Merge branch 'abetlen:main' into main
This commit is contained in:
commit
9ea7a379d3
6 changed files with 118 additions and 69 deletions
20
.github/ISSUE_TEMPLATE/bug_report.md
vendored
20
.github/ISSUE_TEMPLATE/bug_report.md
vendored
|
@ -57,7 +57,17 @@ Please provide detailed steps for reproducing the issue. We are not sitting in f
|
||||||
3. step 3
|
3. step 3
|
||||||
4. etc.
|
4. etc.
|
||||||
|
|
||||||
**Note: Many issues seem to be regarding performance issues / differences with `llama.cpp`. In these cases we need to confirm that you're comparing against the version of `llama.cpp` that was built with your python package, and which parameters you're passing to the context.**
|
**Note: Many issues seem to be regarding functional or performance issues / differences with `llama.cpp`. In these cases we need to confirm that you're comparing against the version of `llama.cpp` that was built with your python package, and which parameters you're passing to the context.**
|
||||||
|
|
||||||
|
Try the following:
|
||||||
|
|
||||||
|
1. `git clone https://github.com/abetlen/llama-cpp-python`
|
||||||
|
2. `cd llama-cpp-python`
|
||||||
|
3. `rm -rf _skbuild/` # delete any old builds
|
||||||
|
4. `python setup.py develop`
|
||||||
|
5. `cd ./vendor/llama.cpp`
|
||||||
|
6. Follow [llama.cpp's instructions](https://github.com/ggerganov/llama.cpp#build) to `cmake` llama.cpp
|
||||||
|
7. Run llama.cpp's `./main` with the same arguments you previously passed to llama-cpp-python and see if you can reproduce the issue. If you can, [log an issue with llama.cpp](https://github.com/ggerganov/llama.cpp/issues)
|
||||||
|
|
||||||
# Failure Logs
|
# Failure Logs
|
||||||
|
|
||||||
|
@ -73,8 +83,14 @@ commit 47b0aa6e957b93dbe2c29d53af16fbae2dd628f2
|
||||||
llama-cpp-python$ python3 --version
|
llama-cpp-python$ python3 --version
|
||||||
Python 3.10.10
|
Python 3.10.10
|
||||||
|
|
||||||
llama-cpp-python$ pip list | egrep "uvicorn|fastapi|sse-starlette"
|
llama-cpp-python$ pip list | egrep "uvicorn|fastapi|sse-starlette|numpy"
|
||||||
fastapi 0.95.0
|
fastapi 0.95.0
|
||||||
|
numpy 1.24.3
|
||||||
sse-starlette 1.3.3
|
sse-starlette 1.3.3
|
||||||
uvicorn 0.21.1
|
uvicorn 0.21.1
|
||||||
|
|
||||||
|
llama-cpp-python/vendor/llama.cpp$ git log | head -3
|
||||||
|
commit 66874d4fbcc7866377246efbcee938e8cc9c7d76
|
||||||
|
Author: Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com>
|
||||||
|
Date: Thu May 25 20:18:01 2023 -0600
|
||||||
```
|
```
|
||||||
|
|
|
@ -7,9 +7,13 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
|
||||||
|
|
||||||
## [Unreleased]
|
## [Unreleased]
|
||||||
|
|
||||||
|
## [v0.1.56]
|
||||||
|
|
||||||
### Added
|
### Added
|
||||||
|
|
||||||
- Added first version of the changelog
|
- Added first version of the changelog
|
||||||
|
- Server: Use async routes
|
||||||
|
- Use numpy for internal buffers to reduce memory usage and improve performance.
|
||||||
|
|
||||||
### Fixed
|
### Fixed
|
||||||
|
|
||||||
|
|
|
@ -22,6 +22,9 @@ import diskcache
|
||||||
from . import llama_cpp
|
from . import llama_cpp
|
||||||
from .llama_types import *
|
from .llama_types import *
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import numpy.typing as npt
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
class LlamaCache:
|
class LlamaCache:
|
||||||
|
@ -76,11 +79,15 @@ class LlamaState:
|
||||||
self,
|
self,
|
||||||
eval_tokens: Deque[int],
|
eval_tokens: Deque[int],
|
||||||
eval_logits: Deque[List[float]],
|
eval_logits: Deque[List[float]],
|
||||||
|
input_ids: npt.NDArray[np.intc],
|
||||||
|
scores: npt.NDArray[np.single],
|
||||||
llama_state, # type: llama_cpp.Array[llama_cpp.c_uint8]
|
llama_state, # type: llama_cpp.Array[llama_cpp.c_uint8]
|
||||||
llama_state_size: int,
|
llama_state_size: int,
|
||||||
):
|
):
|
||||||
self.eval_tokens = eval_tokens
|
self.eval_tokens = eval_tokens
|
||||||
self.eval_logits = eval_logits
|
self.eval_logits = eval_logits
|
||||||
|
self.input_ids = input_ids
|
||||||
|
self.scores = scores
|
||||||
self.llama_state = llama_state
|
self.llama_state = llama_state
|
||||||
self.llama_state_size = llama_state_size
|
self.llama_state_size = llama_state_size
|
||||||
|
|
||||||
|
@ -210,20 +217,17 @@ class Llama:
|
||||||
|
|
||||||
self._n_vocab = self.n_vocab()
|
self._n_vocab = self.n_vocab()
|
||||||
self._n_ctx = self.n_ctx()
|
self._n_ctx = self.n_ctx()
|
||||||
data = (llama_cpp.llama_token_data * self._n_vocab)(
|
|
||||||
*[
|
|
||||||
llama_cpp.llama_token_data(
|
|
||||||
id=llama_cpp.llama_token(i),
|
|
||||||
logit=llama_cpp.c_float(0.0),
|
|
||||||
p=llama_cpp.c_float(0.0),
|
|
||||||
)
|
|
||||||
for i in range(self._n_vocab)
|
|
||||||
]
|
|
||||||
)
|
|
||||||
size = llama_cpp.c_size_t(self._n_vocab)
|
size = llama_cpp.c_size_t(self._n_vocab)
|
||||||
sorted = False
|
sorted = llama_cpp.c_bool(False)
|
||||||
|
self._candidates_data = np.array(
|
||||||
|
[],
|
||||||
|
dtype=np.dtype(
|
||||||
|
[("id", np.intc), ("logit", np.single), ("p", np.single)], align=True
|
||||||
|
),
|
||||||
|
)
|
||||||
|
self._candidates_data.resize(3, self._n_vocab)
|
||||||
candidates = llama_cpp.llama_token_data_array(
|
candidates = llama_cpp.llama_token_data_array(
|
||||||
data=data,
|
data=self._candidates_data.ctypes.data_as(llama_cpp.llama_token_data_p),
|
||||||
size=size,
|
size=size,
|
||||||
sorted=sorted,
|
sorted=sorted,
|
||||||
)
|
)
|
||||||
|
@ -231,6 +235,9 @@ class Llama:
|
||||||
self._token_nl = Llama.token_nl()
|
self._token_nl = Llama.token_nl()
|
||||||
self._token_eos = Llama.token_eos()
|
self._token_eos = Llama.token_eos()
|
||||||
|
|
||||||
|
self._input_ids = np.array([], dtype=np.intc)
|
||||||
|
self._scores = np.ndarray((0, self._n_vocab), dtype=np.single)
|
||||||
|
|
||||||
def tokenize(self, text: bytes, add_bos: bool = True) -> List[int]:
|
def tokenize(self, text: bytes, add_bos: bool = True) -> List[int]:
|
||||||
"""Tokenize a string.
|
"""Tokenize a string.
|
||||||
|
|
||||||
|
@ -298,6 +305,8 @@ class Llama:
|
||||||
"""Reset the model state."""
|
"""Reset the model state."""
|
||||||
self.eval_tokens.clear()
|
self.eval_tokens.clear()
|
||||||
self.eval_logits.clear()
|
self.eval_logits.clear()
|
||||||
|
self._input_ids = np.array([], dtype=np.intc)
|
||||||
|
self._scores = np.ndarray((0, self._n_vocab), dtype=np.single)
|
||||||
|
|
||||||
def eval(self, tokens: Sequence[int]):
|
def eval(self, tokens: Sequence[int]):
|
||||||
"""Evaluate a list of tokens.
|
"""Evaluate a list of tokens.
|
||||||
|
@ -309,7 +318,7 @@ class Llama:
|
||||||
n_ctx = self._n_ctx
|
n_ctx = self._n_ctx
|
||||||
for i in range(0, len(tokens), self.n_batch):
|
for i in range(0, len(tokens), self.n_batch):
|
||||||
batch = tokens[i : min(len(tokens), i + self.n_batch)]
|
batch = tokens[i : min(len(tokens), i + self.n_batch)]
|
||||||
n_past = min(n_ctx - len(batch), len(self.eval_tokens))
|
n_past = min(n_ctx - len(batch), len(self._input_ids))
|
||||||
n_tokens = len(batch)
|
n_tokens = len(batch)
|
||||||
return_code = llama_cpp.llama_eval(
|
return_code = llama_cpp.llama_eval(
|
||||||
ctx=self.ctx,
|
ctx=self.ctx,
|
||||||
|
@ -322,6 +331,9 @@ class Llama:
|
||||||
raise RuntimeError(f"llama_eval returned {return_code}")
|
raise RuntimeError(f"llama_eval returned {return_code}")
|
||||||
# Save tokens
|
# Save tokens
|
||||||
self.eval_tokens.extend(batch)
|
self.eval_tokens.extend(batch)
|
||||||
|
self._input_ids: npt.NDArray[np.intc] = np.concatenate(
|
||||||
|
(self._input_ids, np.array(batch, dtype=np.intc)), axis=0
|
||||||
|
)
|
||||||
# Save logits
|
# Save logits
|
||||||
rows = n_tokens if self.params.logits_all else 1
|
rows = n_tokens if self.params.logits_all else 1
|
||||||
n_vocab = self._n_vocab
|
n_vocab = self._n_vocab
|
||||||
|
@ -329,6 +341,9 @@ class Llama:
|
||||||
logits_view = llama_cpp.llama_get_logits(self.ctx)
|
logits_view = llama_cpp.llama_get_logits(self.ctx)
|
||||||
logits = [logits_view[i * cols : (i + 1) * cols] for i in range(rows)]
|
logits = [logits_view[i * cols : (i + 1) * cols] for i in range(rows)]
|
||||||
self.eval_logits.extend(logits)
|
self.eval_logits.extend(logits)
|
||||||
|
self._scores: npt.NDArray[np.single] = np.concatenate(
|
||||||
|
(self._scores, np.array(logits, dtype=np.single)), axis=0
|
||||||
|
)
|
||||||
|
|
||||||
def _sample(
|
def _sample(
|
||||||
self,
|
self,
|
||||||
|
@ -349,6 +364,7 @@ class Llama:
|
||||||
):
|
):
|
||||||
assert self.ctx is not None
|
assert self.ctx is not None
|
||||||
assert len(self.eval_logits) > 0
|
assert len(self.eval_logits) > 0
|
||||||
|
assert self._scores.shape[0] > 0
|
||||||
n_vocab = self._n_vocab
|
n_vocab = self._n_vocab
|
||||||
n_ctx = self._n_ctx
|
n_ctx = self._n_ctx
|
||||||
top_k = llama_cpp.c_int(n_vocab) if top_k.value <= 0 else top_k
|
top_k = llama_cpp.c_int(n_vocab) if top_k.value <= 0 else top_k
|
||||||
|
@ -357,18 +373,23 @@ class Llama:
|
||||||
if last_n_tokens_size.value < 0
|
if last_n_tokens_size.value < 0
|
||||||
else last_n_tokens_size
|
else last_n_tokens_size
|
||||||
)
|
)
|
||||||
logits = self.eval_logits[-1]
|
logits: npt.NDArray[np.single] = self._scores[-1, :]
|
||||||
|
|
||||||
if logits_processor is not None:
|
if logits_processor is not None:
|
||||||
logits = logits_processor(list(self.eval_tokens), logits)
|
logits = np.array(
|
||||||
self.eval_logits[-1] = logits
|
logits_processor(self._input_ids.tolist(), logits.tolist()),
|
||||||
|
dtype=np.single,
|
||||||
|
)
|
||||||
|
self._scores[-1, :] = logits
|
||||||
|
self.eval_logits[-1] = logits.tolist()
|
||||||
|
|
||||||
nl_logit = logits[self._token_nl]
|
nl_logit = logits[self._token_nl]
|
||||||
candidates = self._candidates
|
candidates = self._candidates
|
||||||
for i, logit in enumerate(logits):
|
candidates_data = self._candidates_data
|
||||||
candidates.data[i].id = llama_cpp.llama_token(i)
|
candidates_data["id"] = np.arange(n_vocab, dtype=np.intc) # type: ignore
|
||||||
candidates.data[i].logit = llama_cpp.c_float(logit)
|
candidates_data["logit"] = logits
|
||||||
candidates.data[i].p = llama_cpp.c_float(0.0)
|
candidates_data["p"] = np.zeros(n_vocab, dtype=np.single)
|
||||||
|
candidates.data = candidates_data.ctypes.data_as(llama_cpp.llama_token_data_p)
|
||||||
candidates.sorted = llama_cpp.c_bool(False)
|
candidates.sorted = llama_cpp.c_bool(False)
|
||||||
candidates.size = llama_cpp.c_size_t(n_vocab)
|
candidates.size = llama_cpp.c_size_t(n_vocab)
|
||||||
llama_cpp.llama_sample_repetition_penalty(
|
llama_cpp.llama_sample_repetition_penalty(
|
||||||
|
@ -486,8 +507,8 @@ class Llama:
|
||||||
"""
|
"""
|
||||||
assert self.ctx is not None
|
assert self.ctx is not None
|
||||||
last_n_tokens_data = [llama_cpp.llama_token(0)] * max(
|
last_n_tokens_data = [llama_cpp.llama_token(0)] * max(
|
||||||
0, self.last_n_tokens_size - len(self.eval_tokens)
|
0, self.last_n_tokens_size - len(self._input_ids)
|
||||||
) + list(self.eval_tokens)[-self.last_n_tokens_size :]
|
) + self._input_ids[-self.last_n_tokens_size :].tolist()
|
||||||
return self._sample(
|
return self._sample(
|
||||||
last_n_tokens_data=(llama_cpp.llama_token * self.last_n_tokens_size)(
|
last_n_tokens_data=(llama_cpp.llama_token * self.last_n_tokens_size)(
|
||||||
*last_n_tokens_data
|
*last_n_tokens_data
|
||||||
|
@ -545,9 +566,9 @@ class Llama:
|
||||||
"""
|
"""
|
||||||
assert self.ctx is not None
|
assert self.ctx is not None
|
||||||
|
|
||||||
if reset and len(self.eval_tokens) > 0:
|
if reset and len(self._input_ids) > 0:
|
||||||
longest_prefix = 0
|
longest_prefix = 0
|
||||||
for a, b in zip(self.eval_tokens, tokens[:-1]):
|
for a, b in zip(self._input_ids, tokens[:-1]):
|
||||||
if a == b:
|
if a == b:
|
||||||
longest_prefix += 1
|
longest_prefix += 1
|
||||||
else:
|
else:
|
||||||
|
@ -557,6 +578,8 @@ class Llama:
|
||||||
print("Llama.generate: prefix-match hit", file=sys.stderr)
|
print("Llama.generate: prefix-match hit", file=sys.stderr)
|
||||||
reset = False
|
reset = False
|
||||||
tokens = tokens[longest_prefix:]
|
tokens = tokens[longest_prefix:]
|
||||||
|
self._input_ids = self._input_ids[:longest_prefix]
|
||||||
|
self._scores = self._scores[:longest_prefix, :]
|
||||||
for _ in range(len(self.eval_tokens) - longest_prefix):
|
for _ in range(len(self.eval_tokens) - longest_prefix):
|
||||||
self.eval_tokens.pop()
|
self.eval_tokens.pop()
|
||||||
try:
|
try:
|
||||||
|
@ -583,7 +606,7 @@ class Llama:
|
||||||
logits_processor=logits_processor,
|
logits_processor=logits_processor,
|
||||||
)
|
)
|
||||||
if stopping_criteria is not None and stopping_criteria(
|
if stopping_criteria is not None and stopping_criteria(
|
||||||
list(self.eval_tokens), self.eval_logits[-1]
|
self._input_ids.tolist(), self._scores[-1, :].tolist()
|
||||||
):
|
):
|
||||||
return
|
return
|
||||||
tokens_or_none = yield token
|
tokens_or_none = yield token
|
||||||
|
@ -718,10 +741,10 @@ class Llama:
|
||||||
try:
|
try:
|
||||||
cache_item = self.cache[prompt_tokens]
|
cache_item = self.cache[prompt_tokens]
|
||||||
cache_prefix_len = Llama.longest_token_prefix(
|
cache_prefix_len = Llama.longest_token_prefix(
|
||||||
cache_item.eval_tokens, prompt_tokens
|
cache_item.input_ids.tolist(), prompt_tokens
|
||||||
)
|
)
|
||||||
eval_prefix_len = Llama.longest_token_prefix(
|
eval_prefix_len = Llama.longest_token_prefix(
|
||||||
self.eval_tokens, prompt_tokens
|
self._input_ids.tolist(), prompt_tokens
|
||||||
)
|
)
|
||||||
if cache_prefix_len > eval_prefix_len:
|
if cache_prefix_len > eval_prefix_len:
|
||||||
self.load_state(cache_item)
|
self.load_state(cache_item)
|
||||||
|
@ -810,7 +833,7 @@ class Llama:
|
||||||
self.detokenize(completion_tokens[:returned_tokens])
|
self.detokenize(completion_tokens[:returned_tokens])
|
||||||
)
|
)
|
||||||
token_offset = len(prompt_tokens) + returned_tokens
|
token_offset = len(prompt_tokens) + returned_tokens
|
||||||
logits = self.eval_logits[token_offset - 1]
|
logits = self._scores[token_offset - 1, :].tolist()
|
||||||
current_logprobs = Llama.logits_to_logprobs(logits)
|
current_logprobs = Llama.logits_to_logprobs(logits)
|
||||||
sorted_logprobs = list(
|
sorted_logprobs = list(
|
||||||
sorted(
|
sorted(
|
||||||
|
@ -859,7 +882,7 @@ class Llama:
|
||||||
break
|
break
|
||||||
|
|
||||||
if stopping_criteria is not None and stopping_criteria(
|
if stopping_criteria is not None and stopping_criteria(
|
||||||
list(self.eval_tokens), self.eval_logits[-1]
|
self._input_ids.tolist(), self._scores[-1, :].tolist()
|
||||||
):
|
):
|
||||||
text = self.detokenize(completion_tokens)
|
text = self.detokenize(completion_tokens)
|
||||||
finish_reason = "stop"
|
finish_reason = "stop"
|
||||||
|
@ -889,7 +912,7 @@ class Llama:
|
||||||
self.detokenize(completion_tokens[:returned_tokens])
|
self.detokenize(completion_tokens[:returned_tokens])
|
||||||
)
|
)
|
||||||
token_offset = len(prompt_tokens) + returned_tokens - 1
|
token_offset = len(prompt_tokens) + returned_tokens - 1
|
||||||
logits = self.eval_logits[token_offset]
|
logits = self._scores[token_offset, :].tolist()
|
||||||
current_logprobs = Llama.logits_to_logprobs(logits)
|
current_logprobs = Llama.logits_to_logprobs(logits)
|
||||||
sorted_logprobs = list(
|
sorted_logprobs = list(
|
||||||
sorted(
|
sorted(
|
||||||
|
@ -991,8 +1014,7 @@ class Llama:
|
||||||
for token in all_tokens
|
for token in all_tokens
|
||||||
]
|
]
|
||||||
all_logprobs = [
|
all_logprobs = [
|
||||||
Llama.logits_to_logprobs(list(map(float, row)))
|
Llama.logits_to_logprobs(row.tolist()) for row in self._scores
|
||||||
for row in self.eval_logits
|
|
||||||
][token_offset:]
|
][token_offset:]
|
||||||
for token, token_str, logprobs_token in zip(
|
for token, token_str, logprobs_token in zip(
|
||||||
all_tokens, all_token_strs, all_logprobs
|
all_tokens, all_token_strs, all_logprobs
|
||||||
|
@ -1376,6 +1398,8 @@ class Llama:
|
||||||
return LlamaState(
|
return LlamaState(
|
||||||
eval_tokens=self.eval_tokens.copy(),
|
eval_tokens=self.eval_tokens.copy(),
|
||||||
eval_logits=self.eval_logits.copy(),
|
eval_logits=self.eval_logits.copy(),
|
||||||
|
scores=self._scores.copy(),
|
||||||
|
input_ids=self._input_ids.copy(),
|
||||||
llama_state=llama_state_compact,
|
llama_state=llama_state_compact,
|
||||||
llama_state_size=n_bytes,
|
llama_state_size=n_bytes,
|
||||||
)
|
)
|
||||||
|
@ -1384,6 +1408,8 @@ class Llama:
|
||||||
assert self.ctx is not None
|
assert self.ctx is not None
|
||||||
self.eval_tokens = state.eval_tokens.copy()
|
self.eval_tokens = state.eval_tokens.copy()
|
||||||
self.eval_logits = state.eval_logits.copy()
|
self.eval_logits = state.eval_logits.copy()
|
||||||
|
self._scores = state.scores.copy()
|
||||||
|
self._input_ids = state.input_ids.copy()
|
||||||
state_size = state.llama_state_size
|
state_size = state.llama_state_size
|
||||||
if llama_cpp.llama_set_state_data(self.ctx, state.llama_state) != state_size:
|
if llama_cpp.llama_set_state_data(self.ctx, state.llama_state) != state_size:
|
||||||
raise RuntimeError("Failed to set llama state data")
|
raise RuntimeError("Failed to set llama state data")
|
||||||
|
|
48
poetry.lock
generated
48
poetry.lock
generated
|
@ -1,4 +1,4 @@
|
||||||
# This file is automatically @generated by Poetry 1.4.2 and should not be changed by hand.
|
# This file is automatically @generated by Poetry and should not be changed by hand.
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "anyio"
|
name = "anyio"
|
||||||
|
@ -800,14 +800,14 @@ mkdocs = ">=1.1"
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "mkdocs-material"
|
name = "mkdocs-material"
|
||||||
version = "9.1.14"
|
version = "9.1.15"
|
||||||
description = "Documentation that simply works"
|
description = "Documentation that simply works"
|
||||||
category = "dev"
|
category = "dev"
|
||||||
optional = false
|
optional = false
|
||||||
python-versions = ">=3.7"
|
python-versions = ">=3.7"
|
||||||
files = [
|
files = [
|
||||||
{file = "mkdocs_material-9.1.14-py3-none-any.whl", hash = "sha256:b56a9f955ed32d38333715cbbf68ce38f683bf38610c65094fa4ef2db9f08bcd"},
|
{file = "mkdocs_material-9.1.15-py3-none-any.whl", hash = "sha256:b49e12869ab464558e2dd3c5792da5b748a7e0c48ee83b4d05715f98125a7a39"},
|
||||||
{file = "mkdocs_material-9.1.14.tar.gz", hash = "sha256:1ae74cc5464ef2f64574d4884512efed7f4db386fb9bc6af20fd427d7a702f49"},
|
{file = "mkdocs_material-9.1.15.tar.gz", hash = "sha256:8513ab847c9a541ed3d11a3a7eed556caf72991ee786c31c5aac6691a121088a"},
|
||||||
]
|
]
|
||||||
|
|
||||||
[package.dependencies]
|
[package.dependencies]
|
||||||
|
@ -835,17 +835,18 @@ files = [
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "mkdocstrings"
|
name = "mkdocstrings"
|
||||||
version = "0.21.2"
|
version = "0.22.0"
|
||||||
description = "Automatic documentation from sources, for MkDocs."
|
description = "Automatic documentation from sources, for MkDocs."
|
||||||
category = "dev"
|
category = "dev"
|
||||||
optional = false
|
optional = false
|
||||||
python-versions = ">=3.7"
|
python-versions = ">=3.7"
|
||||||
files = [
|
files = [
|
||||||
{file = "mkdocstrings-0.21.2-py3-none-any.whl", hash = "sha256:949ef8da92df9d692ca07be50616459a6b536083a25520fd54b00e8814ce019b"},
|
{file = "mkdocstrings-0.22.0-py3-none-any.whl", hash = "sha256:2d4095d461554ff6a778fdabdca3c00c468c2f1459d469f7a7f622a2b23212ba"},
|
||||||
{file = "mkdocstrings-0.21.2.tar.gz", hash = "sha256:304e56a2e90595708a38a13a278e538a67ad82052dd5c8b71f77a604a4f3d911"},
|
{file = "mkdocstrings-0.22.0.tar.gz", hash = "sha256:82a33b94150ebb3d4b5c73bab4598c3e21468c79ec072eff6931c8f3bfc38256"},
|
||||||
]
|
]
|
||||||
|
|
||||||
[package.dependencies]
|
[package.dependencies]
|
||||||
|
importlib-metadata = {version = ">=4.6", markers = "python_version < \"3.10\""}
|
||||||
Jinja2 = ">=2.11.1"
|
Jinja2 = ">=2.11.1"
|
||||||
Markdown = ">=3.3"
|
Markdown = ">=3.3"
|
||||||
MarkupSafe = ">=1.1"
|
MarkupSafe = ">=1.1"
|
||||||
|
@ -1374,25 +1375,28 @@ jupyter = ["ipywidgets (>=7.5.1,<9)"]
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "scikit-build"
|
name = "scikit-build"
|
||||||
version = "0.13.0"
|
version = "0.17.5"
|
||||||
description = "Improved build system generator for Python C/C++/Fortran/Cython extensions"
|
description = "Improved build system generator for Python C/C++/Fortran/Cython extensions"
|
||||||
category = "dev"
|
category = "dev"
|
||||||
optional = false
|
optional = false
|
||||||
python-versions = "*"
|
python-versions = ">=3.7"
|
||||||
files = [
|
files = [
|
||||||
{file = "scikit-build-0.13.0.tar.gz", hash = "sha256:a6ca1b7f1cc8a718564c19f535014f3a71f34508f72e750d4221f987eed0f06d"},
|
{file = "scikit_build-0.17.5-py3-none-any.whl", hash = "sha256:18861286b34fd2d685327d3bec6ebf4d33303adfaef28a08dd856710d16cf20f"},
|
||||||
{file = "scikit_build-0.13.0-py2.py3-none-any.whl", hash = "sha256:f903fef5cd76aa81dee040fa9cf3daaeff5c71fccfe5fc0bf6a62e54b166d492"},
|
{file = "scikit_build-0.17.5.tar.gz", hash = "sha256:76856e7631d9e8887a7aa71913d5f184a6177246225391af96ce4801d89fa254"},
|
||||||
]
|
]
|
||||||
|
|
||||||
[package.dependencies]
|
[package.dependencies]
|
||||||
distro = "*"
|
distro = "*"
|
||||||
packaging = "*"
|
packaging = "*"
|
||||||
setuptools = {version = ">=28.0.0", markers = "python_version >= \"3\""}
|
setuptools = ">=42.0.0"
|
||||||
wheel = ">=0.29.0"
|
tomli = {version = "*", markers = "python_version < \"3.11\""}
|
||||||
|
wheel = ">=0.32.0"
|
||||||
|
|
||||||
[package.extras]
|
[package.extras]
|
||||||
|
cov = ["coverage[toml] (>=4.2)", "pytest-cov (>=2.7.1)"]
|
||||||
docs = ["pygments", "sphinx (>=4)", "sphinx-issues", "sphinx-rtd-theme (>=1.0)", "sphinxcontrib-moderncmakedomain (>=3.19)"]
|
docs = ["pygments", "sphinx (>=4)", "sphinx-issues", "sphinx-rtd-theme (>=1.0)", "sphinxcontrib-moderncmakedomain (>=3.19)"]
|
||||||
test = ["build (>=0.5)", "codecov (>=2.0.5)", "coverage (>=4.2)", "cython (>=0.25.1)", "flake8 (>=3.0.4)", "path.py (>=11.5.0)", "pathlib2", "pytest (>=4.5.0)", "pytest-cov (>=2.7.1)", "pytest-mock (>=1.10.4)", "pytest-runner (>=5.1)", "pytest-virtualenv (>=1.2.5)", "requests", "six (>=1.10.0)", "ubelt (>=0.8.2)", "virtualenv", "xdoctest (>=0.10.0)"]
|
doctest = ["ubelt (>=0.8.2)", "xdoctest (>=0.10.0)"]
|
||||||
|
test = ["build (>=0.7)", "cython (>=0.25.1)", "importlib-metadata", "pytest (>=6.0.0)", "pytest-mock (>=1.10.4)", "pytest-virtualenv (>=1.2.5)", "requests", "virtualenv"]
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "secretstorage"
|
name = "secretstorage"
|
||||||
|
@ -1522,14 +1526,14 @@ urllib3 = ">=1.26.0"
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "typing-extensions"
|
name = "typing-extensions"
|
||||||
version = "4.5.0"
|
version = "4.6.2"
|
||||||
description = "Backported and Experimental Type Hints for Python 3.7+"
|
description = "Backported and Experimental Type Hints for Python 3.7+"
|
||||||
category = "main"
|
category = "main"
|
||||||
optional = false
|
optional = false
|
||||||
python-versions = ">=3.7"
|
python-versions = ">=3.7"
|
||||||
files = [
|
files = [
|
||||||
{file = "typing_extensions-4.5.0-py3-none-any.whl", hash = "sha256:fb33085c39dd998ac16d1431ebc293a8b3eedd00fd4a32de0ff79002c19511b4"},
|
{file = "typing_extensions-4.6.2-py3-none-any.whl", hash = "sha256:3a8b36f13dd5fdc5d1b16fe317f5668545de77fa0b8e02006381fd49d731ab98"},
|
||||||
{file = "typing_extensions-4.5.0.tar.gz", hash = "sha256:5cb5f4a79139d699607b3ef622a1dedafa84e115ab0024e0d9c044a9479ca7cb"},
|
{file = "typing_extensions-4.6.2.tar.gz", hash = "sha256:06006244c70ac8ee83fa8282cb188f697b8db25bc8b4df07be1873c43897060c"},
|
||||||
]
|
]
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
|
@ -1552,14 +1556,14 @@ zstd = ["zstandard (>=0.18.0)"]
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "uvicorn"
|
name = "uvicorn"
|
||||||
version = "0.21.1"
|
version = "0.22.0"
|
||||||
description = "The lightning-fast ASGI server."
|
description = "The lightning-fast ASGI server."
|
||||||
category = "main"
|
category = "main"
|
||||||
optional = true
|
optional = true
|
||||||
python-versions = ">=3.7"
|
python-versions = ">=3.7"
|
||||||
files = [
|
files = [
|
||||||
{file = "uvicorn-0.21.1-py3-none-any.whl", hash = "sha256:e47cac98a6da10cd41e6fd036d472c6f58ede6c5dbee3dbee3ef7a100ed97742"},
|
{file = "uvicorn-0.22.0-py3-none-any.whl", hash = "sha256:e9434d3bbf05f310e762147f769c9f21235ee118ba2d2bf1155a7196448bd996"},
|
||||||
{file = "uvicorn-0.21.1.tar.gz", hash = "sha256:0fac9cb342ba099e0d582966005f3fdba5b0290579fed4a6266dc702ca7bb032"},
|
{file = "uvicorn-0.22.0.tar.gz", hash = "sha256:79277ae03db57ce7d9aa0567830bbb51d7a612f54d6e1e3e92da3ef24c2c8ed8"},
|
||||||
]
|
]
|
||||||
|
|
||||||
[package.dependencies]
|
[package.dependencies]
|
||||||
|
@ -1653,9 +1657,9 @@ docs = ["furo", "jaraco.packaging (>=9)", "jaraco.tidelift (>=1.4)", "rst.linker
|
||||||
testing = ["big-O", "flake8 (<5)", "jaraco.functools", "jaraco.itertools", "more-itertools", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=1.3)", "pytest-flake8", "pytest-mypy (>=0.9.1)"]
|
testing = ["big-O", "flake8 (<5)", "jaraco.functools", "jaraco.itertools", "more-itertools", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=1.3)", "pytest-flake8", "pytest-mypy (>=0.9.1)"]
|
||||||
|
|
||||||
[extras]
|
[extras]
|
||||||
server = ["fastapi", "sse-starlette", "uvicorn"]
|
server = ["uvicorn", "fastapi", "sse-starlette"]
|
||||||
|
|
||||||
[metadata]
|
[metadata]
|
||||||
lock-version = "2.0"
|
lock-version = "2.0"
|
||||||
python-versions = "^3.8.1"
|
python-versions = "^3.8.1"
|
||||||
content-hash = "b1b158e4c9640e4dc197fe43e22c9f87e6e90945ec9b8bcba6042f81249d251e"
|
content-hash = "f5aacb68729427e49bb796a598890fedd8ba1950af3fd577fb85edde2c27338f"
|
||||||
|
|
|
@ -1,6 +1,6 @@
|
||||||
[tool.poetry]
|
[tool.poetry]
|
||||||
name = "llama_cpp_python"
|
name = "llama_cpp_python"
|
||||||
version = "0.1.55"
|
version = "0.1.56"
|
||||||
description = "Python bindings for the llama.cpp library"
|
description = "Python bindings for the llama.cpp library"
|
||||||
authors = ["Andrei Betlen <abetlen@gmail.com>"]
|
authors = ["Andrei Betlen <abetlen@gmail.com>"]
|
||||||
license = "MIT"
|
license = "MIT"
|
||||||
|
@ -14,8 +14,9 @@ include = [
|
||||||
|
|
||||||
[tool.poetry.dependencies]
|
[tool.poetry.dependencies]
|
||||||
python = "^3.8.1"
|
python = "^3.8.1"
|
||||||
typing-extensions = "^4.5.0"
|
typing-extensions = "^4.6.2"
|
||||||
uvicorn = { version = "^0.21.1", optional = true }
|
numpy = "^1.20.0"
|
||||||
|
uvicorn = { version = "^0.22.0", optional = true }
|
||||||
fastapi = { version = "^0.95.0", optional = true }
|
fastapi = { version = "^0.95.0", optional = true }
|
||||||
sse-starlette = { version = "^1.3.3", optional = true }
|
sse-starlette = { version = "^1.3.3", optional = true }
|
||||||
|
|
||||||
|
@ -23,11 +24,11 @@ sse-starlette = { version = "^1.3.3", optional = true }
|
||||||
black = "^23.3.0"
|
black = "^23.3.0"
|
||||||
twine = "^4.0.2"
|
twine = "^4.0.2"
|
||||||
mkdocs = "^1.4.3"
|
mkdocs = "^1.4.3"
|
||||||
mkdocstrings = {extras = ["python"], version = "^0.21.2"}
|
mkdocstrings = {extras = ["python"], version = "^0.22.0"}
|
||||||
mkdocs-material = "^9.1.14"
|
mkdocs-material = "^9.1.15"
|
||||||
pytest = "^7.3.1"
|
pytest = "^7.3.1"
|
||||||
httpx = "^0.24.1"
|
httpx = "^0.24.1"
|
||||||
scikit-build = "0.13"
|
scikit-build = "0.17.5"
|
||||||
|
|
||||||
[tool.poetry.extras]
|
[tool.poetry.extras]
|
||||||
server = ["uvicorn", "fastapi", "sse-starlette"]
|
server = ["uvicorn", "fastapi", "sse-starlette"]
|
||||||
|
|
6
setup.py
6
setup.py
|
@ -10,15 +10,13 @@ setup(
|
||||||
description="A Python wrapper for llama.cpp",
|
description="A Python wrapper for llama.cpp",
|
||||||
long_description=long_description,
|
long_description=long_description,
|
||||||
long_description_content_type="text/markdown",
|
long_description_content_type="text/markdown",
|
||||||
version="0.1.55",
|
version="0.1.56",
|
||||||
author="Andrei Betlen",
|
author="Andrei Betlen",
|
||||||
author_email="abetlen@gmail.com",
|
author_email="abetlen@gmail.com",
|
||||||
license="MIT",
|
license="MIT",
|
||||||
package_dir={"llama_cpp": "llama_cpp", "llama_cpp.server": "llama_cpp/server"},
|
package_dir={"llama_cpp": "llama_cpp", "llama_cpp.server": "llama_cpp/server"},
|
||||||
packages=["llama_cpp", "llama_cpp.server"],
|
packages=["llama_cpp", "llama_cpp.server"],
|
||||||
install_requires=[
|
install_requires=["typing-extensions>=4.5.0", "numpy>=1.20.0"],
|
||||||
"typing-extensions>=4.5.0",
|
|
||||||
],
|
|
||||||
extras_require={
|
extras_require={
|
||||||
"server": ["uvicorn>=0.21.1", "fastapi>=0.95.0", "sse-starlette>=1.3.3"],
|
"server": ["uvicorn>=0.21.1", "fastapi>=0.95.0", "sse-starlette>=1.3.3"],
|
||||||
},
|
},
|
||||||
|
|
Loading…
Reference in a new issue