Merge branch 'main' of github.com:abetlen/llama_cpp_python into main

This commit is contained in:
Andrei Betlen 2023-06-14 21:50:43 -04:00
commit 9c41a3e990
4 changed files with 119 additions and 3 deletions

View file

@ -17,6 +17,9 @@ This package provides:
Documentation is available at [https://abetlen.github.io/llama-cpp-python](https://abetlen.github.io/llama-cpp-python). Documentation is available at [https://abetlen.github.io/llama-cpp-python](https://abetlen.github.io/llama-cpp-python).
Detailed MacOS Metal GPU install documentation is available at [docs/macos_install.md](docs/macos_install.md)
## Installation from PyPI (recommended) ## Installation from PyPI (recommended)
Install from PyPI (requires a c compiler): Install from PyPI (requires a c compiler):
@ -25,7 +28,7 @@ Install from PyPI (requires a c compiler):
pip install llama-cpp-python pip install llama-cpp-python
``` ```
The above command will attempt to install the package and build build `llama.cpp` from source. The above command will attempt to install the package and build `llama.cpp` from source.
This is the recommended installation method as it ensures that `llama.cpp` is built with the available optimizations for your system. This is the recommended installation method as it ensures that `llama.cpp` is built with the available optimizations for your system.
If you have previously installed `llama-cpp-python` through pip and want to upgrade your version or rebuild the package with different compiler options, please add the following flags to ensure that the package is rebuilt correctly: If you have previously installed `llama-cpp-python` through pip and want to upgrade your version or rebuild the package with different compiler options, please add the following flags to ensure that the package is rebuilt correctly:

62
docs/macos_install.md Normal file
View file

@ -0,0 +1,62 @@
# llama-cpp-python - MacOS Install with Metal GPU
**(1) Make sure you have xcode installed... at least the command line parts**
```
# check the path of your xcode install
xcode-select -p
# xcode installed returns
# /Applications/Xcode-beta.app/Contents/Developer
# if xcode is missing then install it... it takes ages;
xcode-select --install
```
**(2) Install the conda version for MacOS that supports Metal GPU**
```
wget https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-MacOSX-arm64.sh
bash Miniforge3-MacOSX-arm64.sh
```
**(3) Make a conda environment**
```
conda create -n llama python=3.9.16
conda activate llama
```
**(4) Install the LATEST llama-cpp-python.. which, as of just today, happily supports MacOS Metal GPU**
*(you needed xcode installed in order pip to build/compile the C++ code)*
```
pip uninstall llama-cpp-python -y
CMAKE_ARGS="-DLLAMA_METAL=on" FORCE_CMAKE=1 pip install -U llama-cpp-python --no-cache-dir
pip install 'llama-cpp-python[server]'
# you should now have llama-cpp-python v0.1.62 installed
llama-cpp-python         0.1.62     
```
**(4) Download a v3 ggml llama/vicuna/alpaca model**
- **ggmlv3**
- file name ends with **q4_0.bin** - indicating it is 4bit quantized, with quantisation method 0
https://huggingface.co/vicuna/ggml-vicuna-13b-1.1/blob/main/ggml-vic13b-q4_0.bin
https://huggingface.co/vicuna/ggml-vicuna-13b-1.1/blob/main/ggml-vic13b-uncensored-q4_0.bin
https://huggingface.co/TheBloke/LLaMa-7B-GGML/blob/main/llama-7b.ggmlv3.q4_0.bin
https://huggingface.co/TheBloke/LLaMa-13B-GGML/blob/main/llama-13b.ggmlv3.q4_0.bin
**(6) run the llama-cpp-python API server with MacOS Metal GPU support**
```
# config your ggml model path
# make sure it is ggml v3
# make sure it is q4_0
export MODEL=[path to your llama.cpp ggml models]]/[ggml-model-name]]q4_0.bin
python3 -m llama_cpp.server --model $MODEL --n_gpu_layers 1
```
***Note:** If you omit the `--n_gpu_layers 1` then CPU will be used*

View file

@ -1378,6 +1378,7 @@ class Llama:
mirostat_tau: float = 5.0, mirostat_tau: float = 5.0,
mirostat_eta: float = 0.1, mirostat_eta: float = 0.1,
model: Optional[str] = None, model: Optional[str] = None,
logits_processor: Optional[LogitsProcessorList] = None,
) -> Union[ChatCompletion, Iterator[ChatCompletionChunk]]: ) -> Union[ChatCompletion, Iterator[ChatCompletionChunk]]:
"""Generate a chat completion from a list of messages. """Generate a chat completion from a list of messages.
@ -1419,6 +1420,7 @@ class Llama:
mirostat_tau=mirostat_tau, mirostat_tau=mirostat_tau,
mirostat_eta=mirostat_eta, mirostat_eta=mirostat_eta,
model=model, model=model,
logits_processor=logits_processor,
) )
if stream: if stream:
chunks: Iterator[CompletionChunk] = completion_or_chunks # type: ignore chunks: Iterator[CompletionChunk] = completion_or_chunks # type: ignore

View file

@ -259,13 +259,14 @@ class CreateCompletionRequest(BaseModel):
) )
presence_penalty: Optional[float] = presence_penalty_field presence_penalty: Optional[float] = presence_penalty_field
frequency_penalty: Optional[float] = frequency_penalty_field frequency_penalty: Optional[float] = frequency_penalty_field
logit_bias: Optional[Dict[str, float]] = Field(None)
logit_bias_type: Optional[Literal["input_ids", "tokens"]] = Field(None)
# ignored or currently unsupported # ignored or currently unsupported
model: Optional[str] = model_field model: Optional[str] = model_field
n: Optional[int] = 1 n: Optional[int] = 1
logprobs: Optional[int] = Field(None) logprobs: Optional[int] = Field(None)
best_of: Optional[int] = 1 best_of: Optional[int] = 1
logit_bias: Optional[Dict[str, float]] = Field(None)
user: Optional[str] = Field(None) user: Optional[str] = Field(None)
# llama.cpp specific parameters # llama.cpp specific parameters
@ -284,6 +285,39 @@ class CreateCompletionRequest(BaseModel):
CreateCompletionResponse = create_model_from_typeddict(llama_cpp.Completion) CreateCompletionResponse = create_model_from_typeddict(llama_cpp.Completion)
def make_logit_bias_processor(
llama: llama_cpp.Llama,
logit_bias: Dict[str, float],
logit_bias_type: Optional[Literal["input_ids", "tokens"]],
):
if logit_bias_type is None:
logit_bias_type = "input_ids"
to_bias: Dict[int, float] = {}
if logit_bias_type == "input_ids":
for input_id, score in logit_bias.items():
input_id = int(input_id)
to_bias[input_id] = score
elif logit_bias_type == "tokens":
for token, score in logit_bias.items():
token = token.encode('utf-8')
for input_id in llama.tokenize(token, add_bos=False):
to_bias[input_id] = score
def logit_bias_processor(
input_ids: List[int],
scores: List[float],
) -> List[float]:
new_scores = [None] * len(scores)
for input_id, score in enumerate(scores):
new_scores[input_id] = score + to_bias.get(input_id, 0.0)
return new_scores
return logit_bias_processor
@router.post( @router.post(
"/v1/completions", "/v1/completions",
response_model=CreateCompletionResponse, response_model=CreateCompletionResponse,
@ -301,9 +335,16 @@ async def create_completion(
"n", "n",
"best_of", "best_of",
"logit_bias", "logit_bias",
"logit_bias_type",
"user", "user",
} }
kwargs = body.dict(exclude=exclude) kwargs = body.dict(exclude=exclude)
if body.logit_bias is not None:
kwargs['logits_processor'] = llama_cpp.LogitsProcessorList([
make_logit_bias_processor(llama, body.logit_bias, body.logit_bias_type),
])
if body.stream: if body.stream:
send_chan, recv_chan = anyio.create_memory_object_stream(10) send_chan, recv_chan = anyio.create_memory_object_stream(10)
@ -382,11 +423,12 @@ class CreateChatCompletionRequest(BaseModel):
stream: bool = stream_field stream: bool = stream_field
presence_penalty: Optional[float] = presence_penalty_field presence_penalty: Optional[float] = presence_penalty_field
frequency_penalty: Optional[float] = frequency_penalty_field frequency_penalty: Optional[float] = frequency_penalty_field
logit_bias: Optional[Dict[str, float]] = Field(None)
logit_bias_type: Optional[Literal["input_ids", "tokens"]] = Field(None)
# ignored or currently unsupported # ignored or currently unsupported
model: Optional[str] = model_field model: Optional[str] = model_field
n: Optional[int] = 1 n: Optional[int] = 1
logit_bias: Optional[Dict[str, float]] = Field(None)
user: Optional[str] = Field(None) user: Optional[str] = Field(None)
# llama.cpp specific parameters # llama.cpp specific parameters
@ -423,9 +465,16 @@ async def create_chat_completion(
exclude = { exclude = {
"n", "n",
"logit_bias", "logit_bias",
"logit_bias_type",
"user", "user",
} }
kwargs = body.dict(exclude=exclude) kwargs = body.dict(exclude=exclude)
if body.logit_bias is not None:
kwargs['logits_processor'] = llama_cpp.LogitsProcessorList([
make_logit_bias_processor(llama, body.logit_bias, body.logit_bias_type),
])
if body.stream: if body.stream:
send_chan, recv_chan = anyio.create_memory_object_stream(10) send_chan, recv_chan = anyio.create_memory_object_stream(10)