Update llama.cpp

This commit is contained in:
Andrei Betlen 2023-08-24 00:17:00 -04:00
parent 8fc3fa9f1c
commit bbbf0f4fc4
3 changed files with 415 additions and 335 deletions

View file

@ -371,8 +371,8 @@ class Llama:
sorted=sorted,
)
self._candidates = candidates
self._token_nl = Llama.token_nl()
self._token_eos = Llama.token_eos()
self._token_nl = self.token_nl()
self._token_eos = self.token_eos()
self._candidates_data_id = np.arange(self._n_vocab, dtype=np.intc) # type: ignore
self._candidates_data_p = np.zeros(self._n_vocab, dtype=np.single)
@ -450,10 +450,14 @@ class Llama:
"""
assert self.ctx is not None
output = b""
buffer_size = 32
buffer = (ctypes.c_char * buffer_size)()
for token in tokens:
output += llama_cpp.llama_token_to_str(
self.ctx, llama_cpp.llama_token(token)
n = llama_cpp.llama_token_to_str(
self.ctx, llama_cpp.llama_token(token), buffer, buffer_size
)
assert n <= buffer_size
output += bytes(buffer[:n])
return output
def set_cache(self, cache: Optional[BaseLlamaCache]):
@ -1681,20 +1685,20 @@ class Llama:
assert self.ctx is not None
return LlamaTokenizer(self)
@staticmethod
def token_eos() -> int:
def token_eos(self) -> int:
"""Return the end-of-sequence token."""
return llama_cpp.llama_token_eos()
assert self.ctx is not None
return llama_cpp.llama_token_eos(self.ctx)
@staticmethod
def token_bos() -> int:
def token_bos(self) -> int:
"""Return the beginning-of-sequence token."""
return llama_cpp.llama_token_bos()
assert self.ctx is not None
return llama_cpp.llama_token_bos(self.ctx)
@staticmethod
def token_nl() -> int:
def token_nl(self) -> int:
"""Return the newline token."""
return llama_cpp.llama_token_nl()
assert self.ctx is not None
return llama_cpp.llama_token_nl(self.ctx)
@staticmethod
def logits_to_logprobs(logits: List[float]) -> List[float]:

View file

@ -90,26 +90,17 @@ GGML_USE_CUBLAS = hasattr(_lib, "ggml_init_cublas")
GGML_CUDA_MAX_DEVICES = ctypes.c_int(16)
LLAMA_MAX_DEVICES = GGML_CUDA_MAX_DEVICES if GGML_USE_CUBLAS else ctypes.c_int(1)
# #define LLAMA_FILE_MAGIC_GGJT 0x67676a74u // 'ggjt'
LLAMA_FILE_MAGIC_GGJT = ctypes.c_uint(0x67676A74)
# #define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
LLAMA_FILE_MAGIC_GGLA = ctypes.c_uint(0x67676C61)
# #define LLAMA_FILE_MAGIC_GGMF 0x67676d66u // 'ggmf'
LLAMA_FILE_MAGIC_GGMF = ctypes.c_uint(0x67676D66)
# #define LLAMA_FILE_MAGIC_GGML 0x67676d6cu // 'ggml'
LLAMA_FILE_MAGIC_GGML = ctypes.c_uint(0x67676D6C)
# #define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
# define LLAMA_DEFAULT_SEED 0xFFFFFFFF
LLAMA_DEFAULT_SEED = ctypes.c_int(0xFFFFFFFF)
# define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
LLAMA_FILE_MAGIC_GGSN = ctypes.c_uint(0x6767736E)
# #define LLAMA_FILE_VERSION 3
LLAMA_FILE_VERSION = c_int(3)
LLAMA_FILE_MAGIC = LLAMA_FILE_MAGIC_GGJT
LLAMA_FILE_MAGIC_UNVERSIONED = LLAMA_FILE_MAGIC_GGML
# define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
LLAMA_SESSION_MAGIC = LLAMA_FILE_MAGIC_GGSN
LLAMA_SESSION_VERSION = c_int(1)
# define LLAMA_SESSION_VERSION 1
LLAMA_SESSION_VERSION = ctypes.c_int(1)
# #define LLAMA_DEFAULT_SEED 0xFFFFFFFF
LLAMA_DEFAULT_SEED = c_int(0xFFFFFFFF)
# struct llama_model;
llama_model_p = c_void_p
@ -122,6 +113,82 @@ llama_context_p = c_void_p
llama_token = c_int
llama_token_p = POINTER(llama_token)
# enum llama_log_level {
# LLAMA_LOG_LEVEL_ERROR = 2,
# LLAMA_LOG_LEVEL_WARN = 3,
# LLAMA_LOG_LEVEL_INFO = 4
# };
LLAMA_LOG_LEVEL_ERROR = c_int(2)
LLAMA_LOG_LEVEL_WARN = c_int(3)
LLAMA_LOG_LEVEL_INFO = c_int(4)
# enum llama_vocab_type {
# LLAMA_VOCAB_TYPE_SPM = 0, // SentencePiece
# LLAMA_VOCAB_TYPE_BPE = 1, // Byte Pair Encoding
# };
LLAMA_VOCAB_TYPE_SPM = c_int(0)
LLAMA_VOCAB_TYPE_BPE = c_int(1)
# enum llama_token_type {
# LLAMA_TOKEN_TYPE_UNDEFINED = 0,
# LLAMA_TOKEN_TYPE_NORMAL = 1,
# LLAMA_TOKEN_TYPE_UNKNOWN = 2,
# LLAMA_TOKEN_TYPE_CONTROL = 3,
# LLAMA_TOKEN_TYPE_USER_DEFINED = 4,
# LLAMA_TOKEN_TYPE_UNUSED = 5,
# LLAMA_TOKEN_TYPE_BYTE = 6,
# };
LLAMA_TOKEN_TYPE_UNDEFINED = c_int(0)
LLAMA_TOKEN_TYPE_NORMAL = c_int(1)
LLAMA_TOKEN_TYPE_UNKNOWN = c_int(2)
LLAMA_TOKEN_TYPE_CONTROL = c_int(3)
LLAMA_TOKEN_TYPE_USER_DEFINED = c_int(4)
LLAMA_TOKEN_TYPE_UNUSED = c_int(5)
LLAMA_TOKEN_TYPE_BYTE = c_int(6)
# enum llama_ftype {
# LLAMA_FTYPE_ALL_F32 = 0,
# LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
# // LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
# // LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
# LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q2_K = 10,// except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q3_K_S = 11,// except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q3_K_M = 12,// except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q3_K_L = 13,// except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q4_K_S = 14,// except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q4_K_M = 15,// except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q5_K_S = 16,// except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q5_K_M = 17,// except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q6_K = 18,// except 1d tensors
#
# LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
# };
LLAMA_FTYPE_ALL_F32 = c_int(0)
LLAMA_FTYPE_MOSTLY_F16 = c_int(1)
LLAMA_FTYPE_MOSTLY_Q4_0 = c_int(2)
LLAMA_FTYPE_MOSTLY_Q4_1 = c_int(3)
LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = c_int(4)
LLAMA_FTYPE_MOSTLY_Q8_0 = c_int(7)
LLAMA_FTYPE_MOSTLY_Q5_0 = c_int(8)
LLAMA_FTYPE_MOSTLY_Q5_1 = c_int(9)
LLAMA_FTYPE_MOSTLY_Q2_K = c_int(10)
LLAMA_FTYPE_MOSTLY_Q3_K_S = c_int(11)
LLAMA_FTYPE_MOSTLY_Q3_K_M = c_int(12)
LLAMA_FTYPE_MOSTLY_Q3_K_L = c_int(13)
LLAMA_FTYPE_MOSTLY_Q4_K_S = c_int(14)
LLAMA_FTYPE_MOSTLY_Q4_K_M = c_int(15)
LLAMA_FTYPE_MOSTLY_Q5_K_S = c_int(16)
LLAMA_FTYPE_MOSTLY_Q5_K_M = c_int(17)
LLAMA_FTYPE_MOSTLY_Q6_K = c_int(18)
LLAMA_FTYPE_GUESSED = c_int(1024)
# typedef struct llama_token_data {
# llama_token id; // token id
@ -157,35 +224,13 @@ llama_token_data_array_p = POINTER(llama_token_data_array)
# typedef void (*llama_progress_callback)(float progress, void *ctx);
llama_progress_callback = ctypes.CFUNCTYPE(None, c_float, c_void_p)
# enum llama_log_level {
# LLAMA_LOG_LEVEL_ERROR = 2,
# LLAMA_LOG_LEVEL_WARN = 3,
# LLAMA_LOG_LEVEL_INFO = 4
# };
LLAMA_LOG_LEVEL_ERROR = c_int(2)
LLAMA_LOG_LEVEL_WARN = c_int(3)
LLAMA_LOG_LEVEL_INFO = c_int(4)
# // Signature for logging events
# // Note that text includes the new line character at the end for most events.
# // If your logging mechanism cannot handle that, check if the last character is '\n' and strip it
# // if it exists.
# // It might not exist for progress report where '.' is output repeatedly.
# typedef void (*llama_log_callback)(enum llama_log_level level, const char * text, void * user_data);
llama_log_callback = ctypes.CFUNCTYPE(None, c_int, c_char_p, c_void_p)
# struct llama_context_params {
# uint32_t seed; // RNG seed, -1 for random
# int32_t n_ctx; // text context
# int32_t n_batch; // prompt processing batch size
# int32_t n_gqa; // grouped-query attention (TEMP - will be moved to model hparams)
# float rms_norm_eps; // rms norm epsilon (TEMP - will be moved to model hparams)
# int32_t n_gpu_layers; // number of layers to store in VRAM
# int32_t main_gpu; // the GPU that is used for scratch and small tensors
#
# const float * tensor_split; // how to split layers across multiple GPUs (size: LLAMA_MAX_DEVICES)
# // ref: https://github.com/ggerganov/llama.cpp/pull/2054
@ -213,11 +258,9 @@ class llama_context_params(Structure):
("seed", c_uint32),
("n_ctx", c_int32),
("n_batch", c_int32),
("n_gqa", c_int32),
("rms_norm_eps", c_float),
("n_gpu_layers", c_int32),
("main_gpu", c_int32),
("tensor_split", POINTER(c_float)),
("tensor_split", c_float_p),
("rope_freq_base", c_float),
("rope_freq_scale", c_float),
("progress_callback", llama_progress_callback),
@ -235,50 +278,20 @@ class llama_context_params(Structure):
llama_context_params_p = POINTER(llama_context_params)
# enum llama_ftype {
# LLAMA_FTYPE_ALL_F32 = 0,
# LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
# // LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
# // LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
# LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q2_K = 10,// except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q3_K_S = 11,// except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q3_K_M = 12,// except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q3_K_L = 13,// except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q4_K_S = 14,// except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q4_K_M = 15,// except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q5_K_S = 16,// except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q5_K_M = 17,// except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q6_K = 18,// except 1d tensors
# };
LLAMA_FTYPE_ALL_F32 = c_int(0)
LLAMA_FTYPE_MOSTLY_F16 = c_int(1)
LLAMA_FTYPE_MOSTLY_Q4_0 = c_int(2)
LLAMA_FTYPE_MOSTLY_Q4_1 = c_int(3)
LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = c_int(4)
LLAMA_FTYPE_MOSTLY_Q8_0 = c_int(7)
LLAMA_FTYPE_MOSTLY_Q5_0 = c_int(8)
LLAMA_FTYPE_MOSTLY_Q5_1 = c_int(9)
LLAMA_FTYPE_MOSTLY_Q2_K = c_int(10)
LLAMA_FTYPE_MOSTLY_Q3_K_S = c_int(11)
LLAMA_FTYPE_MOSTLY_Q3_K_M = c_int(12)
LLAMA_FTYPE_MOSTLY_Q3_K_L = c_int(13)
LLAMA_FTYPE_MOSTLY_Q4_K_S = c_int(14)
LLAMA_FTYPE_MOSTLY_Q4_K_M = c_int(15)
LLAMA_FTYPE_MOSTLY_Q5_K_S = c_int(16)
LLAMA_FTYPE_MOSTLY_Q5_K_M = c_int(17)
LLAMA_FTYPE_MOSTLY_Q6_K = c_int(18)
# // Signature for logging events
# // Note that text includes the new line character at the end for most events.
# // If your logging mechanism cannot handle that, check if the last character is '\n' and strip it
# // if it exists.
# // It might not exist for progress report where '.' is output repeatedly.
# typedef void (*llama_log_callback)(enum llama_log_level level, const char * text, void * user_data);
llama_log_callback = ctypes.CFUNCTYPE(None, c_int, c_char_p, c_void_p)
# // model quantization parameters
# typedef struct llama_model_quantize_params {
# int nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
# enum llama_ftype ftype; // quantize to this llama_ftype
# enum llama_ftype ftype; // quantize to this llama_ftype
# bool allow_requantize; // allow quantizing non-f32/f16 tensors
# bool quantize_output_tensor; // quantize output.weight
# } llama_model_quantize_params;
@ -370,29 +383,7 @@ class llama_timings(Structure):
]
# // Set callback for all future logging events.
# // If this is not called, or NULL is supplied, everything is output on stderr.
# LLAMA_API void llama_log_set(llama_log_callback log_callback, void * user_data);
def llama_log_set(
log_callback: "ctypes._FuncPointer", user_data: c_void_p # type: ignore
):
return _lib.llama_log_set(log_callback, user_data)
_lib.llama_log_set.argtypes = [llama_log_callback, c_void_p]
_lib.llama_log_set.restype = None
# LLAMA_API int llama_max_devices();
def llama_max_devices() -> int:
return _lib.llama_max_devices()
_lib.llama_max_devices.argtypes = []
_lib.llama_max_devices.restype = c_int
# LLAMA_API struct llama_context_params llama_context_default_params();
# LLAMA_API struct llama_context_params llama_context_default_params(void);
def llama_context_default_params() -> llama_context_params:
return _lib.llama_context_default_params()
@ -401,7 +392,7 @@ _lib.llama_context_default_params.argtypes = []
_lib.llama_context_default_params.restype = llama_context_params
# LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params();
# LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
def llama_model_quantize_default_params() -> llama_model_quantize_params:
return _lib.llama_model_quantize_default_params()
@ -410,25 +401,6 @@ _lib.llama_model_quantize_default_params.argtypes = []
_lib.llama_model_quantize_default_params.restype = llama_model_quantize_params
# LLAMA_API bool llama_mmap_supported();
def llama_mmap_supported() -> bool:
return _lib.llama_mmap_supported()
_lib.llama_mmap_supported.argtypes = []
_lib.llama_mmap_supported.restype = c_bool
# LLAMA_API bool llama_mlock_supported();
def llama_mlock_supported() -> bool:
return _lib.llama_mlock_supported()
_lib.llama_mlock_supported.argtypes = []
_lib.llama_mlock_supported.restype = c_bool
# // TODO: not great API - very likely to change
# // Initialize the llama + ggml backend
# // If numa is true, use NUMA optimizations
# // Call once at the start of the program
@ -442,7 +414,7 @@ _lib.llama_backend_init.restype = None
# // Call once at the end of the program - currently only used for MPI
# LLAMA_API void llama_backend_free();
# LLAMA_API void llama_backend_free(void);
def llama_backend_free():
return _lib.llama_backend_free()
@ -452,7 +424,7 @@ _lib.llama_backend_free.restype = None
# LLAMA_API struct llama_model * llama_load_model_from_file(
# const char * path_model,
# const char * path_model,
# struct llama_context_params params);
def llama_load_model_from_file(
path_model: bytes, params: llama_context_params
@ -474,7 +446,7 @@ _lib.llama_free_model.restype = None
# LLAMA_API struct llama_context * llama_new_context_with_model(
# struct llama_model * model,
# struct llama_model * model,
# struct llama_context_params params);
def llama_new_context_with_model(
model: llama_model_p, params: llama_context_params
@ -486,7 +458,17 @@ _lib.llama_new_context_with_model.argtypes = [llama_model_p, llama_context_param
_lib.llama_new_context_with_model.restype = llama_context_p
# LLAMA_API int64_t llama_time_us();
# // Frees all allocated memory
# LLAMA_API void llama_free(struct llama_context * ctx);
def llama_free(ctx: llama_context_p):
return _lib.llama_free(ctx)
_lib.llama_free.argtypes = [llama_context_p]
_lib.llama_free.restype = None
# LLAMA_API int64_t llama_time_us(void);
def llama_time_us() -> int:
return _lib.llama_time_us()
@ -495,30 +477,95 @@ _lib.llama_time_us.argtypes = []
_lib.llama_time_us.restype = ctypes.c_int64
# // Various functions for loading a ggml llama model.
# // Allocate (almost) all memory needed for the model.
# // Return NULL on failure
# LLAMA_API struct llama_context * llama_init_from_file(
# const char * path_model,
# struct llama_context_params params);
def llama_init_from_file(
path_model: bytes, params: llama_context_params
) -> llama_context_p:
return _lib.llama_init_from_file(path_model, params)
# LLAMA_API int llama_max_devices (void);
def llama_max_devices() -> int:
return _lib.llama_max_devices()
_lib.llama_init_from_file.argtypes = [c_char_p, llama_context_params]
_lib.llama_init_from_file.restype = llama_context_p
_lib.llama_max_devices.argtypes = []
_lib.llama_max_devices.restype = c_int
# Frees all allocated memory
# LLAMA_API void llama_free(struct llama_context * ctx);
def llama_free(ctx: llama_context_p):
return _lib.llama_free(ctx)
# LLAMA_API bool llama_mmap_supported (void);
def llama_mmap_supported() -> bool:
return _lib.llama_mmap_supported()
_lib.llama_free.argtypes = [llama_context_p]
_lib.llama_free.restype = None
_lib.llama_mmap_supported.argtypes = []
_lib.llama_mmap_supported.restype = c_bool
# LLAMA_API bool llama_mlock_supported(void);
def llama_mlock_supported() -> bool:
return _lib.llama_mlock_supported()
_lib.llama_mlock_supported.argtypes = []
_lib.llama_mlock_supported.restype = c_bool
# LLAMA_API int llama_n_vocab(const struct llama_context * ctx);
def llama_n_vocab(ctx: llama_context_p) -> int:
return _lib.llama_n_vocab(ctx)
_lib.llama_n_vocab.argtypes = [llama_context_p]
_lib.llama_n_vocab.restype = c_int
# LLAMA_API int llama_n_ctx (const struct llama_context * ctx);
def llama_n_ctx(ctx: llama_context_p) -> int:
return _lib.llama_n_ctx(ctx)
_lib.llama_n_ctx.argtypes = [llama_context_p]
_lib.llama_n_ctx.restype = c_int
# LLAMA_API int llama_n_embd (const struct llama_context * ctx);
def llama_n_embd(ctx: llama_context_p) -> int:
return _lib.llama_n_embd(ctx)
_lib.llama_n_embd.argtypes = [llama_context_p]
_lib.llama_n_embd.restype = c_int
# LLAMA_API int llama_model_n_vocab(const struct llama_model * model);
def llama_model_n_vocab(model: llama_model_p) -> int:
return _lib.llama_model_n_vocab(model)
_lib.llama_model_n_vocab.argtypes = [llama_model_p]
_lib.llama_model_n_vocab.restype = c_int
# LLAMA_API int llama_model_n_ctx (const struct llama_model * model);
def llama_model_n_ctx(model: llama_model_p) -> int:
return _lib.llama_model_n_ctx(model)
_lib.llama_model_n_ctx.argtypes = [llama_model_p]
_lib.llama_model_n_ctx.restype = c_int
# LLAMA_API int llama_model_n_embd (const struct llama_model * model);
def llama_model_n_embd(model: llama_model_p) -> int:
return _lib.llama_model_n_embd(model)
_lib.llama_model_n_embd.argtypes = [llama_model_p]
_lib.llama_model_n_embd.restype = c_int
# // Get a string describing the model type
# LLAMA_API int llama_model_type(const struct llama_model * model, char * buf, size_t buf_size);
def llama_model_type(model: llama_model_p, buf: bytes, buf_size: c_size_t) -> int:
return _lib.llama_model_type(model, buf, buf_size)
_lib.llama_model_type.argtypes = [llama_model_p, c_char_p, c_size_t]
_lib.llama_model_type.restype = c_int
# // Returns 0 on success
@ -737,147 +784,17 @@ _lib.llama_eval_embd.argtypes = [llama_context_p, c_float_p, c_int, c_int, c_int
_lib.llama_eval_embd.restype = c_int
# Convert the provided text into tokens.
# The tokens pointer must be large enough to hold the resulting tokens.
# Returns the number of tokens on success, no more than n_max_tokens
# Returns a negative number on failure - the number of tokens that would have been returned
# TODO: not sure if correct
# LLAMA_API int llama_tokenize(
# struct llama_context * ctx,
# const char * text,
# llama_token * tokens,
# int n_max_tokens,
# bool add_bos);
def llama_tokenize(
ctx: llama_context_p,
text: bytes,
tokens, # type: Array[llama_token]
n_max_tokens: c_int,
add_bos: c_bool,
) -> int:
return _lib.llama_tokenize(ctx, text, tokens, n_max_tokens, add_bos)
# // Export a static computation graph for context of 511 and batch size of 1
# // NOTE: since this functionality is mostly for debugging and demonstration purposes, we hardcode these
# // parameters here to keep things simple
# // IMPORTANT: do not use for anything else other than debugging and testing!
# LLAMA_API int llama_eval_export(struct llama_context * ctx, const char * fname);
def llama_eval_export(ctx: llama_context_p, fname: bytes) -> int:
return _lib.llama_eval_export(ctx, fname)
_lib.llama_tokenize.argtypes = [llama_context_p, c_char_p, llama_token_p, c_int, c_bool]
_lib.llama_tokenize.restype = c_int
# LLAMA_API int llama_tokenize_with_model(
# const struct llama_model * model,
# const char * text,
# llama_token * tokens,
# int n_max_tokens,
# bool add_bos);
def llama_tokenize_with_model(
model: llama_model_p,
text: bytes,
tokens, # type: Array[llama_token]
n_max_tokens: c_int,
add_bos: c_bool,
) -> int:
return _lib.llama_tokenize_with_model(model, text, tokens, n_max_tokens, add_bos)
# LLAMA_API int llama_n_vocab(const struct llama_context * ctx);
def llama_n_vocab(ctx: llama_context_p) -> int:
return _lib.llama_n_vocab(ctx)
_lib.llama_n_vocab.argtypes = [llama_context_p]
_lib.llama_n_vocab.restype = c_int
# LLAMA_API int llama_n_ctx (const struct llama_context * ctx);
def llama_n_ctx(ctx: llama_context_p) -> int:
return _lib.llama_n_ctx(ctx)
_lib.llama_n_ctx.argtypes = [llama_context_p]
_lib.llama_n_ctx.restype = c_int
# LLAMA_API int llama_n_embd (const struct llama_context * ctx);
def llama_n_embd(ctx: llama_context_p) -> int:
return _lib.llama_n_embd(ctx)
_lib.llama_n_embd.argtypes = [llama_context_p]
_lib.llama_n_embd.restype = c_int
# LLAMA_API int llama_n_vocab_from_model(const struct llama_model * model);
def llama_n_vocab_from_model(model: llama_model_p) -> int:
return _lib.llama_n_vocab_from_model(model)
_lib.llama_n_vocab_from_model.argtypes = [llama_model_p]
_lib.llama_n_vocab_from_model.restype = c_int
# LLAMA_API int llama_n_ctx_from_model (const struct llama_model * model);
def llama_n_ctx_from_model(model: llama_model_p) -> int:
return _lib.llama_n_ctx_from_model(model)
_lib.llama_n_ctx_from_model.argtypes = [llama_model_p]
_lib.llama_n_ctx_from_model.restype = c_int
# LLAMA_API int llama_n_embd_from_model (const struct llama_model * model);
def llama_n_embd_from_model(model: llama_model_p) -> int:
return _lib.llama_n_embd_from_model(model)
_lib.llama_n_embd_from_model.argtypes = [llama_model_p]
_lib.llama_n_embd_from_model.restype = c_int
# // Get the vocabulary as output parameters.
# // Returns number of results.
# LLAMA_API int llama_get_vocab(
# const struct llama_context * ctx,
# const char * * strings,
# float * scores,
# int capacity);
def llama_get_vocab(
ctx: llama_context_p,
strings, # type: Array[c_char_p] # type: ignore
scores, # type: Array[c_float] # type: ignore
capacity: c_int,
) -> int:
return _lib.llama_get_vocab(ctx, strings, scores, capacity)
_lib.llama_get_vocab.argtypes = [
llama_context_p,
POINTER(c_char_p),
POINTER(c_float),
c_int,
]
_lib.llama_get_vocab.restype = c_int
# LLAMA_API int llama_get_vocab_from_model(
# const struct llama_model * model,
# const char * * strings,
# float * scores,
# int capacity);
def llama_get_vocab_from_model(
model: llama_model_p,
strings, # type: Array[c_char_p] # type: ignore
scores, # type: Array[c_float] # type: ignore
capacity: c_int,
) -> int:
return _lib.llama_get_vocab_from_model(model, strings, scores, capacity)
_lib.llama_get_vocab_from_model.argtypes = [
llama_model_p,
POINTER(c_char_p),
POINTER(c_float),
c_int,
]
_lib.llama_get_vocab_from_model.restype = c_int
_lib.llama_eval_export.argtypes = [llama_context_p, c_char_p]
_lib.llama_eval_export.restype = c_int
# Token logits obtained from the last call to llama_eval()
@ -909,16 +826,186 @@ _lib.llama_get_embeddings.argtypes = [llama_context_p]
_lib.llama_get_embeddings.restype = c_float_p
# //
# // Vocab
# //
# LLAMA_API const char * llama_token_get_text(const struct llama_context * ctx, llama_token token);
def llama_token_get_text(ctx: llama_context_p, token: llama_token) -> bytes:
return _lib.llama_token_get_text(ctx, token)
_lib.llama_token_get_text.argtypes = [llama_context_p, llama_token]
_lib.llama_token_get_text.restype = c_char_p
# LLAMA_API float llama_token_get_score(const struct llama_context * ctx, llama_token token);
def llama_token_get_score(ctx: llama_context_p, token: llama_token) -> float:
return _lib.llama_token_get_score(ctx, token)
_lib.llama_token_get_score.argtypes = [llama_context_p, llama_token]
_lib.llama_token_get_score.restype = c_float
# LLAMA_API llama_token_type llama_token_get_type(const struct llama_context * ctx, llama_token token);
def llama_token_get_type(ctx: llama_context_p, token: llama_token) -> int:
return _lib.llama_token_get_type(ctx, token)
_lib.llama_token_get_type.argtypes = [llama_context_p, llama_token]
_lib.llama_token_get_type.restype = ctypes.c_int
# // Special tokens
# LLAMA_API llama_token llama_token_bos(const struct llama_context * ctx); // beginning-of-sentence
def llama_token_bos(ctx: llama_context_p) -> llama_token:
return _lib.llama_token_bos(ctx)
_lib.llama_token_bos.argtypes = [llama_context_p]
_lib.llama_token_bos.restype = llama_token
# LLAMA_API llama_token llama_token_eos(const struct llama_context * ctx); // end-of-sentence
def llama_token_eos(ctx: llama_context_p) -> llama_token:
return _lib.llama_token_eos(ctx)
_lib.llama_token_eos.argtypes = [llama_context_p]
_lib.llama_token_eos.restype = llama_token
# LLAMA_API llama_token llama_token_nl (const struct llama_context * ctx); // next-line
def llama_token_nl(ctx: llama_context_p) -> llama_token:
return _lib.llama_token_nl(ctx)
_lib.llama_token_nl.argtypes = [llama_context_p]
_lib.llama_token_nl.restype = llama_token
# //
# // Tokenization
# //
# Convert the provided text into tokens.
# The tokens pointer must be large enough to hold the resulting tokens.
# Returns the number of tokens on success, no more than n_max_tokens
# Returns a negative number on failure - the number of tokens that would have been returned
# TODO: not sure if correct
# LLAMA_API int llama_tokenize(
# struct llama_context * ctx,
# const char * text,
# llama_token * tokens,
# int n_max_tokens,
# bool add_bos);
def llama_tokenize(
ctx: llama_context_p,
text: bytes,
tokens, # type: Array[llama_token]
n_max_tokens: c_int,
add_bos: c_bool,
) -> int:
return _lib.llama_tokenize(ctx, text, tokens, n_max_tokens, add_bos)
_lib.llama_tokenize.argtypes = [llama_context_p, c_char_p, llama_token_p, c_int, c_bool]
_lib.llama_tokenize.restype = c_int
# LLAMA_API int llama_tokenize_bpe(
# struct llama_context * ctx,
# const char * text,
# llama_token * tokens,
# int n_max_tokens,
# bool add_bos);
def llama_tokenize_bpe(
ctx: llama_context_p,
text: bytes,
tokens, # type: Array[llama_token]
n_max_tokens: c_int,
add_bos: c_bool,
) -> int:
return _lib.llama_tokenize_bpe(ctx, text, tokens, n_max_tokens, add_bos)
_lib.llama_tokenize_bpe.argtypes = [
llama_context_p,
c_char_p,
llama_token_p,
c_int,
c_bool,
]
_lib.llama_tokenize_bpe.restype = c_int
# LLAMA_API int llama_tokenize_with_model(
# const struct llama_model * model,
# const char * text,
# llama_token * tokens,
# int n_max_tokens,
# bool add_bos);
def llama_tokenize_with_model(
model: llama_model_p,
text: bytes,
tokens, # type: Array[llama_token]
n_max_tokens: c_int,
add_bos: c_bool,
) -> int:
return _lib.llama_tokenize_with_model(model, text, tokens, n_max_tokens, add_bos)
_lib.llama_tokenize_with_model.argtypes = [
llama_model_p,
c_char_p,
llama_token_p,
c_int,
c_bool,
]
_lib.llama_tokenize_with_model.restype = c_int
# // Token Id -> String. Uses the vocabulary in the provided context
# LLAMA_API const char * llama_token_to_str(
# // Does not write null terminator to the buffer
# LLAMA_API int llama_token_to_str(
# const struct llama_context * ctx,
# llama_token token);
def llama_token_to_str(ctx: llama_context_p, token: llama_token) -> bytes:
return _lib.llama_token_to_str(ctx, token)
# llama_token token,
# char * buf,
# int length);
def llama_token_to_str(
ctx: llama_context_p, token: llama_token, buf: bytes, length: c_int
) -> int:
return _lib.llama_token_to_str(ctx, token, buf, length)
_lib.llama_token_to_str.argtypes = [llama_context_p, llama_token]
_lib.llama_token_to_str.restype = c_char_p
_lib.llama_tokenize_with_model.argtypes = [
llama_model_p,
c_char_p,
llama_token_p,
c_int,
c_bool,
]
_lib.llama_tokenize_with_model.restype = c_int
# LLAMA_API int llama_token_to_str_bpe(
# const struct llama_context * ctx,
# llama_token token,
# char * buf,
# int length);
def llama_token_to_str_bpe(
ctx: llama_context_p, token: llama_token, buf: bytes, length: c_int
) -> int:
return _lib.llama_token_to_str_bpe(ctx, token, buf, length)
_lib.llama_token_to_str_bpe.argtypes = [llama_context_p, llama_token, c_char_p, c_int]
_lib.llama_token_to_str_bpe.restype = c_int
# LLAMA_API const char * llama_token_to_str_with_model(
@ -931,38 +1018,12 @@ def llama_token_to_str_with_model(model: llama_model_p, token: llama_token) -> b
_lib.llama_token_to_str_with_model.argtypes = [llama_model_p, llama_token]
_lib.llama_token_to_str_with_model.restype = c_char_p
# Special tokens
# LLAMA_API llama_token llama_token_bos(); // beginning-of-sentence
def llama_token_bos() -> int:
return _lib.llama_token_bos()
_lib.llama_token_bos.argtypes = []
_lib.llama_token_bos.restype = llama_token
# LLAMA_API llama_token llama_token_eos(); // end-of-sentence
def llama_token_eos() -> int:
return _lib.llama_token_eos()
_lib.llama_token_eos.argtypes = []
_lib.llama_token_eos.restype = llama_token
# LLAMA_API llama_token llama_token_nl(); // next-line
def llama_token_nl() -> int:
return _lib.llama_token_nl()
_lib.llama_token_nl.argtypes = []
_lib.llama_token_nl.restype = llama_token
# //
# // Grammar
# //
# LLAMA_API struct llama_grammar * llama_grammar_init(
# const llama_grammar_element ** rules,
# size_t n_rules,
@ -992,7 +1053,9 @@ _lib.llama_grammar_free.argtypes = [llama_grammar_p]
_lib.llama_grammar_free.restype = None
# Sampling functions
# //
# // Sampling functions
# //
# @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
@ -1351,6 +1414,19 @@ def llama_print_system_info() -> bytes:
_lib.llama_print_system_info.argtypes = []
_lib.llama_print_system_info.restype = c_char_p
# // Set callback for all future logging events.
# // If this is not called, or NULL is supplied, everything is output on stderr.
# LLAMA_API void llama_log_set(llama_log_callback log_callback, void * user_data);
def llama_log_set(
log_callback: "ctypes._FuncPointer", user_data: c_void_p # type: ignore
):
return _lib.llama_log_set(log_callback, user_data)
_lib.llama_log_set.argtypes = [llama_log_callback, c_void_p]
_lib.llama_log_set.restype = None
###################################################################################################

2
vendor/llama.cpp vendored

@ -1 +1 @@
Subproject commit 604b8bdfa6320bbcb018eebcc1252dfede603c6b
Subproject commit f5fe98d11bdf9e7797bcfb05c0c3601ffc4b9d26