feat: Add ability to load chat format from huggingface autotokenizer or tokenizer_config.json files.

This commit is contained in:
Andrei Betlen 2024-01-18 21:21:37 -05:00
parent 48c3b77e6f
commit b8fc1c7d83
6 changed files with 357 additions and 318 deletions

View file

@ -1,7 +1,8 @@
import os
import sys
import sys, traceback
import sys
from typing import Any, Dict
# Avoid "LookupError: unknown encoding: ascii" when open() called in a destructor
outnull_file = open(os.devnull, "w")
@ -55,3 +56,25 @@ class suppress_stdout_stderr(object):
self.os.close(self.old_stdout_fileno)
self.os.close(self.old_stderr_fileno)
class MetaSingleton(type):
"""
Metaclass for implementing the Singleton pattern.
"""
_instances: Dict[type, Any] = {}
def __call__(cls, *args: Any, **kwargs: Any) -> Any:
if cls not in cls._instances:
cls._instances[cls] = super(MetaSingleton, cls).__call__(*args, **kwargs)
return cls._instances[cls]
class Singleton(object, metaclass=MetaSingleton):
"""
Base class for implementing the Singleton pattern.
"""
def __init__(self):
super(Singleton, self).__init__()

View file

@ -6,18 +6,28 @@ import ctypes
import dataclasses
from typing import Any, Dict, Iterator, List, Optional, Tuple, Union, Protocol
import jinja2
import llama_cpp.llama as llama
import llama_cpp.llama_types as llama_types
import llama_cpp.llama_grammar as llama_grammar
from ._utils import suppress_stdout_stderr
from ._utils import suppress_stdout_stderr, Singleton
class LlamaChatCompletionHandler(Protocol):
"""Base Protocol for a llama chat completion handler.
Very generic protocol that can be used to implement any chat format.
The only hard requirement is that it must return a ChatCompletion when
stream=False and an iterator of ChatCompletionChunks when stream=True."""
def __call__(
self,
*,
# llama.cpp instance
llama: llama.Llama,
# openai api parameters
messages: List[llama_types.ChatCompletionRequestMessage],
functions: Optional[List[llama_types.ChatCompletionFunction]] = None,
function_call: Optional[llama_types.ChatCompletionRequestFunctionCall] = None,
@ -26,8 +36,6 @@ class LlamaChatCompletionHandler(Protocol):
temperature: float = 0.2,
top_p: float = 0.95,
top_k: int = 40,
min_p: float = 0.05,
typical_p: float = 1.0,
stream: bool = False,
stop: Optional[Union[str, List[str]]] = [],
seed: Optional[int] = None,
@ -38,14 +46,17 @@ class LlamaChatCompletionHandler(Protocol):
presence_penalty: float = 0.0,
frequency_penalty: float = 0.0,
repeat_penalty: float = 1.1,
model: Optional[str] = None,
logit_bias: Optional[Dict[str, float]] = None,
# llama.cpp parameters
min_p: float = 0.05,
typical_p: float = 1.0,
tfs_z: float = 1.0,
mirostat_mode: int = 0,
mirostat_tau: float = 5.0,
mirostat_eta: float = 0.1,
model: Optional[str] = None,
logits_processor: Optional[llama.LogitsProcessorList] = None,
grammar: Optional[llama.LlamaGrammar] = None,
logit_bias: Optional[Dict[str, float]] = None,
**kwargs, # type: ignore
) -> Union[
llama_types.CreateChatCompletionResponse,
@ -54,21 +65,83 @@ class LlamaChatCompletionHandler(Protocol):
...
CHAT_HANDLERS: Dict[str, LlamaChatCompletionHandler] = {}
class LlamaChatCompletionHandlerNotFoundException(Exception):
pass
class LlamaChatCompletionHandlerRegistry(Singleton):
_chat_handlers: Dict[str, LlamaChatCompletionHandler] = {}
def register_chat_completion_handler(
self,
name: str,
chat_handler: LlamaChatCompletionHandler,
overwrite: bool = False,
):
if not overwrite and name in self._chat_handlers:
raise ValueError(
f"Formatter with name '{name}' is already registered. Use `overwrite=True` to overwrite it."
)
self._chat_handlers[name] = chat_handler
def unregister_chat_handler(self, name: str):
if name in self._chat_handlers:
del self._chat_handlers[name]
else:
raise ValueError(f"No formatter registered under the name '{name}'.")
def get_chat_completion_handler_by_name(
self, name: str
) -> LlamaChatCompletionHandler:
try:
chat_handler = self._chat_handlers[name]
return chat_handler
except KeyError:
raise LlamaChatCompletionHandlerNotFoundException(
f"Invalid chat handler: {name} (valid formats: {list(self._chat_handlers.keys())})"
)
def get_chat_completion_handler(name: str) -> LlamaChatCompletionHandler:
return CHAT_HANDLERS[name]
return LlamaChatCompletionHandlerRegistry().get_chat_completion_handler_by_name(
name
)
def register_chat_completion_handler(name: str):
def decorator(f: LlamaChatCompletionHandler):
CHAT_HANDLERS[name] = f
LlamaChatCompletionHandlerRegistry().register_chat_completion_handler(name, f)
return f
return decorator
### Chat Formatter ###
@dataclasses.dataclass
class ChatFormatterResponse:
prompt: str
stop: Optional[Union[str, List[str]]] = None
class ChatFormatter(Protocol):
"""Base Protocol for a chat formatter. A chat formatter is a function that
takes a list of messages and returns a formatted prompt. It can also return
a stop token or list of stop tokens to use for the completion."""
def __call__(
self,
*,
messages: List[llama_types.ChatCompletionRequestMessage],
**kwargs: Any,
) -> ChatFormatterResponse:
...
### Utility functions for formatting chat prompts ###
def _get_system_message(
messages: List[llama_types.ChatCompletionRequestMessage],
) -> str:
@ -80,14 +153,18 @@ def _get_system_message(
def _map_roles(
messages: List[llama_types.ChatCompletionRequestMessage], role_map: Dict[str, str]
messages: List[llama_types.ChatCompletionRequestMessage],
role_map: Dict[str, str],
) -> List[Tuple[str, Optional[str]]]:
"""Map the message roles."""
output: List[Tuple[str, Optional[str]]] = []
for message in messages:
role = message["role"]
if role in role_map:
output.append((role_map[role], message["content"]))
content: str | None = (
message["content"] if isinstance(message["content"], str) else None
)
output.append((role_map[role], content))
return output
@ -99,7 +176,8 @@ def _format_llama2(
ret = system_message + sep
for i, (role, message) in enumerate(messages):
if system_message and i == 0:
ret += message + seps[i % 2]
m = message or ""
ret += m + seps[i % 2]
elif message:
ret += role + message + " " + seps[i % 2]
else:
@ -172,6 +250,7 @@ def _format_chatml(
ret += role + "\n"
return ret
def _format_chatglm3(
system_message: str, messages: List[Tuple[str, Optional[str]]], sep: str
) -> str:
@ -187,30 +266,10 @@ def _format_chatglm3(
return ret
@dataclasses.dataclass
class ChatFormatterResponse:
prompt: str
stop: Optional[Union[str, List[str]]] = None
class ChatFormatter(Protocol):
def __call__(
self,
*,
messages: List[llama_types.ChatCompletionRequestMessage],
**kwargs: Any,
) -> ChatFormatterResponse:
...
class BasicChatHandler:
def __init__(self, chat_format: str):
self.chat_format = chat_format
def _convert_text_completion_to_chat(
completion: llama_types.Completion,
) -> llama_types.ChatCompletion:
assert "usage" in completion
return {
"id": "chat" + completion["id"],
"object": "chat.completion",
@ -286,103 +345,95 @@ def _convert_completion_to_chat(
return _convert_text_completion_to_chat(completion)
_CHAT_FORMATS: Dict[str, ChatFormatter] = {}
def chat_formatter_to_chat_completion_handler(
chat_formatter: ChatFormatter,
) -> LlamaChatCompletionHandler:
def chat_completion_handler(
*,
llama: llama.Llama,
messages: List[llama_types.ChatCompletionRequestMessage],
functions: Optional[List[llama_types.ChatCompletionFunction]] = None,
function_call: Optional[llama_types.ChatCompletionRequestFunctionCall] = None,
tools: Optional[List[llama_types.ChatCompletionTool]] = None,
tool_choice: Optional[llama_types.ChatCompletionToolChoiceOption] = None,
temperature: float = 0.2,
top_p: float = 0.95,
top_k: int = 40,
min_p: float = 0.05,
typical_p: float = 1.0,
stream: bool = False,
stop: Optional[Union[str, List[str]]] = [],
seed: Optional[int] = None,
response_format: Optional[
llama_types.ChatCompletionRequestResponseFormat
] = None,
max_tokens: Optional[int] = None,
presence_penalty: float = 0.0,
frequency_penalty: float = 0.0,
repeat_penalty: float = 1.1,
tfs_z: float = 1.0,
mirostat_mode: int = 0,
mirostat_tau: float = 5.0,
mirostat_eta: float = 0.1,
model: Optional[str] = None,
logits_processor: Optional[llama.LogitsProcessorList] = None,
grammar: Optional[llama.LlamaGrammar] = None,
logit_bias: Optional[Dict[str, float]] = None,
**kwargs, # type: ignore
) -> Union[
llama_types.CreateChatCompletionResponse,
Iterator[llama_types.CreateChatCompletionStreamResponse],
]:
result = chat_formatter(
messages=messages,
functions=functions,
function_call=function_call,
)
prompt = result.prompt
if result.stop is not None:
stop = [] if stop is None else [stop] if isinstance(stop, str) else stop
rstop = result.stop if isinstance(result.stop, list) else [result.stop]
stop = stop + rstop
if response_format is not None and response_format["type"] == "json_object":
grammar = llama_grammar.LlamaGrammar.from_string(llama_grammar.JSON_GBNF)
completion_or_chunks = llama.create_completion(
prompt=prompt,
temperature=temperature,
top_p=top_p,
top_k=top_k,
min_p=min_p,
typical_p=typical_p,
stream=stream,
stop=stop,
seed=seed,
max_tokens=max_tokens,
presence_penalty=presence_penalty,
frequency_penalty=frequency_penalty,
repeat_penalty=repeat_penalty,
tfs_z=tfs_z,
mirostat_mode=mirostat_mode,
mirostat_tau=mirostat_tau,
mirostat_eta=mirostat_eta,
model=model,
logits_processor=logits_processor,
grammar=grammar,
logit_bias=logit_bias,
)
return _convert_completion_to_chat(completion_or_chunks, stream=stream)
return chat_completion_handler
def register_chat_format(name: str):
def decorator(f: ChatFormatter):
def basic_create_chat_completion(
*,
llama: llama.Llama,
messages: List[llama_types.ChatCompletionRequestMessage],
functions: Optional[List[llama_types.ChatCompletionFunction]] = None,
function_call: Optional[
llama_types.ChatCompletionRequestFunctionCall
] = None,
tools: Optional[List[llama_types.ChatCompletionTool]] = None,
tool_choice: Optional[llama_types.ChatCompletionToolChoiceOption] = None,
temperature: float = 0.2,
top_p: float = 0.95,
top_k: int = 40,
min_p: float = 0.05,
typical_p: float = 1.0,
stream: bool = False,
stop: Optional[Union[str, List[str]]] = [],
seed: Optional[int] = None,
response_format: Optional[
llama_types.ChatCompletionRequestResponseFormat
] = None,
max_tokens: Optional[int] = None,
presence_penalty: float = 0.0,
frequency_penalty: float = 0.0,
repeat_penalty: float = 1.1,
tfs_z: float = 1.0,
mirostat_mode: int = 0,
mirostat_tau: float = 5.0,
mirostat_eta: float = 0.1,
model: Optional[str] = None,
logits_processor: Optional[llama.LogitsProcessorList] = None,
grammar: Optional[llama.LlamaGrammar] = None,
logit_bias: Optional[Dict[str, float]] = None,
**kwargs, # type: ignore
) -> Union[
llama_types.CreateChatCompletionResponse,
Iterator[llama_types.CreateChatCompletionStreamResponse],
]:
result = f(
messages=messages,
functions=functions,
function_call=function_call,
)
prompt = result.prompt
if result.stop is not None:
stop = [] if stop is None else [stop] if isinstance(stop, str) else stop
rstop = result.stop if isinstance(result.stop, list) else [result.stop]
stop = stop + rstop
if response_format is not None and response_format["type"] == "json_object":
grammar = llama_grammar.LlamaGrammar.from_string(
llama_grammar.JSON_GBNF
)
completion_or_chunks = llama.create_completion(
prompt=prompt,
temperature=temperature,
top_p=top_p,
top_k=top_k,
min_p=min_p,
typical_p=typical_p,
stream=stream,
stop=stop,
seed=seed,
max_tokens=max_tokens,
presence_penalty=presence_penalty,
frequency_penalty=frequency_penalty,
repeat_penalty=repeat_penalty,
tfs_z=tfs_z,
mirostat_mode=mirostat_mode,
mirostat_tau=mirostat_tau,
mirostat_eta=mirostat_eta,
model=model,
logits_processor=logits_processor,
grammar=grammar,
logit_bias=logit_bias,
)
return _convert_completion_to_chat(completion_or_chunks, stream=stream)
register_chat_completion_handler(name)(basic_create_chat_completion)
return f
return decorator
def get_chat_format(name: str):
try:
return _CHAT_FORMATS[name]
except KeyError:
raise ValueError(
f"Invalid chat format: {name} (valid formats: {list(_CHAT_FORMATS.keys())})"
chat_completion_handler = chat_formatter_to_chat_completion_handler(f)
LlamaChatCompletionHandlerRegistry().register_chat_completion_handler(
name, chat_completion_handler
)
return f
return decorator
def hf_autotokenizer_to_chat_formatter(
@ -391,22 +442,78 @@ def hf_autotokenizer_to_chat_formatter(
# https://huggingface.co/docs/transformers/main/chat_templating
# https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1#instruction-format
# https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1/blob/main/tokenizer_config.json
from transformers import AutoTokenizer
from transformers import AutoTokenizer # type: ignore
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path)
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path) # type: ignore
def format_autotokenizer(
messages: List[llama_types.ChatCompletionRequestMessage],
**kwargs: Any,
) -> ChatFormatterResponse:
tokenizer.use_default_system_prompt = False
_prompt = tokenizer.apply_chat_template(messages, tokenize=False)
tokenizer.use_default_system_prompt = False # type: ignore
prompt: str = tokenizer.apply_chat_template(messages, tokenize=False) # type: ignore
assert isinstance(prompt, str)
# Return formatted prompt and eos token by default
return ChatFormatterResponse(prompt=_prompt, stop=tokenizer.eos_token)
return ChatFormatterResponse(prompt=prompt, stop=tokenizer.eos_token)
return format_autotokenizer
def hf_autotokenizer_to_chat_completion_handler(
pretrained_model_name_or_path: Union[str, os.PathLike[str]]
) -> LlamaChatCompletionHandler:
chat_formatter = hf_autotokenizer_to_chat_formatter(pretrained_model_name_or_path)
return chat_formatter_to_chat_completion_handler(chat_formatter)
def hf_tokenizer_config_to_chat_formatter(tokenizer_config: Dict[str, Any]) -> ChatFormatter:
assert isinstance(tokenizer_config, dict)
assert "chat_template" in tokenizer_config
assert isinstance(tokenizer_config["chat_template"], str)
chat_template = tokenizer_config["chat_template"]
assert "bos_token" in tokenizer_config
assert isinstance(tokenizer_config["bos_token"], str)
bos_token = tokenizer_config["bos_token"]
assert "eos_token" in tokenizer_config
assert isinstance(tokenizer_config["eos_token"], str)
eos_token = tokenizer_config["eos_token"]
env = jinja2.Environment(
loader=jinja2.BaseLoader(),
trim_blocks=True,
lstrip_blocks=True,
).from_string(chat_template)
def format_autotokenizer(
messages: List[llama_types.ChatCompletionRequestMessage],
**kwargs: Any,
) -> ChatFormatterResponse:
# TODO: veryify this is correct
# Add a blank assistant message to the end of the messages to prompt the model to generate a response
prompt = env.render(
messages=[
*messages,
llama_types.ChatCompletionRequestAssistantMessage(
role="assistant", content=""
),
],
bos_token=bos_token,
eos_token=eos_token,
)
return ChatFormatterResponse(prompt=prompt, stop=eos_token)
return format_autotokenizer
def hf_tokenizer_config_to_chat_completion_handler(
tokenizer_config: Dict[str, Any],
) -> LlamaChatCompletionHandler:
chat_formatter = hf_tokenizer_config_to_chat_formatter(tokenizer_config)
return chat_formatter_to_chat_completion_handler(chat_formatter)
# see https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/tokenization_llama.py
# system prompt is "embedded" in the first message
@register_chat_format("llama-2")
@ -437,21 +544,23 @@ def format_alpaca(
_prompt = _format_add_colon_two(system_message, _messages, _sep, _sep2)
return ChatFormatterResponse(prompt=_prompt)
@register_chat_format("qwen")
def format_qwen(
messages: List[llama_types.ChatCompletionRequestMessage],
**kwargs: Any,
) -> ChatFormatterResponse:
_roles = dict(user="<|im_start|>user", assistant="<|im_start|>assistant")
system_message="You are a helpful assistant."
system_template="<|im_start|>system\n{system_message}"
system_message=system_template.format(system_message=system_message)
system_message = "You are a helpful assistant."
system_template = "<|im_start|>system\n{system_message}"
system_message = system_template.format(system_message=system_message)
_messages = _map_roles(messages, _roles)
_messages.append((_roles["assistant"], None))
_sep = "<|im_end|>"
_prompt = _format_chatml(system_message, _messages, _sep)
_sep2 = "<|endoftext|>"
return ChatFormatterResponse(prompt=_prompt,stop=_sep2)
return ChatFormatterResponse(prompt=_prompt, stop=_sep2)
@register_chat_format("vicuna")
def format(
@ -650,6 +759,7 @@ def format_mistrallite(
_prompt = _format_no_colon_single(system_message, _messages, _sep)
return ChatFormatterResponse(prompt=_prompt)
@register_chat_format("zephyr")
def format_zephyr(
messages: List[llama_types.ChatCompletionRequestMessage],
@ -699,6 +809,7 @@ def format_chatml(
_prompt = _format_chatml(system_message, _messages, _sep)
return ChatFormatterResponse(prompt=_prompt, stop=_sep)
@register_chat_format("chatglm3")
def format_chatglm3(
messages: List[llama_types.ChatCompletionRequestMessage],
@ -739,7 +850,7 @@ def format_openchat(
@register_chat_format("saiga")
def format_saiga(
messages: list[llama_types.ChatCompletionRequestMessage],
**kwargs,
**kwargs: Any,
) -> ChatFormatterResponse:
_message_template = "<s>{role}\n{content}</s>"
_roles = dict(user="user", bot="bot", system="system")

View file

@ -1,138 +0,0 @@
"""
llama_cpp/llama_jinja_format.py
"""
import dataclasses
from typing import Any, Callable, Dict, List, Optional, Protocol, Union
import jinja2
from jinja2 import Template
# NOTE: We sacrifice readability for usability.
# It will fail to work as expected if we attempt to format it in a readable way.
llama2_template = """{% for message in messages %}{% if message['role'] == 'user' %}[INST] {{ message['content'] }} [/INST]\n{% elif message['role'] == 'assistant' %}{{ message['content'] }}\n{% elif message['role'] == 'system' %}<<SYS>> {{ message['content'] }} <</SYS>>\n{% endif %}{% endfor %}"""
class MetaSingleton(type):
"""
Metaclass for implementing the Singleton pattern.
"""
_instances = {}
def __call__(cls, *args, **kwargs):
if cls not in cls._instances:
cls._instances[cls] = super(MetaSingleton, cls).__call__(*args, **kwargs)
return cls._instances[cls]
class Singleton(object, metaclass=MetaSingleton):
"""
Base class for implementing the Singleton pattern.
"""
def __init__(self):
super(Singleton, self).__init__()
@dataclasses.dataclass
class ChatFormatterResponse:
prompt: str
stop: Optional[Union[str, List[str]]] = None
# Base Chat Formatter Protocol
class ChatFormatterInterface(Protocol):
def __init__(self, template: Optional[object] = None):
...
def __call__(
self,
messages: List[Dict[str, str]],
**kwargs,
) -> ChatFormatterResponse:
...
@property
def template(self) -> str:
...
class AutoChatFormatter(ChatFormatterInterface):
def __init__(
self,
template: Optional[str] = None,
template_class: Optional[Template] = None,
):
if template is not None:
self._template = template
else:
self._template = llama2_template # default template
self._environment = jinja2.Environment(
loader=jinja2.BaseLoader(),
trim_blocks=True,
lstrip_blocks=True,
).from_string(
self._template,
template_class=template_class,
)
def __call__(
self,
messages: List[Dict[str, str]],
**kwargs: Any,
) -> ChatFormatterResponse:
formatted_sequence = self._environment.render(messages=messages, **kwargs)
return ChatFormatterResponse(prompt=formatted_sequence)
@property
def template(self) -> str:
return self._template
class FormatterNotFoundException(Exception):
pass
class ChatFormatterFactory(Singleton):
_chat_formatters: Dict[str, Callable[[], ChatFormatterInterface]] = {}
def register_formatter(
self,
name: str,
formatter_callable: Callable[[], ChatFormatterInterface],
overwrite=False,
):
if not overwrite and name in self._chat_formatters:
raise ValueError(
f"Formatter with name '{name}' is already registered. Use `overwrite=True` to overwrite it."
)
self._chat_formatters[name] = formatter_callable
def unregister_formatter(self, name: str):
if name in self._chat_formatters:
del self._chat_formatters[name]
else:
raise ValueError(f"No formatter registered under the name '{name}'.")
def get_formatter_by_name(self, name: str) -> ChatFormatterInterface:
try:
formatter_callable = self._chat_formatters[name]
return formatter_callable()
except KeyError:
raise FormatterNotFoundException(
f"Invalid chat format: {name} (valid formats: {list(self._chat_formatters.keys())})"
)
# Define a chat format class
class Llama2Formatter(AutoChatFormatter):
def __init__(self):
super().__init__(llama2_template)
# With the Singleton pattern applied, regardless of where or how many times
# ChatFormatterFactory() is called, it will always return the same instance
# of the factory, ensuring that the factory's state is consistent throughout
# the application.
ChatFormatterFactory().register_formatter("llama-2", Llama2Formatter)

View file

@ -1,5 +1,7 @@
from __future__ import annotations
import json
from typing import Dict, Optional, Union, List
import llama_cpp
@ -71,7 +73,25 @@ class LlamaProxy:
chat_handler = llama_cpp.llama_chat_format.Llava15ChatHandler(
clip_model_path=settings.clip_model_path, verbose=settings.verbose
)
elif settings.chat_format == "hf-autotokenizer":
assert (
settings.hf_pretrained_model_name_or_path is not None
), "hf_pretrained_model_name_or_path must be set for hf-autotokenizer"
chat_handler = (
llama_cpp.llama_chat_format.hf_autotokenizer_to_chat_formatter(
settings.hf_pretrained_model_name_or_path
)
)
elif settings.chat_format == "hf-tokenizer-config":
assert (
settings.hf_tokenizer_config_path is not None
), "hf_tokenizer_config_path must be set for hf-tokenizer-config"
chat_handler = (
llama_cpp.llama_chat_format.hf_tokenizer_config_to_chat_formatter(
json.load(open(settings.hf_tokenizer_config_path))
)
)
kv_overrides: Optional[Dict[str, Union[bool, int, float]]] = None
if settings.kv_overrides is not None:
assert isinstance(settings.kv_overrides, list)
@ -141,4 +161,3 @@ class LlamaProxy:
cache = llama_cpp.LlamaRAMCache(capacity_bytes=settings.cache_size)
_model.set_cache(cache)
return _model

View file

@ -134,6 +134,15 @@ class ModelSettings(BaseSettings):
default=2 << 30,
description="The size of the cache in bytes. Only used if cache is True.",
)
# Tokenizer Options
hf_tokenizer_config_path: Optional[str] = Field(
default=None,
description="The path to a HuggingFace tokenizer_config.json file.",
)
hf_pretrained_model_name_or_path: Optional[str] = Field(
default=None,
description="The model name or path to a pretrained HuggingFace tokenizer model. Same as you would pass to AutoTokenizer.from_pretrained().",
)
# Misc
verbose: bool = Field(
default=True, description="Whether to print debug information."

View file

@ -1,50 +1,65 @@
from typing import List
import json
import pytest
from llama_cpp import ChatCompletionMessage
from llama_cpp.llama_jinja_format import Llama2Formatter
from llama_cpp import (
ChatCompletionRequestUserMessage,
)
from llama_cpp.llama_chat_format import hf_tokenizer_config_to_chat_formatter
@pytest.fixture
def sequence_of_messages() -> List[ChatCompletionMessage]:
return [
ChatCompletionMessage(role="system", content="Welcome to CodeHelp Bot!"),
ChatCompletionMessage(
role="user", content="Hi there! I need some help with Python."
),
ChatCompletionMessage(
role="assistant", content="Of course! What do you need help with in Python?"
),
ChatCompletionMessage(
role="user",
content="I'm trying to write a function to find the factorial of a number, but I'm stuck.",
),
ChatCompletionMessage(
role="assistant",
content="I can help with that! Would you like a recursive or iterative solution?",
),
ChatCompletionMessage(
role="user", content="Let's go with a recursive solution."
),
]
mistral_7b_tokenizer_config = """{
"add_bos_token": true,
"add_eos_token": false,
"added_tokens_decoder": {
"0": {
"content": "<unk>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"1": {
"content": "<s>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"2": {
"content": "</s>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
}
},
"additional_special_tokens": [],
"bos_token": "<s>",
"clean_up_tokenization_spaces": false,
"eos_token": "</s>",
"legacy": true,
"model_max_length": 1000000000000000019884624838656,
"pad_token": null,
"sp_model_kwargs": {},
"spaces_between_special_tokens": false,
"tokenizer_class": "LlamaTokenizer",
"unk_token": "<unk>",
"use_default_system_prompt": false,
"chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}"
}"""
def test_llama2_formatter(sequence_of_messages):
expected_prompt = (
"<<SYS>> Welcome to CodeHelp Bot! <</SYS>>\n"
"[INST] Hi there! I need some help with Python. [/INST]\n"
"Of course! What do you need help with in Python?\n"
"[INST] I'm trying to write a function to find the factorial of a number, but I'm stuck. [/INST]\n"
"I can help with that! Would you like a recursive or iterative solution?\n"
"[INST] Let's go with a recursive solution. [/INST]\n"
def test_hf_tokenizer_config_str_to_chat_formatter():
tokenizer_config = json.loads(mistral_7b_tokenizer_config)
chat_formatter = hf_tokenizer_config_to_chat_formatter(
tokenizer_config
)
chat_formatter_respoonse = chat_formatter(
messages=[
ChatCompletionRequestUserMessage(role="user", content="Hello, world!"),
]
)
llama2_formatter_instance = Llama2Formatter()
formatter_response = llama2_formatter_instance(sequence_of_messages)
assert (
expected_prompt == formatter_response.prompt
), "The formatted prompt does not match the expected output."
# Optionally, include a test for the 'stop' if it's part of the functionality.
assert chat_formatter_respoonse.prompt == ("<s>[INST] Hello, world! [/INST]</s>" "")