|
) -> int:
|
||||||
|
"""Get metadata value as a string by index"""
|
||||||
return _lib.llama_model_meta_val_str_by_index(model, i, buf, buf_size)
|
return _lib.llama_model_meta_val_str_by_index(model, i, buf, buf_size)
|
||||||
|
|
||||||
|
|
||||||
|
@ -724,6 +752,7 @@ _lib.llama_model_meta_val_str_by_index.restype = c_int
|
||||||
def llama_model_desc(
|
def llama_model_desc(
|
||||||
model: llama_model_p, buf: bytes, buf_size: Union[c_size_t, int]
|
model: llama_model_p, buf: bytes, buf_size: Union[c_size_t, int]
|
||||||
) -> int:
|
) -> int:
|
||||||
|
"""Get a string describing the model type"""
|
||||||
return _lib.llama_model_desc(model, buf, buf_size)
|
return _lib.llama_model_desc(model, buf, buf_size)
|
||||||
|
|
||||||
|
|
||||||
|
@ -734,6 +763,7 @@ _lib.llama_model_desc.restype = c_int
|
||||||
# // Returns the total size of all the tensors in the model in bytes
|
# // Returns the total size of all the tensors in the model in bytes
|
||||||
# LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
|
# LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
|
||||||
def llama_model_size(model: llama_model_p) -> int:
|
def llama_model_size(model: llama_model_p) -> int:
|
||||||
|
"""Returns the total size of all the tensors in the model in bytes"""
|
||||||
return _lib.llama_model_size(model)
|
return _lib.llama_model_size(model)
|
||||||
|
|
||||||
|
|
||||||
|
@ -744,6 +774,7 @@ _lib.llama_model_size.restype = ctypes.c_uint64
|
||||||
# // Returns the total number of parameters in the model
|
# // Returns the total number of parameters in the model
|
||||||
# LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
|
# LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
|
||||||
def llama_model_n_params(model: llama_model_p) -> int:
|
def llama_model_n_params(model: llama_model_p) -> int:
|
||||||
|
"""Returns the total number of parameters in the model"""
|
||||||
return _lib.llama_model_n_params(model)
|
return _lib.llama_model_n_params(model)
|
||||||
|
|
||||||
|
|
||||||
|
@ -756,6 +787,7 @@ _lib.llama_model_n_params.restype = ctypes.c_uint64
|
||||||
def llama_get_model_tensor(
|
def llama_get_model_tensor(
|
||||||
model: llama_model_p, name: Union[c_char_p, bytes]
|
model: llama_model_p, name: Union[c_char_p, bytes]
|
||||||
) -> c_void_p:
|
) -> c_void_p:
|
||||||
|
"""Get a llama model tensor"""
|
||||||
return _lib.llama_get_model_tensor(model, name)
|
return _lib.llama_get_model_tensor(model, name)
|
||||||
|
|
||||||
|
|
||||||
|
@ -773,6 +805,7 @@ def llama_model_quantize(
|
||||||
fname_out: bytes,
|
fname_out: bytes,
|
||||||
params, # type: POINTER(llama_model_quantize_params) # type: ignore
|
params, # type: POINTER(llama_model_quantize_params) # type: ignore
|
||||||
) -> int:
|
) -> int:
|
||||||
|
"""Returns 0 on success"""
|
||||||
return _lib.llama_model_quantize(fname_inp, fname_out, params)
|
return _lib.llama_model_quantize(fname_inp, fname_out, params)
|
||||||
|
|
||||||
|
|
||||||
|
@ -804,6 +837,12 @@ def llama_apply_lora_from_file(
|
||||||
path_base_model: Union[c_char_p, bytes],
|
path_base_model: Union[c_char_p, bytes],
|
||||||
n_threads: Union[c_int, int],
|
n_threads: Union[c_int, int],
|
||||||
) -> int:
|
) -> int:
|
||||||
|
"""Apply a LoRA adapter to a loaded model
|
||||||
|
path_base_model is the path to a higher quality model to use as a base for
|
||||||
|
the layers modified by the adapter. Can be NULL to use the current loaded model.
|
||||||
|
The model needs to be reloaded before applying a new adapter, otherwise the adapter
|
||||||
|
will be applied on top of the previous one
|
||||||
|
Returns 0 on success"""
|
||||||
return _lib.llama_apply_lora_from_file(
|
return _lib.llama_apply_lora_from_file(
|
||||||
ctx, path_lora, scale, path_base_model, n_threads
|
ctx, path_lora, scale, path_base_model, n_threads
|
||||||
)
|
)
|
||||||
|
@ -855,6 +894,7 @@ _lib.llama_model_apply_lora_from_file.restype = c_int
|
||||||
# LLAMA_API DEPRECATED(int llama_get_kv_cache_token_count(const struct llama_context * ctx),
|
# LLAMA_API DEPRECATED(int llama_get_kv_cache_token_count(const struct llama_context * ctx),
|
||||||
# "avoid using this, it will be removed in the future, instead - count the tokens in user code");
|
# "avoid using this, it will be removed in the future, instead - count the tokens in user code");
|
||||||
def llama_get_kv_cache_token_count(ctx: llama_context_p) -> int:
|
def llama_get_kv_cache_token_count(ctx: llama_context_p) -> int:
|
||||||
|
"""Returns the number of tokens in the KV cache"""
|
||||||
return _lib.llama_get_kv_cache_token_count(ctx)
|
return _lib.llama_get_kv_cache_token_count(ctx)
|
||||||
|
|
||||||
|
|
||||||
|
@ -866,6 +906,7 @@ _lib.llama_get_kv_cache_token_count.restype = c_int
|
||||||
# LLAMA_API void llama_kv_cache_clear(
|
# LLAMA_API void llama_kv_cache_clear(
|
||||||
# struct llama_context * ctx);
|
# struct llama_context * ctx);
|
||||||
def llama_kv_cache_clear(ctx: llama_context_p):
|
def llama_kv_cache_clear(ctx: llama_context_p):
|
||||||
|
"""Clear the KV cache"""
|
||||||
return _lib.llama_kv_cache_clear(ctx)
|
return _lib.llama_kv_cache_clear(ctx)
|
||||||
|
|
||||||
|
|
||||||
|
@ -888,6 +929,10 @@ def llama_kv_cache_seq_rm(
|
||||||
p0: Union[llama_pos, int],
|
p0: Union[llama_pos, int],
|
||||||
p1: Union[llama_pos, int],
|
p1: Union[llama_pos, int],
|
||||||
):
|
):
|
||||||
|
"""Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
|
||||||
|
seq_id < 0 : match any sequence
|
||||||
|
p0 < 0 : [0, p1]
|
||||||
|
p1 < 0 : [p0, inf)"""
|
||||||
return _lib.llama_kv_cache_seq_rm(ctx, seq_id, p0, p1)
|
return _lib.llama_kv_cache_seq_rm(ctx, seq_id, p0, p1)
|
||||||
|
|
||||||
|
|
||||||
|
@ -917,6 +962,10 @@ def llama_kv_cache_seq_cp(
|
||||||
p0: Union[llama_pos, int],
|
p0: Union[llama_pos, int],
|
||||||
p1: Union[llama_pos, int],
|
p1: Union[llama_pos, int],
|
||||||
):
|
):
|
||||||
|
"""Copy all tokens that belong to the specified sequence to another sequence
|
||||||
|
Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
|
||||||
|
p0 < 0 : [0, p1]
|
||||||
|
p1 < 0 : [p0, inf)"""
|
||||||
return _lib.llama_kv_cache_seq_cp(ctx, seq_id_src, seq_id_dst, p0, p1)
|
return _lib.llama_kv_cache_seq_cp(ctx, seq_id_src, seq_id_dst, p0, p1)
|
||||||
|
|
||||||
|
|
||||||
|
@ -938,6 +987,7 @@ def llama_kv_cache_seq_keep(
|
||||||
ctx: llama_context_p,
|
ctx: llama_context_p,
|
||||||
seq_id: Union[llama_seq_id, int],
|
seq_id: Union[llama_seq_id, int],
|
||||||
):
|
):
|
||||||
|
"""Removes all tokens that do not belong to the specified sequence"""
|
||||||
return _lib.llama_kv_cache_seq_keep(ctx, seq_id)
|
return _lib.llama_kv_cache_seq_keep(ctx, seq_id)
|
||||||
|
|
||||||
|
|
||||||
|
@ -962,6 +1012,10 @@ def llama_kv_cache_seq_shift(
|
||||||
p1: Union[llama_pos, int],
|
p1: Union[llama_pos, int],
|
||||||
delta: Union[llama_pos, int],
|
delta: Union[llama_pos, int],
|
||||||
):
|
):
|
||||||
|
"""Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
|
||||||
|
If the KV cache is RoPEd, the KV data is updated accordingly
|
||||||
|
p0 < 0 : [0, p1]
|
||||||
|
p1 < 0 : [p0, inf)"""
|
||||||
return _lib.llama_kv_cache_seq_shift(ctx, seq_id, p0, p1, delta)
|
return _lib.llama_kv_cache_seq_shift(ctx, seq_id, p0, p1, delta)
|
||||||
|
|
||||||
|
|
||||||
|
@ -983,6 +1037,8 @@ _lib.llama_kv_cache_seq_shift.restype = None
|
||||||
# and kv_cache) - will often be smaller after compacting tokens
|
# and kv_cache) - will often be smaller after compacting tokens
|
||||||
# LLAMA_API size_t llama_get_state_size(const struct llama_context * ctx);
|
# LLAMA_API size_t llama_get_state_size(const struct llama_context * ctx);
|
||||||
def llama_get_state_size(ctx: llama_context_p) -> int:
|
def llama_get_state_size(ctx: llama_context_p) -> int:
|
||||||
|
"""Returns the maximum size in bytes of the state (rng, logits, embedding
|
||||||
|
and kv_cache) - will often be smaller after compacting tokens"""
|
||||||
return _lib.llama_get_state_size(ctx)
|
return _lib.llama_get_state_size(ctx)
|
||||||
|
|
||||||
|
|
||||||
|
@ -999,6 +1055,9 @@ _lib.llama_get_state_size.restype = c_size_t
|
||||||
def llama_copy_state_data(
|
def llama_copy_state_data(
|
||||||
ctx: llama_context_p, dst # type: Array[c_uint8]
|
ctx: llama_context_p, dst # type: Array[c_uint8]
|
||||||
) -> int:
|
) -> int:
|
||||||
|
"""Copies the state to the specified destination address.
|
||||||
|
Destination needs to have allocated enough memory.
|
||||||
|
Returns the number of bytes copied"""
|
||||||
return _lib.llama_copy_state_data(ctx, dst)
|
return _lib.llama_copy_state_data(ctx, dst)
|
||||||
|
|
||||||
|
|
||||||
|
@ -1014,6 +1073,7 @@ _lib.llama_copy_state_data.restype = c_size_t
|
||||||
def llama_set_state_data(
|
def llama_set_state_data(
|
||||||
ctx: llama_context_p, src # type: Array[c_uint8]
|
ctx: llama_context_p, src # type: Array[c_uint8]
|
||||||
) -> int:
|
) -> int:
|
||||||
|
"""Set the state reading from the specified address"""
|
||||||
return _lib.llama_set_state_data(ctx, src)
|
return _lib.llama_set_state_data(ctx, src)
|
||||||
|
|
||||||
|
|
||||||
|
@ -1094,6 +1154,11 @@ def llama_eval(
|
||||||
n_tokens: Union[c_int, int],
|
n_tokens: Union[c_int, int],
|
||||||
n_past: Union[c_int, int],
|
n_past: Union[c_int, int],
|
||||||
) -> int:
|
) -> int:
|
||||||
|
"""Run the llama inference to obtain the logits and probabilities for the next token(s).
|
||||||
|
tokens + n_tokens is the provided batch of new tokens to process
|
||||||
|
n_past is the number of tokens to use from previous eval calls
|
||||||
|
Returns 0 on success
|
||||||
|
DEPRECATED: use llama_decode() instead"""
|
||||||
return _lib.llama_eval(ctx, tokens, n_tokens, n_past)
|
return _lib.llama_eval(ctx, tokens, n_tokens, n_past)
|
||||||
|
|
||||||
|
|
||||||
|
@ -1115,6 +1180,8 @@ def llama_eval_embd(
|
||||||
n_tokens: Union[c_int, int],
|
n_tokens: Union[c_int, int],
|
||||||
n_past: Union[c_int, int],
|
n_past: Union[c_int, int],
|
||||||
) -> int:
|
) -> int:
|
||||||
|
"""Same as llama_eval, but use float matrix input directly.
|
||||||
|
DEPRECATED: use llama_decode() instead"""
|
||||||
return _lib.llama_eval_embd(ctx, embd, n_tokens, n_past)
|
return _lib.llama_eval_embd(ctx, embd, n_tokens, n_past)
|
||||||
|
|
||||||
|
|
||||||
|
@ -1137,6 +1204,9 @@ def llama_batch_get_one(
|
||||||
pos_0: Union[llama_pos, int],
|
pos_0: Union[llama_pos, int],
|
||||||
seq_id: llama_seq_id,
|
seq_id: llama_seq_id,
|
||||||
) -> llama_batch:
|
) -> llama_batch:
|
||||||
|
"""Return batch for single sequence of tokens starting at pos_0
|
||||||
|
|
||||||
|
NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it"""
|
||||||
return _lib.llama_batch_get_one(tokens, n_tokens, pos_0, seq_id)
|
return _lib.llama_batch_get_one(tokens, n_tokens, pos_0, seq_id)
|
||||||
|
|
||||||
|
|
||||||
|
@ -1165,6 +1235,13 @@ def llama_batch_init(
|
||||||
embd: Union[c_int32, int],
|
embd: Union[c_int32, int],
|
||||||
n_seq_max: Union[c_int32, int],
|
n_seq_max: Union[c_int32, int],
|
||||||
) -> llama_batch:
|
) -> llama_batch:
|
||||||
|
"""Allocates a batch of tokens on the heap that can hold a maximum of n_tokens
|
||||||
|
Each token can be assigned up to n_seq_max sequence ids
|
||||||
|
The batch has to be freed with llama_batch_free()
|
||||||
|
If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
|
||||||
|
Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
|
||||||
|
The rest of the llama_batch members are allocated with size n_tokens
|
||||||
|
All members are left uninitialized"""
|
||||||
return _lib.llama_batch_init(n_tokens, embd, n_seq_max)
|
return _lib.llama_batch_init(n_tokens, embd, n_seq_max)
|
||||||
|
|
||||||
|
|
||||||
|
@ -1175,6 +1252,7 @@ _lib.llama_batch_init.restype = llama_batch
|
||||||
# // Frees a batch of tokens allocated with llama_batch_init()
|
# // Frees a batch of tokens allocated with llama_batch_init()
|
||||||
# LLAMA_API void llama_batch_free(struct llama_batch batch);
|
# LLAMA_API void llama_batch_free(struct llama_batch batch);
|
||||||
def llama_batch_free(batch: llama_batch):
|
def llama_batch_free(batch: llama_batch):
|
||||||
|
"""Frees a batch of tokens allocated with llama_batch_init()"""
|
||||||
return _lib.llama_batch_free(batch)
|
return _lib.llama_batch_free(batch)
|
||||||
|
|
||||||
|
|
||||||
|
@ -1190,6 +1268,10 @@ _lib.llama_batch_free.restype = None
|
||||||
# struct llama_context * ctx,
|
# struct llama_context * ctx,
|
||||||
# struct llama_batch batch);
|
# struct llama_batch batch);
|
||||||
def llama_decode(ctx: llama_context_p, batch: llama_batch) -> int:
|
def llama_decode(ctx: llama_context_p, batch: llama_batch) -> int:
|
||||||
|
"""Positive return values does not mean a fatal error, but rather a warning.
|
||||||
|
0 - success
|
||||||
|
1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
|
||||||
|
< 0 - error"""
|
||||||
return _lib.llama_decode(ctx, batch)
|
return _lib.llama_decode(ctx, batch)
|
||||||
|
|
||||||
|
|
||||||
|
@ -1206,6 +1288,9 @@ def llama_set_n_threads(
|
||||||
n_threads: Union[c_uint32, int],
|
n_threads: Union[c_uint32, int],
|
||||||
n_threads_batch: Union[c_uint32, int],
|
n_threads_batch: Union[c_uint32, int],
|
||||||
):
|
):
|
||||||
|
"""Set the number of threads used for decoding
|
||||||
|
n_threads is the number of threads used for generation (single token)
|
||||||
|
n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)"""
|
||||||
return _lib.llama_set_n_threads(ctx, n_threads, n_threads_batch)
|
return _lib.llama_set_n_threads(ctx, n_threads, n_threads_batch)
|
||||||
|
|
||||||
|
|
||||||
|
@ -1222,6 +1307,11 @@ _lib.llama_set_n_threads.restype = None
|
||||||
def llama_get_logits(
|
def llama_get_logits(
|
||||||
ctx: llama_context_p,
|
ctx: llama_context_p,
|
||||||
): # type: (...) -> Array[float] # type: ignore
|
): # type: (...) -> Array[float] # type: ignore
|
||||||
|
"""Token logits obtained from the last call to llama_eval()
|
||||||
|
The logits for the last token are stored in the last row
|
||||||
|
Logits for which llama_batch.logits[i] == 0 are undefined
|
||||||
|
Rows: n_tokens provided with llama_batch
|
||||||
|
Cols: n_vocab"""
|
||||||
return _lib.llama_get_logits(ctx)
|
return _lib.llama_get_logits(ctx)
|
||||||
|
|
||||||
|
|
||||||
|
@ -1235,6 +1325,8 @@ _lib.llama_get_logits.restype = c_float_p
|
||||||
def llama_get_logits_ith(
|
def llama_get_logits_ith(
|
||||||
ctx: llama_context_p, i: Union[c_int32, int]
|
ctx: llama_context_p, i: Union[c_int32, int]
|
||||||
): # type: (...) -> Array[float] # type: ignore
|
): # type: (...) -> Array[float] # type: ignore
|
||||||
|
"""Logits for the ith token. Equivalent to:
|
||||||
|
llama_get_logits(ctx) + i*n_vocab"""
|
||||||
return _lib.llama_get_logits_ith(ctx, i)
|
return _lib.llama_get_logits_ith(ctx, i)
|
||||||
|
|
||||||
|
|
||||||
|
@ -1248,6 +1340,8 @@ _lib.llama_get_logits_ith.restype = c_float_p
|
||||||
def llama_get_embeddings(
|
def llama_get_embeddings(
|
||||||
ctx: llama_context_p,
|
ctx: llama_context_p,
|
||||||
): # type: (...) -> Array[float] # type: ignore
|
): # type: (...) -> Array[float] # type: ignore
|
||||||
|
"""Get the embeddings for the input
|
||||||
|
shape: [n_embd] (1-dimensional)"""
|
||||||
return _lib.llama_get_embeddings(ctx)
|
return _lib.llama_get_embeddings(ctx)
|
||||||
|
|
||||||
|
|
||||||
|
@ -1294,6 +1388,7 @@ _lib.llama_token_get_type.restype = ctypes.c_int
|
||||||
|
|
||||||
# LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence
|
# LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence
|
||||||
def llama_token_bos(model: llama_model_p) -> int:
|
def llama_token_bos(model: llama_model_p) -> int:
|
||||||
|
"""beginning-of-sentence"""
|
||||||
return _lib.llama_token_bos(model)
|
return _lib.llama_token_bos(model)
|
||||||
|
|
||||||
|
|
||||||
|
@ -1303,6 +1398,7 @@ _lib.llama_token_bos.restype = llama_token
|
||||||
|
|
||||||
# LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
|
# LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
|
||||||
def llama_token_eos(model: llama_model_p) -> int:
|
def llama_token_eos(model: llama_model_p) -> int:
|
||||||
|
"""end-of-sentence"""
|
||||||
return _lib.llama_token_eos(model)
|
return _lib.llama_token_eos(model)
|
||||||
|
|
||||||
|
|
||||||
|
@ -1312,6 +1408,7 @@ _lib.llama_token_eos.restype = llama_token
|
||||||
|
|
||||||
# LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
|
# LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
|
||||||
def llama_token_nl(model: llama_model_p) -> int:
|
def llama_token_nl(model: llama_model_p) -> int:
|
||||||
|
"""next-line"""
|
||||||
return _lib.llama_token_nl(model)
|
return _lib.llama_token_nl(model)
|
||||||
|
|
||||||
|
|
||||||
|
@ -1322,6 +1419,7 @@ _lib.llama_token_nl.restype = llama_token
|
||||||
# // Returns -1 if unknown, 1 for true or 0 for false.
|
# // Returns -1 if unknown, 1 for true or 0 for false.
|
||||||
# LLAMA_API int llama_add_bos_token(const struct llama_model * model);
|
# LLAMA_API int llama_add_bos_token(const struct llama_model * model);
|
||||||
def llama_add_bos_token(model: llama_model_p) -> int:
|
def llama_add_bos_token(model: llama_model_p) -> int:
|
||||||
|
"""Returns -1 if unknown, 1 for true or 0 for false."""
|
||||||
return _lib.llama_add_bos_token(model)
|
return _lib.llama_add_bos_token(model)
|
||||||
|
|
||||||
|
|
||||||
|
@ -1332,6 +1430,7 @@ _lib.llama_add_bos_token.restype = c_int
|
||||||
# // Returns -1 if unknown, 1 for true or 0 for false.
|
# // Returns -1 if unknown, 1 for true or 0 for false.
|
||||||
# LLAMA_API int llama_add_eos_token(const struct llama_model * model);
|
# LLAMA_API int llama_add_eos_token(const struct llama_model * model);
|
||||||
def llama_add_eos_token(model: llama_model_p) -> int:
|
def llama_add_eos_token(model: llama_model_p) -> int:
|
||||||
|
"""Returns -1 if unknown, 1 for true or 0 for false."""
|
||||||
return _lib.llama_add_eos_token(model)
|
return _lib.llama_add_eos_token(model)
|
||||||
|
|
||||||
|
|
||||||
|
@ -1342,6 +1441,7 @@ _lib.llama_add_eos_token.restype = c_int
|
||||||
# // codellama infill tokens
|
# // codellama infill tokens
|
||||||
# LLAMA_API llama_token llama_token_prefix(const struct llama_model * model); // Beginning of infill prefix
|
# LLAMA_API llama_token llama_token_prefix(const struct llama_model * model); // Beginning of infill prefix
|
||||||
def llama_token_prefix(model: llama_model_p) -> int:
|
def llama_token_prefix(model: llama_model_p) -> int:
|
||||||
|
"""codellama infill tokens"""
|
||||||
return _lib.llama_token_prefix(model)
|
return _lib.llama_token_prefix(model)
|
||||||
|
|
||||||
|
|
||||||
|
@ -1404,6 +1504,7 @@ def llama_tokenize(
|
||||||
add_bos: Union[c_bool, bool],
|
add_bos: Union[c_bool, bool],
|
||||||
special: Union[c_bool, bool],
|
special: Union[c_bool, bool],
|
||||||
) -> int:
|
) -> int:
|
||||||
|
"""Convert the provided text into tokens."""
|
||||||
return _lib.llama_tokenize(
|
return _lib.llama_tokenize(
|
||||||
model, text, text_len, tokens, n_max_tokens, add_bos, special
|
model, text, text_len, tokens, n_max_tokens, add_bos, special
|
||||||
)
|
)
|
||||||
|
@ -1436,6 +1537,10 @@ def llama_token_to_piece(
|
||||||
buf: Union[c_char_p, bytes],
|
buf: Union[c_char_p, bytes],
|
||||||
length: Union[c_int, int],
|
length: Union[c_int, int],
|
||||||
) -> int:
|
) -> int:
|
||||||
|
"""Token Id -> Piece.
|
||||||
|
Uses the vocabulary in the provided context.
|
||||||
|
Does not write null terminator to the buffer.
|
||||||
|
User code is responsible to remove the leading whitespace of the first non-BOS token when decoding multiple tokens."""
|
||||||
return _lib.llama_token_to_piece(model, token, buf, length)
|
return _lib.llama_token_to_piece(model, token, buf, length)
|
||||||
|
|
||||||
|
|
||||||
|
@ -1493,6 +1598,7 @@ _lib.llama_grammar_copy.restype = llama_grammar_p
|
||||||
# // Sets the current rng seed.
|
# // Sets the current rng seed.
|
||||||
# LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed);
|
# LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed);
|
||||||
def llama_set_rng_seed(ctx: llama_context_p, seed: Union[c_uint32, int]):
|
def llama_set_rng_seed(ctx: llama_context_p, seed: Union[c_uint32, int]):
|
||||||
|
"""Sets the current rng seed."""
|
||||||
return _lib.llama_set_rng_seed(ctx, seed)
|
return _lib.llama_set_rng_seed(ctx, seed)
|
||||||
|
|
||||||
|
|
||||||
|
@ -1519,6 +1625,8 @@ def llama_sample_repetition_penalties(
|
||||||
penalty_freq: Union[c_float, float],
|
penalty_freq: Union[c_float, float],
|
||||||
penalty_present: Union[c_float, float],
|
penalty_present: Union[c_float, float],
|
||||||
):
|
):
|
||||||
|
"""Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
|
||||||
|
Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details."""
|
||||||
return _lib.llama_sample_repetition_penalties(
|
return _lib.llama_sample_repetition_penalties(
|
||||||
ctx,
|
ctx,
|
||||||
candidates,
|
candidates,
|
||||||
|
@ -1557,6 +1665,7 @@ def llama_sample_classifier_free_guidance(
|
||||||
guidance_ctx: llama_context_p,
|
guidance_ctx: llama_context_p,
|
||||||
scale: Union[c_float, float],
|
scale: Union[c_float, float],
|
||||||
):
|
):
|
||||||
|
"""Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806"""
|
||||||
return _lib.llama_sample_classifier_free_guidance(
|
return _lib.llama_sample_classifier_free_guidance(
|
||||||
ctx, candidates, guidance_ctx, scale
|
ctx, candidates, guidance_ctx, scale
|
||||||
)
|
)
|
||||||
|
@ -1578,6 +1687,7 @@ _lib.llama_sample_classifier_free_guidance.restype = None
|
||||||
def llama_sample_softmax(
|
def llama_sample_softmax(
|
||||||
ctx: llama_context_p, candidates # type: _Pointer[llama_token_data]
|
ctx: llama_context_p, candidates # type: _Pointer[llama_token_data]
|
||||||
):
|
):
|
||||||
|
"""Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits."""
|
||||||
return _lib.llama_sample_softmax(ctx, candidates)
|
return _lib.llama_sample_softmax(ctx, candidates)
|
||||||
|
|
||||||
|
|
||||||
|
@ -1600,6 +1710,7 @@ def llama_sample_top_k(
|
||||||
k: Union[c_int, int],
|
k: Union[c_int, int],
|
||||||
min_keep: Union[c_size_t, int],
|
min_keep: Union[c_size_t, int],
|
||||||
):
|
):
|
||||||
|
"""Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751"""
|
||||||
return _lib.llama_sample_top_k(ctx, candidates, k, min_keep)
|
return _lib.llama_sample_top_k(ctx, candidates, k, min_keep)
|
||||||
|
|
||||||
|
|
||||||
|
@ -1624,6 +1735,7 @@ def llama_sample_top_p(
|
||||||
p: Union[c_float, float],
|
p: Union[c_float, float],
|
||||||
min_keep: Union[c_size_t, int],
|
min_keep: Union[c_size_t, int],
|
||||||
):
|
):
|
||||||
|
"""Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751"""
|
||||||
return _lib.llama_sample_top_p(ctx, candidates, p, min_keep)
|
return _lib.llama_sample_top_p(ctx, candidates, p, min_keep)
|
||||||
|
|
||||||
|
|
||||||
|
@ -1648,6 +1760,7 @@ def llama_sample_min_p(
|
||||||
p: Union[c_float, float],
|
p: Union[c_float, float],
|
||||||
min_keep: Union[c_size_t, int],
|
min_keep: Union[c_size_t, int],
|
||||||
):
|
):
|
||||||
|
"""Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841"""
|
||||||
return _lib.llama_sample_min_p(ctx, candidates, p, min_keep)
|
return _lib.llama_sample_min_p(ctx, candidates, p, min_keep)
|
||||||
|
|
||||||
|
|
||||||
|
@ -1672,6 +1785,7 @@ def llama_sample_tail_free(
|
||||||
z: Union[c_float, float],
|
z: Union[c_float, float],
|
||||||
min_keep: Union[c_size_t, int],
|
min_keep: Union[c_size_t, int],
|
||||||
):
|
):
|
||||||
|
"""Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/."""
|
||||||
return _lib.llama_sample_tail_free(ctx, candidates, z, min_keep)
|
return _lib.llama_sample_tail_free(ctx, candidates, z, min_keep)
|
||||||
|
|
||||||
|
|
||||||
|
@ -1696,6 +1810,7 @@ def llama_sample_typical(
|
||||||
p: Union[c_float, float],
|
p: Union[c_float, float],
|
||||||
min_keep: Union[c_size_t, int],
|
min_keep: Union[c_size_t, int],
|
||||||
):
|
):
|
||||||
|
"""Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666."""
|
||||||
return _lib.llama_sample_typical(ctx, candidates, p, min_keep)
|
return _lib.llama_sample_typical(ctx, candidates, p, min_keep)
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue