Refactor autotokenizer format to reusable function
This commit is contained in:
parent
b0e597e46e
commit
bbffdaebaa
1 changed files with 22 additions and 20 deletions
|
@ -1,7 +1,9 @@
|
|||
from __future__ import annotations
|
||||
|
||||
import os
|
||||
import dataclasses
|
||||
from typing import Any, Dict, Iterator, List, Optional, Tuple, Union, Protocol
|
||||
|
||||
from . import llama_types
|
||||
from . import llama
|
||||
|
||||
|
@ -327,6 +329,26 @@ def get_chat_format(name: str):
|
|||
)
|
||||
|
||||
|
||||
def hf_autotokenizer_to_chat_formatter(pretrained_model_name_or_path: Union[str, os.PathLike[str]]) -> ChatFormatter:
|
||||
# https://huggingface.co/docs/transformers/main/chat_templating
|
||||
# https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1#instruction-format
|
||||
# https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1/blob/main/tokenizer_config.json
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path)
|
||||
|
||||
def format_autotokenizer(
|
||||
messages: List[llama_types.ChatCompletionRequestMessage],
|
||||
**kwargs: Any,
|
||||
) -> ChatFormatterResponse:
|
||||
tokenizer.use_default_system_prompt = False
|
||||
_prompt = tokenizer.apply_chat_template(messages, tokenize=False)
|
||||
# Return formatted prompt and eos token by default
|
||||
return ChatFormatterResponse(prompt=_prompt, stop=tokenizer.eos_token)
|
||||
|
||||
return format_autotokenizer
|
||||
|
||||
|
||||
# see https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/tokenization_llama.py
|
||||
# system prompt is "embedded" in the first message
|
||||
@register_chat_format("llama-2")
|
||||
|
@ -510,26 +532,6 @@ def format_chatml(
|
|||
_prompt = _format_chatml(system_message, _messages, _sep)
|
||||
return ChatFormatterResponse(prompt=_prompt)
|
||||
|
||||
# eg, export HF_MODEL=mistralai/Mistral-7B-Instruct-v0.1
|
||||
@register_chat_format("autotokenizer")
|
||||
def format_autotokenizer(
|
||||
messages: List[llama_types.ChatCompletionRequestMessage],
|
||||
**kwargs: Any,
|
||||
) -> ChatFormatterResponse:
|
||||
# https://huggingface.co/docs/transformers/main/chat_templating
|
||||
# https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1#instruction-format
|
||||
# https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1/blob/main/tokenizer_config.json
|
||||
import os
|
||||
from transformers import AutoTokenizer
|
||||
huggingFaceModel = os.getenv("HF_MODEL") # eg, mistralai/Mistral-7B-Instruct-v0.1
|
||||
print(huggingFaceModel)
|
||||
if not huggingFaceModel:
|
||||
raise Exception("HF_MODEL needs to be set in env to use chat format 'autotokenizer'")
|
||||
tokenizer = AutoTokenizer.from_pretrained(huggingFaceModel)
|
||||
tokenizer.use_default_system_prompt = False
|
||||
_prompt = tokenizer.apply_chat_template(messages, tokenize=False)
|
||||
# Return formatted prompt and eos token by default
|
||||
return ChatFormatterResponse(prompt=_prompt, stop=tokenizer.eos_token)
|
||||
|
||||
@register_chat_completion_handler("functionary")
|
||||
def functionary_chat_handler(
|
||||
|
|
Loading…
Add table
Reference in a new issue