Merge branch 'main' of github.com:abetlen/llama_cpp_python into main
This commit is contained in:
commit
9c41a3e990
4 changed files with 119 additions and 3 deletions
|
@ -17,6 +17,9 @@ This package provides:
|
|||
|
||||
Documentation is available at [https://abetlen.github.io/llama-cpp-python](https://abetlen.github.io/llama-cpp-python).
|
||||
|
||||
Detailed MacOS Metal GPU install documentation is available at [docs/macos_install.md](docs/macos_install.md)
|
||||
|
||||
|
||||
## Installation from PyPI (recommended)
|
||||
|
||||
Install from PyPI (requires a c compiler):
|
||||
|
@ -25,7 +28,7 @@ Install from PyPI (requires a c compiler):
|
|||
pip install llama-cpp-python
|
||||
```
|
||||
|
||||
The above command will attempt to install the package and build build `llama.cpp` from source.
|
||||
The above command will attempt to install the package and build `llama.cpp` from source.
|
||||
This is the recommended installation method as it ensures that `llama.cpp` is built with the available optimizations for your system.
|
||||
|
||||
If you have previously installed `llama-cpp-python` through pip and want to upgrade your version or rebuild the package with different compiler options, please add the following flags to ensure that the package is rebuilt correctly:
|
||||
|
|
62
docs/macos_install.md
Normal file
62
docs/macos_install.md
Normal file
|
@ -0,0 +1,62 @@
|
|||
|
||||
# llama-cpp-python - MacOS Install with Metal GPU
|
||||
|
||||
|
||||
**(1) Make sure you have xcode installed... at least the command line parts**
|
||||
```
|
||||
# check the path of your xcode install
|
||||
xcode-select -p
|
||||
|
||||
# xcode installed returns
|
||||
# /Applications/Xcode-beta.app/Contents/Developer
|
||||
|
||||
# if xcode is missing then install it... it takes ages;
|
||||
xcode-select --install
|
||||
```
|
||||
|
||||
**(2) Install the conda version for MacOS that supports Metal GPU**
|
||||
```
|
||||
wget https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-MacOSX-arm64.sh
|
||||
bash Miniforge3-MacOSX-arm64.sh
|
||||
```
|
||||
|
||||
**(3) Make a conda environment**
|
||||
```
|
||||
conda create -n llama python=3.9.16
|
||||
conda activate llama
|
||||
```
|
||||
|
||||
**(4) Install the LATEST llama-cpp-python.. which, as of just today, happily supports MacOS Metal GPU**
|
||||
*(you needed xcode installed in order pip to build/compile the C++ code)*
|
||||
```
|
||||
pip uninstall llama-cpp-python -y
|
||||
CMAKE_ARGS="-DLLAMA_METAL=on" FORCE_CMAKE=1 pip install -U llama-cpp-python --no-cache-dir
|
||||
pip install 'llama-cpp-python[server]'
|
||||
|
||||
# you should now have llama-cpp-python v0.1.62 installed
|
||||
llama-cpp-python 0.1.62
|
||||
|
||||
```
|
||||
|
||||
**(4) Download a v3 ggml llama/vicuna/alpaca model**
|
||||
- **ggmlv3**
|
||||
- file name ends with **q4_0.bin** - indicating it is 4bit quantized, with quantisation method 0
|
||||
|
||||
https://huggingface.co/vicuna/ggml-vicuna-13b-1.1/blob/main/ggml-vic13b-q4_0.bin
|
||||
https://huggingface.co/vicuna/ggml-vicuna-13b-1.1/blob/main/ggml-vic13b-uncensored-q4_0.bin
|
||||
https://huggingface.co/TheBloke/LLaMa-7B-GGML/blob/main/llama-7b.ggmlv3.q4_0.bin
|
||||
https://huggingface.co/TheBloke/LLaMa-13B-GGML/blob/main/llama-13b.ggmlv3.q4_0.bin
|
||||
|
||||
|
||||
**(6) run the llama-cpp-python API server with MacOS Metal GPU support**
|
||||
```
|
||||
# config your ggml model path
|
||||
# make sure it is ggml v3
|
||||
# make sure it is q4_0
|
||||
export MODEL=[path to your llama.cpp ggml models]]/[ggml-model-name]]q4_0.bin
|
||||
python3 -m llama_cpp.server --model $MODEL --n_gpu_layers 1
|
||||
```
|
||||
|
||||
***Note:** If you omit the `--n_gpu_layers 1` then CPU will be used*
|
||||
|
||||
|
|
@ -1378,6 +1378,7 @@ class Llama:
|
|||
mirostat_tau: float = 5.0,
|
||||
mirostat_eta: float = 0.1,
|
||||
model: Optional[str] = None,
|
||||
logits_processor: Optional[LogitsProcessorList] = None,
|
||||
) -> Union[ChatCompletion, Iterator[ChatCompletionChunk]]:
|
||||
"""Generate a chat completion from a list of messages.
|
||||
|
||||
|
@ -1419,6 +1420,7 @@ class Llama:
|
|||
mirostat_tau=mirostat_tau,
|
||||
mirostat_eta=mirostat_eta,
|
||||
model=model,
|
||||
logits_processor=logits_processor,
|
||||
)
|
||||
if stream:
|
||||
chunks: Iterator[CompletionChunk] = completion_or_chunks # type: ignore
|
||||
|
|
|
@ -259,13 +259,14 @@ class CreateCompletionRequest(BaseModel):
|
|||
)
|
||||
presence_penalty: Optional[float] = presence_penalty_field
|
||||
frequency_penalty: Optional[float] = frequency_penalty_field
|
||||
logit_bias: Optional[Dict[str, float]] = Field(None)
|
||||
logit_bias_type: Optional[Literal["input_ids", "tokens"]] = Field(None)
|
||||
|
||||
# ignored or currently unsupported
|
||||
model: Optional[str] = model_field
|
||||
n: Optional[int] = 1
|
||||
logprobs: Optional[int] = Field(None)
|
||||
best_of: Optional[int] = 1
|
||||
logit_bias: Optional[Dict[str, float]] = Field(None)
|
||||
user: Optional[str] = Field(None)
|
||||
|
||||
# llama.cpp specific parameters
|
||||
|
@ -284,6 +285,39 @@ class CreateCompletionRequest(BaseModel):
|
|||
CreateCompletionResponse = create_model_from_typeddict(llama_cpp.Completion)
|
||||
|
||||
|
||||
def make_logit_bias_processor(
|
||||
llama: llama_cpp.Llama,
|
||||
logit_bias: Dict[str, float],
|
||||
logit_bias_type: Optional[Literal["input_ids", "tokens"]],
|
||||
):
|
||||
if logit_bias_type is None:
|
||||
logit_bias_type = "input_ids"
|
||||
|
||||
to_bias: Dict[int, float] = {}
|
||||
if logit_bias_type == "input_ids":
|
||||
for input_id, score in logit_bias.items():
|
||||
input_id = int(input_id)
|
||||
to_bias[input_id] = score
|
||||
|
||||
elif logit_bias_type == "tokens":
|
||||
for token, score in logit_bias.items():
|
||||
token = token.encode('utf-8')
|
||||
for input_id in llama.tokenize(token, add_bos=False):
|
||||
to_bias[input_id] = score
|
||||
|
||||
def logit_bias_processor(
|
||||
input_ids: List[int],
|
||||
scores: List[float],
|
||||
) -> List[float]:
|
||||
new_scores = [None] * len(scores)
|
||||
for input_id, score in enumerate(scores):
|
||||
new_scores[input_id] = score + to_bias.get(input_id, 0.0)
|
||||
|
||||
return new_scores
|
||||
|
||||
return logit_bias_processor
|
||||
|
||||
|
||||
@router.post(
|
||||
"/v1/completions",
|
||||
response_model=CreateCompletionResponse,
|
||||
|
@ -301,9 +335,16 @@ async def create_completion(
|
|||
"n",
|
||||
"best_of",
|
||||
"logit_bias",
|
||||
"logit_bias_type",
|
||||
"user",
|
||||
}
|
||||
kwargs = body.dict(exclude=exclude)
|
||||
|
||||
if body.logit_bias is not None:
|
||||
kwargs['logits_processor'] = llama_cpp.LogitsProcessorList([
|
||||
make_logit_bias_processor(llama, body.logit_bias, body.logit_bias_type),
|
||||
])
|
||||
|
||||
if body.stream:
|
||||
send_chan, recv_chan = anyio.create_memory_object_stream(10)
|
||||
|
||||
|
@ -382,11 +423,12 @@ class CreateChatCompletionRequest(BaseModel):
|
|||
stream: bool = stream_field
|
||||
presence_penalty: Optional[float] = presence_penalty_field
|
||||
frequency_penalty: Optional[float] = frequency_penalty_field
|
||||
logit_bias: Optional[Dict[str, float]] = Field(None)
|
||||
logit_bias_type: Optional[Literal["input_ids", "tokens"]] = Field(None)
|
||||
|
||||
# ignored or currently unsupported
|
||||
model: Optional[str] = model_field
|
||||
n: Optional[int] = 1
|
||||
logit_bias: Optional[Dict[str, float]] = Field(None)
|
||||
user: Optional[str] = Field(None)
|
||||
|
||||
# llama.cpp specific parameters
|
||||
|
@ -423,9 +465,16 @@ async def create_chat_completion(
|
|||
exclude = {
|
||||
"n",
|
||||
"logit_bias",
|
||||
"logit_bias_type",
|
||||
"user",
|
||||
}
|
||||
kwargs = body.dict(exclude=exclude)
|
||||
|
||||
if body.logit_bias is not None:
|
||||
kwargs['logits_processor'] = llama_cpp.LogitsProcessorList([
|
||||
make_logit_bias_processor(llama, body.logit_bias, body.logit_bias_type),
|
||||
])
|
||||
|
||||
if body.stream:
|
||||
send_chan, recv_chan = anyio.create_memory_object_stream(10)
|
||||
|
||||
|
|
Loading…
Add table
Reference in a new issue