Merge branch 'main' into v0.2-wip

This commit is contained in:
Andrei Betlen 2023-08-25 15:45:22 -04:00
commit ac47d55577
9 changed files with 208 additions and 124 deletions

View file

@ -7,6 +7,12 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
## [Unreleased]
## [0.1.79]
### Added
- GGUF Support (breaking change requiring new model format)
## [0.1.78]
### Added

View file

@ -17,6 +17,9 @@ This package provides:
Documentation is available at [https://llama-cpp-python.readthedocs.io/en/latest](https://llama-cpp-python.readthedocs.io/en/latest).
> [!WARNING]
> Starting with version 0.1.79 the model format has changed from `ggmlv3` to `gguf`. Old model files can be converted using the `convert-llama-ggmlv3-to-gguf.py` script in [`llama.cpp`](https://github.com/ggerganov/llama.cpp)
## Installation from PyPI (recommended)
@ -201,7 +204,7 @@ This package is under active development and I welcome any contributions.
To get started, clone the repository and install the package in editable / development mode:
```bash
git clone --recurse-submodules git@github.com:abetlen/llama-cpp-python.git
git clone --recurse-submodules https://github.com/abetlen/llama-cpp-python.git
cd llama-cpp-python
# Upgrade pip (required for editable mode)

View file

@ -1,37 +1,44 @@
# Install Docker Server
**Note #1:** This was tested with Docker running on Linux. If you can get it working on Windows or MacOS, please update this `README.md` with a PR!
### Install Docker Server
> [!IMPORTANT]
> This was tested with Docker running on Linux. <br>If you can get it working on Windows or MacOS, please update this `README.md` with a PR!<br>
[Install Docker Engine](https://docs.docker.com/engine/install)
**Note #2:** NVidia GPU CuBLAS support requires a NVidia GPU with sufficient VRAM (approximately as much as the size in the table below) and Docker NVidia support (see [container-toolkit/install-guide](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html))
# Simple Dockerfiles for building the llama-cpp-python server with external model bin files
## openblas_simple - a simple Dockerfile for non-GPU OpenBLAS, where the model is located outside the Docker image
## Simple Dockerfiles for building the llama-cpp-python server with external model bin files
### openblas_simple
A simple Dockerfile for non-GPU OpenBLAS, where the model is located outside the Docker image:
```
cd ./openblas_simple
docker build -t openblas_simple .
docker run -e USE_MLOCK=0 -e MODEL=/var/model/<model-path> -v <model-root-path>:/var/model -t openblas_simple
docker run --cap-add SYS_RESOURCE -e USE_MLOCK=0 -e MODEL=/var/model/<model-path> -v <model-root-path>:/var/model -t openblas_simple
```
where `<model-root-path>/<model-path>` is the full path to the model file on the Docker host system.
## cuda_simple - a simple Dockerfile for CUDA accelerated CuBLAS, where the model is located outside the Docker image
### cuda_simple
> [!WARNING]
> Nvidia GPU CuBLAS support requires an Nvidia GPU with sufficient VRAM (approximately as much as the size in the table below) and Docker Nvidia support (see [container-toolkit/install-guide](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html)) <br>
A simple Dockerfile for CUDA-accelerated CuBLAS, where the model is located outside the Docker image:
```
cd ./cuda_simple
docker build -t cuda_simple .
docker run -e USE_MLOCK=0 -e MODEL=/var/model/<model-path> -v <model-root-path>:/var/model -t cuda_simple
docker run --gpus=all --cap-add SYS_RESOURCE -e USE_MLOCK=0 -e MODEL=/var/model/<model-path> -v <model-root-path>:/var/model -t cuda_simple
```
where `<model-root-path>/<model-path>` is the full path to the model file on the Docker host system.
# "Open-Llama-in-a-box"
## Download an Apache V2.0 licensed 3B paramter Open Llama model and install into a Docker image that runs an OpenBLAS-enabled llama-cpp-python server
--------------------------------------------------------------------------
### "Open-Llama-in-a-box"
Download an Apache V2.0 licensed 3B params Open LLaMA model and install into a Docker image that runs an OpenBLAS-enabled llama-cpp-python server:
```
$ cd ./open_llama
./build.sh
./start.sh
```
# Manually choose your own Llama model from Hugging Face
### Manually choose your own Llama model from Hugging Face
`python3 ./hug_model.py -a TheBloke -t llama`
You should now have a model in the current directory and `model.bin` symlinked to it for the subsequent Docker build and copy step. e.g.
```
@ -39,8 +46,10 @@ docker $ ls -lh *.bin
-rw-rw-r-- 1 user user 4.8G May 23 18:30 <downloaded-model-file>q5_1.bin
lrwxrwxrwx 1 user user 24 May 23 18:30 model.bin -> <downloaded-model-file>q5_1.bin
```
**Note #1:** Make sure you have enough disk space to download the model. As the model is then copied into the image you will need at least
**TWICE** as much disk space as the size of the model:
> [!NOTE]
> Make sure you have enough disk space to download the model. As the model is then copied into the image you will need at least
**TWICE** as much disk space as the size of the model:<br>
| Model | Quantized size |
|------:|----------------:|
@ -50,17 +59,6 @@ lrwxrwxrwx 1 user user 24 May 23 18:30 model.bin -> <downloaded-model-file>q5_
| 33B | 25 GB |
| 65B | 50 GB |
**Note #2:** If you want to pass or tune additional parameters, customise `./start_server.sh` before running `docker build ...`
## Use OpenBLAS
Use if you don't have a NVidia GPU. Defaults to `python:3-slim-bullseye` Docker base image and OpenBLAS:
### Build:
`docker build -t openblas .`
### Run:
`docker run --cap-add SYS_RESOURCE -t openblas`
## Use CuBLAS
### Build:
`docker build --build-arg IMAGE=nvidia/cuda:12.1.1-devel-ubuntu22.04 -t cublas .`
### Run:
`docker run --cap-add SYS_RESOURCE -t cublas`
> [!NOTE]
> If you want to pass or tune additional parameters, customise `./start_server.sh` before running `docker build ...`

View file

@ -4,13 +4,24 @@ FROM nvidia/cuda:${CUDA_IMAGE}
# We need to set the host to 0.0.0.0 to allow outside access
ENV HOST 0.0.0.0
RUN apt-get update && apt-get upgrade -y \
&& apt-get install -y git build-essential \
python3 python3-pip gcc wget \
ocl-icd-opencl-dev opencl-headers clinfo \
libclblast-dev libopenblas-dev \
&& mkdir -p /etc/OpenCL/vendors && echo "libnvidia-opencl.so.1" > /etc/OpenCL/vendors/nvidia.icd
COPY . .
# Install the package
RUN apt update && apt install -y python3 python3-pip
# setting build related env vars
ENV CUDA_DOCKER_ARCH=all
ENV LLAMA_CUBLAS=1
# Install depencencies
RUN python3 -m pip install --upgrade pip pytest cmake scikit-build setuptools fastapi uvicorn sse-starlette pydantic-settings
RUN LLAMA_CUBLAS=1 pip install llama-cpp-python
# Install llama-cpp-python (build with cuda)
RUN CMAKE_ARGS="-DLLAMA_CUBLAS=on" FORCE_CMAKE=1 pip install llama-cpp-python
# Run the server
CMD python3 -m llama_cpp.server

View file

@ -234,7 +234,7 @@ class Llama:
rope_freq_scale: float = 1.0,
n_gqa: Optional[int] = None, # (TEMPORARY) must be 8 for llama2 70b
rms_norm_eps: Optional[float] = None, # (TEMPORARY)
mul_mat_q: Optional[bool] = None, # (TEMPORARY)
mul_mat_q: Optional[bool] = None,
verbose: bool = True,
):
"""Load a llama.cpp model from `model_path`.
@ -297,11 +297,6 @@ class Llama:
self.params.rope_freq_base = rope_freq_base
self.params.rope_freq_scale = rope_freq_scale
if n_gqa is not None:
self.params.n_gqa = n_gqa
if rms_norm_eps is not None:
self.params.rms_norm_eps = rms_norm_eps
if mul_mat_q is not None:
self.params.mul_mat_q = mul_mat_q
@ -420,11 +415,11 @@ class Llama:
Returns:
A list of tokens.
"""
assert self.ctx is not None
assert self.model is not None
n_ctx = self._n_ctx
tokens = (llama_cpp.llama_token * n_ctx)()
n_tokens = llama_cpp.llama_tokenize(
self.ctx,
n_tokens = llama_cpp.llama_tokenize_with_model(
self.model,
text,
tokens,
llama_cpp.c_int(n_ctx),
@ -433,8 +428,8 @@ class Llama:
if n_tokens < 0:
n_tokens = abs(n_tokens)
tokens = (llama_cpp.llama_token * n_tokens)()
n_tokens = llama_cpp.llama_tokenize(
self.ctx,
n_tokens = llama_cpp.llama_tokenize_with_model(
self.model,
text,
tokens,
llama_cpp.c_int(n_tokens),
@ -455,17 +450,19 @@ class Llama:
Returns:
The detokenized string.
"""
assert self.ctx is not None
assert self.model is not None
output = b""
buffer_size = 32
buffer = (ctypes.c_char * buffer_size)()
size = 8
buffer = (ctypes.c_char * size)()
for token in tokens:
n = llama_cpp.llama_token_to_str(
self.ctx, llama_cpp.llama_token(token), buffer, buffer_size
n = llama_cpp.llama_token_to_str_with_model(
self.model, llama_cpp.llama_token(token), buffer, size
)
assert n <= buffer_size
assert n <= size
output += bytes(buffer[:n])
return output
# NOTE: Llama1 models automatically added a space at the start of the prompt
# this line removes a leading space if the first token is a beginning of sentence token
return output[1:] if len(tokens) > 0 and tokens[0] == self.token_bos() else output
def set_cache(self, cache: Optional[BaseLlamaCache]):
"""Set the cache.
@ -892,7 +889,7 @@ class Llama:
created: int = int(time.time())
completion_tokens: List[int] = []
# Add blank space to start of prompt to match OG llama tokenizer
prompt_tokens: List[int] = self.tokenize(b" " + prompt.encode("utf-8"))
prompt_tokens: List[int] = self.tokenize(prompt.encode("utf-8")) if prompt != "" else [self.token_bos()]
text: bytes = b""
returned_tokens: int = 0
stop = (
@ -1590,13 +1587,7 @@ class Llama:
lora_base=self.lora_base,
lora_path=self.lora_path,
tensor_split=self.tensor_split,
### TEMPORARY ###
n_gqa=self.params.n_gqa,
rms_norm_eps=self.params.rms_norm_eps,
### TEMPORARY ###
### DEPRECATED ###
n_parts=self.n_parts,
### DEPRECATED ###
mul_mat_q=self.params.mul_mat_q,
)
def __setstate__(self, state):
@ -1618,14 +1609,8 @@ class Llama:
lora_base=state["lora_base"],
lora_path=state["lora_path"],
tensor_split=state["tensor_split"],
mul_mat_q=state["mul_mat_q"],
verbose=state["verbose"],
### TEMPORARY ###
n_gqa=state["n_gqa"],
rms_norm_eps=state["rms_norm_eps"],
### TEMPORARY ###
### DEPRECATED ###
n_parts=state["n_parts"],
### DEPRECATED ###
)
def save_state(self) -> LlamaState:

View file

@ -531,6 +531,15 @@ _lib.llama_n_embd.argtypes = [llama_context_p]
_lib.llama_n_embd.restype = c_int
# LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_context * ctx);
def llama_vocab_type(ctx: llama_context_p) -> int:
return _lib.llama_vocab_type(ctx)
_lib.llama_vocab_type.argtypes = [llama_context_p]
_lib.llama_vocab_type.restype = c_int
# LLAMA_API int llama_model_n_vocab(const struct llama_model * model);
def llama_model_n_vocab(model: llama_model_p) -> int:
return _lib.llama_model_n_vocab(model)
@ -559,13 +568,33 @@ _lib.llama_model_n_embd.restype = c_int
# // Get a string describing the model type
# LLAMA_API int llama_model_type(const struct llama_model * model, char * buf, size_t buf_size);
def llama_model_type(model: llama_model_p, buf: bytes, buf_size: c_size_t) -> int:
return _lib.llama_model_type(model, buf, buf_size)
# LLAMA_API int llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
def llama_model_desc(model: llama_model_p, buf: bytes, buf_size: c_size_t) -> int:
return _lib.llama_model_desc(model, buf, buf_size)
_lib.llama_model_type.argtypes = [llama_model_p, c_char_p, c_size_t]
_lib.llama_model_type.restype = c_int
_lib.llama_model_desc.argtypes = [llama_model_p, c_char_p, c_size_t]
_lib.llama_model_desc.restype = c_int
# // Returns the total size of all the tensors in the model in bytes
# LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
def llama_model_size(model: llama_model_p) -> int:
return _lib.llama_model_size(model)
_lib.llama_model_size.argtypes = [llama_model_p]
_lib.llama_model_size.restype = ctypes.c_uint64
# // Returns the total number of parameters in the model
# LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
def llama_model_n_params(model: llama_model_p) -> int:
return _lib.llama_model_n_params(model)
_lib.llama_model_n_params.argtypes = [llama_model_p]
_lib.llama_model_n_params.restype = ctypes.c_uint64
# // Returns 0 on success
@ -849,7 +878,7 @@ _lib.llama_token_get_score.argtypes = [llama_context_p, llama_token]
_lib.llama_token_get_score.restype = c_float
# LLAMA_API llama_token_type llama_token_get_type(const struct llama_context * ctx, llama_token token);
# LLAMA_API enum llama_token_type llama_token_get_type(const struct llama_context * ctx, llama_token token);
def llama_token_get_type(ctx: llama_context_p, token: llama_token) -> int:
return _lib.llama_token_get_type(ctx, token)
@ -918,32 +947,6 @@ _lib.llama_tokenize.argtypes = [llama_context_p, c_char_p, llama_token_p, c_int,
_lib.llama_tokenize.restype = c_int
# LLAMA_API int llama_tokenize_bpe(
# struct llama_context * ctx,
# const char * text,
# llama_token * tokens,
# int n_max_tokens,
# bool add_bos);
def llama_tokenize_bpe(
ctx: llama_context_p,
text: bytes,
tokens, # type: Array[llama_token]
n_max_tokens: c_int,
add_bos: c_bool,
) -> int:
return _lib.llama_tokenize_bpe(ctx, text, tokens, n_max_tokens, add_bos)
_lib.llama_tokenize_bpe.argtypes = [
llama_context_p,
c_char_p,
llama_token_p,
c_int,
c_bool,
]
_lib.llama_tokenize_bpe.restype = c_int
# LLAMA_API int llama_tokenize_with_model(
# const struct llama_model * model,
# const char * text,
@ -993,30 +996,24 @@ _lib.llama_tokenize_with_model.argtypes = [
_lib.llama_tokenize_with_model.restype = c_int
# LLAMA_API int llama_token_to_str_bpe(
# const struct llama_context * ctx,
# llama_token token,
# char * buf,
# int length);
def llama_token_to_str_bpe(
ctx: llama_context_p, token: llama_token, buf: bytes, length: c_int
# LLAMA_API int llama_token_to_str_with_model(
# const struct llama_model * model,
# llama_token token,
# char * buf,
# int length);
def llama_token_to_str_with_model(
model: llama_model_p, token: llama_token, buf: bytes, length: c_int
) -> int:
return _lib.llama_token_to_str_bpe(ctx, token, buf, length)
return _lib.llama_token_to_str_with_model(model, token, buf, length)
_lib.llama_token_to_str_bpe.argtypes = [llama_context_p, llama_token, c_char_p, c_int]
_lib.llama_token_to_str_bpe.restype = c_int
# LLAMA_API const char * llama_token_to_str_with_model(
# const struct llama_model * model,
# llama_token token);
def llama_token_to_str_with_model(model: llama_model_p, token: llama_token) -> bytes:
return _lib.llama_token_to_str_with_model(model, token)
_lib.llama_token_to_str_with_model.argtypes = [llama_model_p, llama_token]
_lib.llama_token_to_str_with_model.restype = c_char_p
_lib.llama_token_to_str_with_model.argtypes = [
llama_model_p,
llama_token,
c_char_p,
c_int,
]
_lib.llama_token_to_str_with_model.restype = c_int
# //
@ -1052,6 +1049,74 @@ def llama_grammar_free(grammar: llama_grammar_p):
_lib.llama_grammar_free.argtypes = [llama_grammar_p]
_lib.llama_grammar_free.restype = None
# //
# // Beam search
# //
# struct llama_beam_view {
# const llama_token * tokens;
# size_t n_tokens;
# float p; // Cumulative beam probability (renormalized relative to all beams)
# bool eob; // Callback should set this to true when a beam is at end-of-beam.
# };
class llama_beam_view(ctypes.Structure):
_fields_ = [
("tokens", llama_token_p),
("n_tokens", c_size_t),
("p", c_float),
("eob", c_bool),
]
# // Passed to beam_search_callback function.
# // Whenever 0 < common_prefix_length, this number of tokens should be copied from any of the beams
# // (e.g. beams[0]) as they will be removed (shifted) from all beams in all subsequent callbacks.
# // These pointers are valid only during the synchronous callback, so should not be saved.
# struct llama_beams_state {
# struct llama_beam_view * beam_views;
# size_t n_beams; // Number of elements in beam_views[].
# size_t common_prefix_length; // Current max length of prefix tokens shared by all beams.
# bool last_call; // True iff this is the last callback invocation.
# };
class llama_beams_state(ctypes.Structure):
_fields_ = [
("beam_views", POINTER(llama_beam_view)),
("n_beams", c_size_t),
("common_prefix_length", c_size_t),
("last_call", c_bool),
]
# // Type of pointer to the beam_search_callback function.
# // void* callback_data is any custom data passed to llama_beam_search, that is subsequently
# // passed back to beam_search_callback. This avoids having to use global variables in the callback.
# typedef void (*llama_beam_search_callback_fn_t)(void * callback_data, llama_beams_state);
llama_beam_search_callback_fn_t = ctypes.CFUNCTYPE(None, c_void_p, llama_beams_state)
# /// @details Deterministically returns entire sentence constructed by a beam search.
# /// @param ctx Pointer to the llama_context.
# /// @param callback Invoked for each iteration of the beam_search loop, passing in beams_state.
# /// @param callback_data A pointer that is simply passed back to callback.
# /// @param n_beams Number of beams to use.
# /// @param n_past Number of tokens already evaluated.
# /// @param n_predict Maximum number of tokens to predict. EOS may occur earlier.
# /// @param n_threads Number of threads as passed to llama_eval().
# LLAMA_API void llama_beam_search(struct llama_context * ctx, llama_beam_search_callback_fn_t callback, void * callback_data, size_t n_beams, int n_past, int n_predict, int n_threads);
def llama_beam_search(
ctx: llama_context_p,
callback: "ctypes._CFuncPtr[None, c_void_p, llama_beams_state]", # type: ignore
callback_data: c_void_p,
n_beams: c_size_t,
n_past: c_int,
n_predict: c_int,
n_threads: c_int,
):
return _lib.llama_beam_search(
ctx, callback, callback_data, n_beams, n_past, n_predict, n_threads
)
# //
# // Sampling functions

View file

@ -4,7 +4,7 @@ build-backend = "scikit_build_core.build"
[project]
name = "llama_cpp_python"
version = "0.1.78"
version = "0.1.79"
description = "Python bindings for the llama.cpp library"
readme = "README.md"
license = { text = "MIT" }
@ -51,3 +51,7 @@ cmake.verbose = true
[project.urls]
Homepage = "https://github.com/abetlen/llama-cpp-python"
Issues = "https://github.com/abetlen/llama-cpp-python/issues"
[tool.pytest.ini_options]
addopts = "--ignore=vendor"

View file

@ -1,20 +1,32 @@
import pytest
import llama_cpp
MODEL = "./vendor/llama.cpp/models/ggml-vocab.bin"
MODEL = "./vendor/llama.cpp/models/ggml-vocab-llama.gguf"
def test_llama():
llama = llama_cpp.Llama(model_path=MODEL, vocab_only=True)
def test_llama_cpp_tokenization():
llama = llama_cpp.Llama(model_path=MODEL, vocab_only=True, verbose=False)
assert llama
assert llama.ctx is not None
text = b"Hello World"
assert llama.detokenize(llama.tokenize(text)) == text
tokens = llama.tokenize(text)
assert tokens[0] == llama.token_bos()
assert tokens == [1, 15043, 2787]
detokenized = llama.detokenize(tokens)
assert detokenized == text
tokens = llama.tokenize(text, add_bos=False)
assert tokens[0] != llama.token_bos()
assert tokens == [15043, 2787]
detokenized = llama.detokenize(tokens)
assert detokenized != text
# @pytest.mark.skip(reason="need to update sample mocking")
@pytest.mark.skip(reason="bug in tokenization where leading space is always inserted even if not after eos")
def test_llama_patch(monkeypatch):
llama = llama_cpp.Llama(model_path=MODEL, vocab_only=True)
n_vocab = llama_cpp.llama_n_vocab(llama.ctx)

2
vendor/llama.cpp vendored

@ -1 +1 @@
Subproject commit f5fe98d11bdf9e7797bcfb05c0c3601ffc4b9d26
Subproject commit 232caf3c1581a6cb023571780ff41dc2d66d1ca0